首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The protein pattern of healthy human eccrine sweat was investigated and 10 major proteins were detected from which apolipoprotein D, lipophilin B, and cathepsin D (CatD) were identified for the first time in human eccrine sweat. We focused our studies on the function of the aspartate protease CatD in sweat. In vitro digestion experiments using a specific fluorescent CatD substrate showed that CatD is enzymatically active in human sweat. To identify potential substrates of CatD in human eccrine sweat LL-37 and DCD-1L, two antimicrobial peptides present in sweat, were digested in vitro with purified CatD. LL-37 was not significantly digested by CatD, whereas DCD-1L was cleaved between Leu(44) and Asp(45) and between Leu(29) and Glu(30) almost completely. The DCD-1L-derived peptides generated in vitro by CatD were also found in vivo in human sweat as determined by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Furthermore, besides the CatD-processed peptides we identified additionally DCD-1L-derived peptides that are generated upon cleavage with a 1,10-phenanthroline-sensitive carboxypeptidase and an endoprotease. Taken together, proteolytic processing generates 12 DCD-1L-derived peptides. To elucidate the functional significance of postsecretory processing the antimicrobial activity of three CatD-processed DCD-1L peptides was tested. Whereas two of these peptides showed no activity against Gram-positive and Gram-negative bacteria, one DCD-1L-derived peptide showed an even higher activity against Escherichia coli than DCD-1L. Functional analysis indicated that proteolytic processing of DCD-1L by CatD in human sweat modulates the innate immune defense of human skin.  相似文献   

2.
The classical Th1/Th2 paradigm previously defining atopic dermatitis (AD) and psoriasis has recently been challenged with the discovery of Th17 T cells that synthesize IL-17 and IL-22. Although it is becoming evident that many Th1 diseases including psoriasis have a strong IL-17 signal, the importance of Th17 T cells in AD is still unclear. We examined and compared skin biopsies from AD and psoriasis patients by gene microarray, RT-PCR, immunohistochemistry, and immunofluorescence. We found a reduced genomic expression of IL-23, IL-17, and IFN-gamma in AD compared with psoriasis. To define the effects of IL-17 and IL-22 on keratinocytes, we performed gene array studies with cytokine-treated keratinocytes. We found lipocalin 2 and numerous other innate defense genes to be selectively induced in keratinocytes by IL-17. IFN-gamma had no effect on antimicrobial gene-expression in keratinocytes. In AD skin lesions, protein and mRNA expression of lipocalin 2 and other innate defense genes (hBD2, elafin, LL37) were reduced compared with psoriasis. Although AD has been framed by the Th1/Th2 paradigm as a Th2 polar disease, we present evidence that the IL-23/Th17 axis is largely absent, perhaps accounting for recurrent skin infections in this disease.  相似文献   

3.
The production of antimicrobial peptides and proteins is essential for defense against infection. Many of the known human antimicrobial peptides are multifunctional, with stimulatory activities such as chemotaxis while simultaneously acting as natural antibiotics. In humans, eccrine appendages express DCD and CAMP, genes encoding proteins processed into the antimicrobial peptides dermcidin and LL-37. In this study we show that after secretion onto the skin surface, the CAMP gene product is processed by a serine protease-dependent mechanism into multiple novel antimicrobial peptides distinct from the cathelicidin LL-37. These peptides show enhanced antimicrobial action, acquiring the ability to kill skin pathogens such as Staphylococcus aureus and Candida albicans. Furthermore, although LL-37 may influence the host inflammatory response by stimulating IL-8 release from keratinocytes, this activity is lost in subsequently processed peptides. Thus, a single gene product encoding an important defense molecule alters structure and function in the topical environment to shift the balance of activity toward direct inhibition of microbial colonization.  相似文献   

4.
Dermcidin (DCD) is a gene for an antimicrobial peptide DCD-1 in human sweat glands. It has become evident that the gene products of DCD exhibit a wide range of biological functions. In addition to its antimicrobial function, it is reported to be a neuronal survival factor, a putative oncogene in breast cancer and a proteolysis-inducing factor (PIF) that induces skeletal muscle proteolysis to cause cancer cachexia. Here we identified DCD in human placental tissue and determined its previously uncharacterized proteolytic activity. We also show that recombinant DCD induced an invasive phenotype in a human choriocarcinoma cell line JAR in vitro. This work suggests that DCD might participate in the regulation of placental function by means of modulating the proteolytic cascades on the trophoblastic cell surface, and might be involved in the pathophysiology of pregnancy-related disorders, as well as cancer and neuronal diseases.  相似文献   

