首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
The lipopolysaccharide of Ectothiorhodospira vacuolata was obtained by the phenol-water procedure. It contained a 3-O-methyl-hexose, glucose, galacturonic and glucuronic acids. The finding of d-glycero-d-mannoheptose and 2-keto-3-deoxyoctonate (tentatively identified) suggested a core-structure. The lipid fraction of the lipopolysaccharide contained phosphate and both, 2,3-diamino-2,3-dideoxy-d-glucose and d-glucosamine. The major fatty acids were amine-bound 3-OH-10:0 and 3-OH-12:0 and esterbound 14:0 and 16:0 Sodium deoxycholate gel-electrophoresis, showing a single band only, indicated R-type character of the lipopolysaccharide of Ectothiorhodospira vacuolata.Abbreviations DOC sodium deoxycholate - GC/MS combined gasliquid chromatography - PAGE polyacrylamide gel-electrophoresis  相似文献   

2.
Lipopolysaccharides were isolated from the moderate halophilic Ectothiorhodospira shaposhnikovii slight to and Ectothiorhodospira mobilis and from the extremely halophilic Ectothiorhodospira halophila by the hot phenol-water and purified by the phenol-chloroform-petroleum ether methods. The isolated lipopolysaccharides of all three species contained 3-deoxy-d-manno-octulosonic acid and d-glycero-d-mannoheptose indicating the existence of a core. They contained additionally glucose and uronic acids (E. shaposhnikovii and E. mobilis) or glucose, uronic acids and threonine (E. halophila). Sodium deoxycholate gel-electrophoresis of the three lipopolysaccharides, each showing only one major band, indicated R-type character of the lipopolysaccharides of the three Ectothiorhodospira species.The lipid A fractions of the lipopolysaccharides from E. shaposhnikovii and E. mobilis represented phosphorylated mixed lipid A types with both 2,3-diamino-2,3-dideoxy-d-glucose and d-glucosamine. The lipid A from E. halophila contained also phosphate and 2,3-diamino-2,3-dideoxy-d-glucose but only traces of d-glucosamine, which would indicated lipid ADAG. The fatty acid spectra were characterized by amide-bound 3-OH-10:0 and 3-OH-12:0 (E. shaposhnikovii), 3-OH-10:0 (E. mobilis), or 3-OH-10:0,3-OH-14:0, and 3-oxo-14-0 (E. halophila). The predominant ester-bound fatty acids were 14:0 and 16:0 (E. shaposhnikovii and E. mobilis), or 12:0 and 14:1 (E. halophila).Abbreviations DAG 2,3-diamino-2,3-dideoxy-d-glucose - Kdo 3-deoxy-d-manno-octulosonic acid - GlcA glucuronic acid - GalA galacturonic acid - GC-MS combined gas liquid chromatographymass spectrometry - GlcN Glucosamine - DOC sodium deoxycholate - LPS lipopolysaccharide - PAGE polyacrylamide gel electrophoresis - PCP phenol-chloroform-petroleum ether  相似文献   

3.
Lipopolysaccharides were isolated from two strains of Thiobacillus ferrooxidans and one strain each of Thiobacillus thiooxidans, Thiobacillus novellus and Thiobacillus sp. IFO 14570. Neutral sugars, 2-keto-3-deoxyoctonate, fatty acids and the rare 2,3-diamino-2,3-dideoxyglucose were detected in all lipopolysaccharides. Lipopolysaccharides of both T. ferrooxidans strains contained l-glycero-d-manno-heptose, whereas that of T. thiooxidans contained both l-glycero-d-manno-heptose and d-glycero-d-manno-heptose. On the other hand, heptoses were absent in lipopolysaccharides of T. novellus and Thiobacillus sp. IFO 14570. Lipid A of T. ferrooxidans and T. thiooxidans contained both glucosamine and 2,3-diamino-2,3-dideoxyglucose, in contrast, lipid A of T. novellus and the Thiobacillus sp. IFO 14570 most likely contain only 2,3-diamino-2,3-dideoxyglucose as backbone sugar. Deoxycholate polyacrylamide gel electrophoresis revealed S-type character for all lipopolysaccharides studied. The significance of the lipopolysaccharide composition for taxonomic and phylogenetic questions with regard to thiobacilli is discussed.Abbreviations DAG 2,3-diamino-2,3-dideoxyglucose - DOC sodium deoxycholate - GC gas-liquid chromatography - GC/MS gas-liquid chromatography/mass spectrometry - d,d-Heptose d-glycero-d-manno-heptose - l,d-Heptose l-glycero-d-manno-heptose - KDO 2-keto-3-deoxyoctonate - LPS lipopolysaccharide - 3-OH-14:0 3-hydroxy-tetradecanoic acid - PAGE polyacrylamide gel electrophoresis - PCP phenol-chloroform-petroleum ether  相似文献   