5.
Dermcidin encodes the anionic amphiphilic peptide DCD-1L, which displays a broad spectrum of antimicrobial activity under conditions resembling those in human sweat. Here, we have investigated its mode of antimicrobial activity. We found that DCD-1L interacts preferentially with negatively charged bacterial phospholipids with a helix axis that is aligned flat on a lipid bilayer surface. Upon interaction with lipid bilayers DCD-1L forms oligomeric complexes that are stabilized by Zn(2+). DCD-1L is able to form ion channels in the bacterial membrane, and we propose that Zn(2+)-induced self-assembly of DCD-1L upon interaction with bacterial lipid bilayers is a prerequisite for ion channel formation. These data allow us for the first time to propose a molecular model for the antimicrobial mechanism of a naturally processed human anionic peptide that is active under the harsh conditions present in human sweat.  相似文献   

6.
Resistance to human skin innate defenses is crucial for survival and carriage of Staphylococcus aureus, a common cutaneous pathogen and nasal colonizer. Free fatty acids extracted from human skin sebum possess potent antimicrobial activity against S. aureus. The mechanisms by which S. aureus overcomes this host defense during colonization remain unknown. Here, we show that S. aureus IsdA, a surface protein produced in response to the host, decreases bacterial cellular hydrophobicity rendering them resistant to bactericidal human skin fatty acids and peptides. IsdA is required for survival of S. aureus on live human skin. Reciprocally, skin fatty acids prevent the production of virulence determinants and the induction of antibiotic resistance in S. aureus and other Gram-positive pathogens. A purified human skin fatty acid was effective in treating systemic and topical infections of S. aureus suggesting that our natural defense mechanisms can be exploited to combat drug-resistant pathogens.  相似文献   

7.
Patients with atopic dermatitis (AD) are highly susceptible to viral, bacterial, and fungal skin infections because their skin is dry and this compromises the barrier function of the skin. Therefore, the skin microbiota of patients with AD is believed to be different from that of healthy individuals. In the present study, the skin fungal microbiota of nine patients with mild, moderate, or severe AD and ten healthy subjects were compared using an rRNA clone library. Fungal D1/D2 large subunit analysis of 3647 clones identified 58 species and seven unknown phylotypes in face scale samples from patients with AD and healthy subjects. Malassezia species were predominant, accounting for 63%-86% of the clones identified from each subject. Overall, the non-Malassezia yeast microbiota of the patients was more diverse than that of the healthy individuals. In the AD samples 13.0 ± 3.0 species per case were detected, as compared to 8.0 ± 1.9 species per case in the samples taken from healthy individuals. Notably, Candida albicans, Cryptococcus diffluens, and Cryptococcus liquefaciens were detected in the samples from the patients with AD. Of the filamentous fungal microbiota, Cladosporium spp. and Toxicocladosporium irritans were the predominant species in these patients. Many pathogenic fungi, including Meyerozyma guilliermondii (anamorphic name, Candida guilliermondii), and Trichosporon asahii, and allergenic microorganisms such as Alternaria alternata and Aureobasidium pullulans were found on the skin of the healthy subjects. When the fungal microbiota of the samples from patients with mild/moderate to severe AD and healthy individuals were clustered together by principal coordinates analysis they were found to be clustered according to health status.  相似文献   

8.
Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.  相似文献   

9.
万超  彭练慈  叶超 《微生物学报》2023,63(4):1305-1317
宿主防御肽是一类广泛存在于脊椎动物的小分子多肽,具有广谱的抗菌活性以及抗炎、细胞趋化、促进血管生成和修复损伤等免疫调节功能。以往的研究多集中在宿主防御肽抗细菌和真菌感染的研究上。近年来大量研究发现,宿主防御肽也具有广泛的抗病毒活性,在临床各类病毒病的预防和治疗上具有潜在的应用前景。本文围绕宿主防御肽直接杀伤病毒、调节病毒感染过程和参与宿主抗病毒天然免疫调节这3个方面的作用机制进行综述,为宿主防御肽抗病毒相关研究和相关抗病毒生物药物的研发提供参考和借鉴。  相似文献   