4.
The cell wall lipopolysaccharides from three phototrophic species of the alpha1-group of Proteobacteria, Rhodospirillum rubrum, Rhodospirillum molischianum, and Rhodopila globiformis were isolated and chemically characterized. Sodium deoxycholate polyacrylamide gel electrophoresis patterns revealed that the lipopolysaccharides of all three species possess O-chains. They are composed of repeating units only in R. molischianum and R. globiformis. The presence of l-glycero-d-mannoheptose and 2-keto-3-deoxyoctonate indicated core structures in all three lipopolysaccharides. Glucosamine was found as backbone amino sugar in lipid A of R. molischianum and R. rubrum, while R. globiformis has 2,3-diaminoglucose as backbone amino sugar. The latter species also differed from the two former ones in its content of hydroxy fatty acids (3-OH-14:0, 3-OH-16:0 in R. rubrum and R. molischianum and 3-OH-14:0, 3-OH-18:0 and 3-OH-19:0 (possibly iso- or anteisobranched) in R. globiformis).Abbreviations DOC-PAGE sodium deoxycholate polyacrylamide gel electrophoresis - GC/MS combined gas-liquid chromatography/mass spectrometry - KDO 2-keto-3-deoxyoctonate  相似文献   

5.
The chemical constitutional analysis of the lipopolysaccharide (LPS) isolated from Providencia rettgeri was carried out. Polyacrylamide gel electrophoresis using sodium dodecylsulfate or sodium deoxycholate showed that the lipopolysaccharide mostly consisted of short sugar chains. The lipid A was precipitated out after mild acid hydrolysis of LPS. From the supernatant degraded polysaccharide and unsubstituted core fractions were isolated. Compositional analysis of the core material revealed the presence of galacturonic acid, galactose, glucose, glucosamine, l-glycero-d-manno-heptose, 3-deoxy-d-manno-octulosonic acid, alanine and phosphorus. Methylation analysis of the core material indicated the presence of terminal units of glucose, galacturonic acid and glucosamine. The chemical structure of the lipid A was elucidated. It constitutes a -1,6-glucosamine disaccharide substituted on either side by ester and glycosidically-bond phosphate residues. The ester-bound phosphate was found to be substituted by a 4-amino-4-deoxy-l-arabinosyl residue. The amino groups of the backbone disaccharide are N-acylated by 3-O-(14:0)14:0 and 3-O-14:0.Two hydroxyl groups of the disaccharide are esterified by 3-O-(14:0)14:0 and 3-O-14:0. The taxonomical importance of these structural details will be discussed.Abbreviations LPS lipopolysaccharide - l-d-heptose l-glycero-d-manno-heptose - dOclA 3-deoxy-d-manno-octulosonic acid - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - PS degraded polysaccharide - glc-ms combined gas liquid chromatography-mass spectrometry  相似文献   

6.
Lipopolysaccharides (LPS), isolated from four Mycoplana species, i.e. the type strains of M. bullata, M. segnis, M. ramosa and M. dimorpha, were characterized onto their chemical composition and their respective lipid A-types. Those of M. bullata and M. segnis showed on DOC-PAGE an R-type character and had lipid A's of the Lipid ADAG-type which exclusively contained 2,3-diamino-2,3-dideoxy-d-glucose as lipid A sugar. LPS's of M. ramosa and M. dimorpha showed, although only weakly expressed, ladder-like patterns on DOC-PAGE indicating some S-type LPS's and lipid A of the d-glucosamine type (Lipid AGlcN). M. bullata LPS contained mannose and glucose in major amounts and additionally l-glycero-d-mannoheptose, whereas M. segnis LPS was composed of rhamnose, mannose and glucose together with both, d-glycero-d-manno- and l-glycero-d-manno-heptoses in a molar ratio of 1:2. All LPS's contained 2-keto-3-deoxy-octonic acid (Kdo), phosphate and an unidentified acidic component X. In addition to X, M. segnis LPS contained glucuronic and galacturonic acids, whereas M. ramosa LPS contained only galacturonic acid. Acetic acid hydrolysis of the LPS resulted in splitting off lipid A moieties, very rich in 3-hydroxy fatty acids, in particular in 3-OH-12:0 (in Lipid ADAG), or in 3-OH-14:0 (in Lipid AGlcN). Analysis of the 3-acyloxyacyl residues revealed major amounts of amide-linked 3-OH(3-OH-13:0)12:0 in lipid A of M. bullata and 3-OH(12:0)12:0 in lipid A of M. segnis. The rare 4-oxo-myristic acid (4-oxo-14:0) was observed only in M. bullata LPS, where it is ester-linked. Amide linked diesters could not be traced in M. ramosa and M. dimorpha. All four lipid A's lacked erster-bound acyloxyacyl residues.Non-standard abbreviations DAG 2,3-diamino-2,3-dideoxy-d-glucose - Kdo 2-keto-3-deoxy-octonate - LPS lipopolysaccharide - PITC phenyl isothiocyanate - NANA N-acetyl neuraminic acid  相似文献   

7.
The lipopolysaccharide of Sphaerotilus natans afforded a ladder-like pattern of bands in sodium deoxycholate-polyacrylamide gel electrophoresis, indicating the presence of a S-form lipopolysaccharide. The chemical analysis showed neutral sugars (rhamnose, glucose, l-glycero-d-manno-heptose), 3-deoxy-octulosonic acid (Kdo), amino compounds (glucosamine, glucosamine phosphate, ethanolamine and ethanolamine phosphate), and phosphorus. The lipid A fraction contained saturated and unsaturated capric, lauric, and myristic acids, and 3-hydroxy capric acid (3-OH-10:0). Its chemical structure was consisting of a glucosamine disaccharide, glycosidically substituted by a phosphomonoester, and substituted at C-4 by a pyrophosphodiester esterified with ethanolamine. The amino groups of both glucosamines are acylated by 3-hydroxy capric acids and these in turn are substituted by saturated and unsaturated capric, lauric, and myristic acids. Hydroxyl groups of the backbone disaccharide at C-3 and C-3 were also esterified by 3-hydroxy capric acid, those at C-4 and C-6 were unsubstituted. The latter provides the attachment site for Kdo.Abbreviations Kdo 3-deoxy-d-manno-octulosonic acid - 3-OH-10:0 3-hydroxy capric acid - DOC-PAGE deoxycholate-polyacrylamide gel electrophoresis - GC-MS gas chromatography/mass spectrometry - LD-MS laser desorption mass spectrometry - LPS lipopolysaccharide - PS polysaccharide  相似文献   

8.
Sheaths isolated from Gloeobacter violaceus were found to be composed of a major polysaccharide moiety (glucose, galactose, rhamnose, mannose, arabinose), a protein moiety, and negatively charged components (glucuronic acids, phosphate, sulfate). Outer membrane polypeptide patterns were dominated by two major peptidoglycan-associated proteins (Mr 62,000 and 53,000). Lipopolysaccharide constituents were glucosamine, 3-hydroxy fatty acids (3-OH-14:0, anteiso-3-OH-15:0, 3-OH-16:0, 3-OH-18:0), carbohydrates, and phosphate. A1-type peptidoglycan and non-peptidoglycan components (mannosamine, glucose, mannose, and glucosamine) indicated the presence of a peptidoglycan-polysaccharide complex in the cell walls of Gloeobacter violaceus.Abbreviations A2pm diaminopimelic acid - ATCC American Type Culture Collection - CE cell envelope - CM cytoplasmic membrane - CW cell wall - dOcla 3-deoxy-d-manno-2-octulosonic acid - GalN galactosamine - GlcN glucosamine - GlcUA glucuronic acid - HF hydrofluoric acid - LPS lipopolysaccharide - ManN mannosamine - M relative molecular mass - MurN muramic acid - MurN-6-P muramic acid-6-phosphate - OMe O-methyl - PAGE polyacrylamide gel electrophoresis - PCC Pasteur Culture Collection - SDS sodium dodecyl sulfate - SH sheath  相似文献   