10.
Recent experimental evidence indicates that non-neuronal acetylcholine is involved in the regulation of basic cell functions. Here we investigated the cholinergic system in the skin of healthy volunteers and patients with atopic dermatitis (AD). The synthesizing enzyme, choline-acetyltransferase (ChAT), was studied by anti-ChAT immunohistochemistry and enzyme assay. Skin biopsies taken from healthy volunteers and from AD patients were separated into the 2 mm superfical (epidermis and upper dermis) and 3 mm underlying portion (deeper dermis and subcutis). ChAT enzyme activity was detected in homogenized skin and subcutaneous fat (about 13 nmol/mg protein/h). ChAT immunoreactivity was expressed in keratinocytes, hair papilla, sebaceous and eccrine sweat glands, endothelial cells and mast cells. In healthy volunteers the superficial and underlying portion of skin biopsies contained 130 +/- 30 and 550 +/- 170 pmol/g acetylcholine (n = 12), respectively. In AD patients (n = 7) acetylcholine was increased 14-fold in the superficial and 3-fold in the underlying biopsy portion. The present study demonstrates the widespread expression of ChAT protein in the vast majority of human skin cells. Tissue levels of acetylcholine are greatly (14-fold) enhanced in the superficial 2 mm skin of AD patients.  相似文献   

11.
Staphylococcus aureus is the leading cause of human skin infections. In this issue of Cell Host & Microbe, new research probes how a change in surface hydrophobicity mediated by a single S. aureus protein renders the pathogen resistant to key molecular effectors of skin innate immunity, including cationic antimicrobial peptides and fatty acid constituents of sebum. Novel treatment strategies for S. aureus infection may lie in supplementing the very same innate defense molecules to therapeutic levels.  相似文献   

12.
Abstract Cecropins and other natural antimicrobial peptides are widely distributed in animals from insects to mammals. These proteins have been shown to be major constituents of the innate immune systems of animals for nonspecific defense of the host against various bacteria and parasites. Therefore, exploitation of this natural innate defense system may lead to the development of effective methods for protecting fish from invasion by microbial pathogens. Recently, we have demonstrated that the introduction of cecropin transgenes into Japanese medaka (Oryzias latipes) conferred resistance to infection by fish bacterial pathogens. Aside from a few reports documenting the antiviral effect of antimicrobial peptides including cecropins against mammalian viruses, there is no evidence for the effect of these peptides against fish viruses. In this article we present results of in vitro characterization of native cecropin B and a synthetic analogue, CF17, against several important fish viral pathogens—namely, infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), snakehead rhabdovirus (SHRV), and infectious pancreatic necrosis virus (IPNV). Upon coincubation of these peptides and viruses, the viral titers yielded in fish cells were reduced from several fold to 104-fold. Direct disruption of the viral envelope and disintegration of the viral capsids may be involved in the inhibition of viral replication by the peptides. Results of our studies demonstrate the potential of manipulating antimicrobial peptide genes by transgenesis to combat viral infection in fish.  相似文献   

13.
Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2), a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin’s antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.  相似文献   

14.
It is well known that eccrine sweating is attenuated in patients with atopic dermatitis (AD). We have reported by using proteome analysis that gross cystic disease fluid protein 15 (GCDFP15), a substance secreted from eccrine sweat glands, is decreased in tape-stripped stratum corneum (SC) samples from AD patients. The aim of this study was to evaluate GCDFP15 production by eccrine glands with SC samples and to assess sweating in AD. SC samples were obtained from 51 healthy control (HC) and 51 AD individuals. Sweat samples were from 18 HC and 12 AD subjects. GCDFP15 was quantified by ELISA. By immunohistochemistry, the expression of GCDFP15 in eccrine glands was examined in normal and AD skin specimens. To identify GCDFP15-producing cells, double immunofluorescence staining for GCDFP15 and S100 protein was performed in frozen sections. To address the mechanism underlying the decreased eccrine sweating in AD patients, we examined the expression of cholinergic receptor M3 (CHRM3), a receptor for acetylcholine-induced sweating, in eccrine sweat glands. The amounts of GCDFP15 in the SC extracts were significantly lower in AD than HC (P < 0.0001). The sweat samples from AD patients also had lower levels of GCDFP15 concentration (P < 0.05). Immunohistochemistry showed positive GCDFP15 staining in the eccrine gland secretory cells and the ductal and acrosyringial lumen in normal skin, but AD lacked clear staining. Immunofluorescence staining revealed that GCDFP15 was co-expressed with S100 protein, suggesting that the clear cell of eccrine glands produces GCDFP15. Finally, we found that the expression of CHRM3 was depressed in AD, suggesting contribution to the low sweating. The SC of AD patients contains a low amount of GCDFP15 due to both low sweating and low GCDFP15 concentration in the sweat. GCDFP15 in SC is a potential marker for dysregulated sweating in AD.  相似文献   