9.
Lipopolysaccharides (LPS) from Legionella bozemanii serogroup 1 and Legionella longbeachae serogroup 1 were subjected to chemical analyses. The lipid A part of both LPSs contained 2,3-dideoxy-2,3-diamino-d-glucose as major constituents and d-glucosamine and glycerol as minor constituents of the sugar backbone structure. Both LPSs exhibited a very complex fatty acid composition. Twenty amide-linked 3-hydroxy fatty acids were detected in LPS of L. longbeachae, whereas seventeen were encountered in LPS of L. bozemanii. Both LPSs contained nine ester-linked nonhydroxy fatty acids and the unique long-chain fatty acids 27-oxo-octacosanoic acid, 29-oxotriacontanoic acid, heptacosane-1,27-dioic acid and nonacosane-1,29-dioic acid. SDS-PAGE showed that L. bozemanii produced smooth-form LPS, whereas L. longbeachae LPS was mainly of the R-type. Composition analyses were in accordance with these electrophoretic patterns. d-Quinovosamine and l-fucosamine constituted 80 mol% of the polysaccharide part of L. bozemanii LPS. Other sugars identified were d-glucosamine, d-mannose, d-glucose, l-rhamnose, d-glycero-d-manno-heptose, l-glycero-d-mannoheptose, 2-keto-3-deoxy-octonic acid and glycerol. The polysaccharide chain from LPS of L. longbeachae appeared to be shorter, but composed of the same sugars except l-fucosamine. Both LPSs contained glycerol phosphate and glucosamine phosphate and L. longbeachae LPS contained in addition glucose phosphate.Abbreviations EI Electron impact - GlcN3N 2,3-Diamino-2,3-dideoxy-d-glucose - HPAEC High pH anion-exchange chromatography - Kdo 2-Keto-3-deoxy-octonic acid - LPS Lipopolysaccharide - PCP Phenol/chloroform/petroleum ether solvent - PED Pulsed electrochemical detection - PS Polysaccharide - TFA Trifluoroacetyl - TMS Trimethylsilyl  相似文献   

10.
The structure of the lipopolysaccharide from Rhizobium meliloti 10406, a derivative of the wild-type strain MVII-1, was examined. The compositional analysis of its polysaccharide moiety demonstrated lack of heptose(s), but high contents in glucose, galacturonic acid and 2-keto-3-deoxy-octonate (dOclA) as characteristic features. The lipid A moiety consisted of a -1,6 linked glucosamine disaccharide carrying ester (at C-4) and glycosidically (at C-1) linked phosphate residues, both present exclusively as monoester phosphates but not as phosphodiesters. Ester- and amidelinked 3-hydroxy fatty acids were mostly present as non-3-O-acylated residues. Laser desorption mass spectrometry (LD-MS) revealed heterogeneity in the fatty acid substitution, as was also indicated by the non-stoichiometric ratios obtained by quantitative fatty acid analysis. The predominating lipid A structure contained at the reducing glucosamine residue ester-linked 3-hydroxy-tetradecanoic acid (3-OH-14:0) and amide-linked 3-OH-18:0, or 3-OH-18:1, respectively. The distal (non-reducing) glucosamine carried ester-bound the recently discovered 27-hydroxyoctacosanoic acid and 3-OH-14:0 and, as amide-linked fatty acid, mostly 3-hydroxy-stearic acid (3-OH-18:0).The isolated lipopolysaccharide exhibited a high extent of lethal toxicity in galactosamine-treated mice, comparable to that of enterobacterial lipopolysaccharide. The structural relationship of LPS and lipid A of Rhizobium meliloti to other rhizobial lipopolysaccharides and lipid A's with respect to questions of taxonomy and of phylogenetic relationships will be discussed.Abbreviations LPS lipopolysaccharide - dOclA 3-deoxy-D-mannooctulosonic acid (KDO) - GalA galacturonic acid - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - LD-MS laser desorption-mass spectrometry  相似文献   

11.
Lipopolysaccharides (LPS) were extracted by hot phenol-water from five strains each of Azospirillum lipoferum and Azospirillum brasilense. Rhamnose, glucose, glucosamine and 3-deoxy-d-mannooctulosonic acid were comon sugar constituents of all LPS preparations. 2-O-Mefucose, 3-O-Me-fucose, 3-O-Me-rhamnose and 2-O-Megalactose were found in LPSs of some A. brasilense strains. Fatty acid spectra from all LPSs studied were almost identical with predominance of 3-hydroxymyristic and 3-hydroxypalmitic acids. 3-Hydroxypalmitic acid was the only amide-linked fatty acid. Lipopolysaccharides isolated from A. brasilense showed higher heterogeneity in sugar composition than those from A. lipoferum.Abbreviations glc gas liquid chromatography - ms mass spectrometry - LPS lipopolysaccharide - dOclA 3-deoxy-d-mannooctulosonic acid - 3-OH-16:0 3-hydroxypalmitic acid - nir- nitrite reductase negative - nir+ nitrite reductase positive  相似文献   

12.
A purified sheath fraction and an outer membrane fraction were obtained from the cyanobacterium Fischerella sp. PCC 7414. The sheath had a fine structure with osmiophilic fibers running in parallel to the cell surface in two distinct layers. The sheath fraction contained mainly neutral sugars (Glc, Man, Gal, Xyl, Fuc, 2-O-methylhexose), GlcN, uronic acids, and minor components such as amino acids, sulfate, phosphate, and fatty acids. The protein moiety was removable from the sheath fraction by treatment with boiling sodium dodecyl sulfate. The presence of three different 3-hydroxy fatty acids (3-OH-14:0, 3-OH-16:0, 3-OH-18:0) in addition to GlcN indicated the presence of lipopolysaccharide in the outer membrane. One major (Mr 50,000) and two minor (Mr 54,000 and 65,000) proteins were detected as constituents of the outer membrane.Abbreviations A2pm diaminopimelic acid - GLC gas-liquid chromatography - GlcN glucosamine - Ino inositol - MurN muramic acid - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

13.
The lipopolysaccharides of Rhodobacter sulfidophilus and the two budding species Rhodopseudomonas acidophila and Rhodopseudomonas blastica were isolated and chemically analyzed. The all have a lipid A backbone structure with glucosamine as the only amino sugar. The lipid A's of Rb. sulfidophilus and Rps. blastica contain phosphate, their fatty acids are characterized by ester-linked, unsubstituted 3-OH-10:0 and amide-linked 3-OH-14:0 (Rb. sulfidophilus) or 3-oxo-14:0 (Rps. blastica). Lipid A of Rps. acidophila is free of phosphate and contains the rare 3-OH-16:0 fatty acid in amide linkage.The lipopolysaccharides of all three species contain 2-keto-3-deoxy-octonate (KDO) but are devoid of heptoses. Neutral sugars with the exception of glucose are lacking in the lipopolysaccharide of Rb. sulfidophilus. This shows a high galacturonic acid content. The lipopolysaccharides of Rps. acidophila and Rps. blastica have neutral sugar spectra indicative for typical O-chains (rhamnose, mannose, galactose, glucose in both species, and in Rps. blastica additionally 2-O-methyl-6-deoxy-hexose). The taxonomic value of the data is discussed.This paper is dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

14.
The structural elucidation of lipid A of the cell wall lipopolysaccharide (LPS) ofRhodospirillum salinarum 40 by chemical methods and laser desorption mass spectrometry revealed the presence of a mixed lipid A composed of three different 1,4 bisphosphorylated β(1→6)-linked backbone hexosaminyl-hexosamine disaccharides, i.e. those composed of GlCN→GlcN, 2,3-diamino-2,3-dideoxy-d-Glc-(DAG)→DAG, and DAG→GlcN. Lipid A ofR. salinarum contained preferentially 3-OH-18:0 and 3-OH-14:0 as amide-linked andcisΔ11-18:1 and c19:0 as ester-linked fatty acids. The mass spectra of the liberated acyl-oxyacyl residues proved the concomitant presence of 3-O-(cisΔ11-18:1)-18:0 and 3-O-(c19:0)-14:0 as the predominating diesters in this mixed lipid A. The glycosidically linked and the ester-linked phosphate groups of the backbone disaccharide were neither substituted by ethanolamine phosphorylethanolamine, nor by 4-amino-4-deoxy-l-arabinose, in contrast to most of the enterobacterial lipid As. In the core oligosaccharide fraction, a HexA (1→4)HexA(1→5)Kdo-trisaccharide was identified by methylation analysis. The terminal HexA (hexuronic acid) is possibly 4-OMe-GalA, a component described here as an LPS constituent for the first time. LPS ofR. salinarum showed a lethality in C57BL/10 ScSN (LPS-responder)-mice) of an order of 10−1–10−2 of that reported forSalmonella abortus equi LPS, and it was also capable of inducing TNFα and IL6 in macrophages of C57BL/10ScSN mice.  相似文献   