15.
Innate immune mechanisms of defense are especially important to ectothermic vertebrates in which adaptive immune responses may be slow to develop. One innate defense in amphibian skin is the release of abundant quantities of antimicrobial peptides. Chytridiomycosis is an emerging infectious disease of amphibians caused by the skin fungus, Batrachochytrium dendrobatidis . Susceptibility to chytridiomycosis varies among species, and mechanisms of disease resistance are not well understood. Previously, we have shown that Australian and Panamanian amphibian species that possess skin peptides that effectively inhibit the growth of B. dendrobatidis in vitro tend to survive better in the wild or are predicted to survive the first encounter with this lethal pathogen. For most species, it has been difficult to experimentally infect individuals with B. dendrobatidis and directly evaluate both survival and antimicrobial peptide defenses. Here, we demonstrate differences in susceptibility to chytridiomycosis among four Australian species ( Litoria caerulea, Litoria chloris, Mixophyes fasciolatus and Limnodynastes tasmaniensis ) after experimental infection with B. dendrobatidis , and show that the survival rate increases with the in vitro effectiveness of the skin peptides. We also observed that circulating granulocyte, but not lymphocyte, counts differed between infected and uninfected Lit. chloris . This suggests that innate granulocyte defenses may be activated by pathogen exposure. Taken together, our data suggest that multiple innate defense mechanisms are involved in resistance to chytridiomycosis, and the efficacy of these defenses varies by amphibian species.  相似文献   

16.
17.
Allergic airway inflammation inhibits pulmonary antibacterial host defense   总被引:4,自引:0,他引:4  
The innate immune system of the lung is a multicomponent host defense system and in addition has an instructing role in regulating the quality and quantity of the adaptive immune response. When the interaction between innate and adaptive immunity is disturbed, pathological conditions such as asthma can develop. It was the aim of the study to investigate the effect of the allergic inflammation of the lung on the innate host defense during bacterial infection. Human bronchial epithelial cells were preincubated with Th2 cytokines and infected with Pseudomonas aeruginosa. The effect of the Th2 cytokines on the mRNA levels of antimicrobial peptides and the antimicrobial activity of HBEC was determined. To investigate the influence of an allergic inflammation on pulmonary host defense in vivo, mice sensitized and challenged with OVA were infected with P. aeruginosa, and the number of viable bacteria in the lungs was determined together with markers of inflammation like cytokines and antimicrobial peptides. Exposure of airway epithelial cells to Th2 cytokines resulted in a significantly decreased antimicrobial activity of the cells and in suppressed mRNA levels of the antimicrobial peptide human beta-defensin 2. Furthermore, mice with allergic airway inflammation had significantly more viable bacteria in their lungs after infection. This was consistent with reduced levels of proinflammatory cytokines and of the antimicrobial peptide cathelin-related antimicrobial peptide. These results show that an allergic airway inflammation suppresses the innate antimicrobial host defense. The adaptive immune system modulates the functions of the pulmonary innate immune system.  相似文献   

18.
Lipophilic yeasts of the genus Malassezia colonize the skin surface of humans and are an exacerbating factor in atopic dermatitis (AD). Two species, M. restricta and M. globosa are major cutaneous microflora in both AD patients and healthy subjects. We compared the DNA sequences of the intergenic spacer (IGS) region, located between the 26S and 5S rRNA genes of M. restricta colonizing the skin surfaces of 13 AD patients and 12 healthy subjects, and of three CBS stock strains as references. The IGS 1 sequences were divided into two major groups, corresponding to AD patients and healthy subjects. These findings suggest that a specific genotype of M. restricta plays a significant role in AD, although M. restricta commonly colonizes both AD patients and healthy subjects.  相似文献   

19.
Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in "host" susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter "host" resistance, and a novel means to alter enteric infection and to study host-pathogen interactions.  相似文献   

20.
Antibacterial peptides are active defense components of innate immunity. Several studies confirm their importance at epithelial surfaces as immediate barrier effectors in preventing infection. Here we report that early in Shigella spp. infections, expression of the antibacterial peptides LL-37 and human beta-defensin-1 is reduced or turned off. The downregulation is detected in biopsies from patients with bacillary dysenteries and in Shigella- infected cell cultures of epithelial and monocyte origin. This downregulation of immediate defense effectors might promote bacterial adherence and invasion into host epithelium and could be an important virulence parameter. Analyses of bacterial molecules causing the downregulation indicate Shigella plasmid DNA as one mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号