15.
The chemical structure of the lipid A component of lipopolysaccharide excreted into the liquid medium by the plant pathogenic enterobacterium Erwinia carotovora FERM P-7576 was characterized. It consists of a -1, 6-linked glucosamine disaccharide which carries ester-and amide-bound fatty acids and phosphate similar to the lipid A from other gram-negative bacteria. The lipid A preparation was not uniform in the number and composition of the fatty acids linked to the disaccharide. Four prominent lipids A were involved, they were composed of five to seven residues of fatty acid. Among them the major component was hexa-acyl lipid A, in which the hydroxyl group at position 3 and the amino group of the non-reducing glucosamine unit carry 3-dodecanoyl-oxytetradecanoyl residues. Positions 2 and 3 of the reducing glucosamine unit were substituted by 3-hydroxytetradecanoic acid. In the hepta-acyl lipid A, an additional hexadecanoic acid was linked to the hydroxyl group of the 3-hydroxytetradecanoyl residue at position 2 of the hexa-acyl lipid A. Two penta-acyl lipids A were the homologs of the hexa-acyl lipid A with decreasing acylation. Dodecanoic acid was missing from one, and 3-hydroxytetradecanoic acid from another. 3-Dodecanoyloxytetradecanoyl residue at position 3 differentiates E. carotovora lipid A from that of other gram-negative bacteria.Abbreviations LPS lipopolysaccharide - GlcN glucosamine - KDO 3-deoxy-d-manno-octulosonic acid - FAB-MS fast atom bombardment mass spectrometry - u atomic mass unit  相似文献   

16.
Lipid A's from two Bradyrhizobium species and from the phylogenetically closely related species Pseudomonas carboxydovorans were found to contain 2,3-diamino-2,3-dideoxy-glucose as lipid A backbone sugar. In contrast, three representatives of the genus Rhizobium, as well as the phylogenetically related species Agrobacterium tumefaciens, contain solely glucosamine as lipid A backbone sugar. These findings suppor independent studies on the phylogenetical relatedness based on 16S rRNA-data of the genus Bradyrhizobium with Pseudomonas carboxydovorans and Rhodopseudomonas palustris, which form a tight phylogenetical cluster and which all contain the 2,3-diamino-2,3-dideoxy-glucose-containing lipid A. The relatedness of these species to the glucosamine-containing species of the genus Rhizobium and to Agrobacterium tumefaciens is rather distant as documented by 16S rRNA studies.Abbreviations LPS lipopolysaccharide - KDO 2-keto-3-deoxyoctonic acid - GalA galacturonic acid - ld-heptose l-glycero-d-manno-heptose - dd-heptose d-glycero-d-manno-heptose - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - DAG 2,3-diamino-2,3-dideoxy-glucose  相似文献   

17.
The primary structure of the peptidoglycan and the teichoic acids of two coryneform isolates from the surface flora of French cooked cheeses, CNRZ 925 and CNRZ 926, have been determined. In the peptidoglycan, meso-diaminopimelic acid was localized in position three of the peptide subunit. It contained an d-glutamyl-d-aspartyl interpeptide bridge, connecting meso-diaminopimelic acid and d-alanine residues of adjacent peptide subunits. The -carboxyl group of d-glutamic acid in position two of peptide subunits was substituted with glycine amide. The teichoic acid pattern and composition differed between the strains: both contained an erythritol teichoic acid and strain CNRZ 925 also contained an N-acetylglucosaminylphosphate polymer. The erythritol teichoic acids differed in terms of the quality and quantity of substituents, but they both had N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid in common.Abbreviations DNP dinitrophenyl - Ery erythritol - Gal galactose - GlcN glucosamine - GlcNAc N-acetylglucosamine - GlcUANAc2 N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid - Hex UANAc2 N,N-diacetyl-2,3-diamino-2,3-dideoxyhexuronic - acid m-Dpm, meso-diaminopimelic acid - Mur muramic acid - MurNAc N-acetylmuramic acid  相似文献   

18.
Phenol-water extraction of Rhizobium loti NZP2213 cells allowed a simultaneous isolation of two structurally different lipopolysaccharides, from the aqueous (LPS-W) and phenol (LPS-P) phase that differed in their sodium doexycholate-PAGE pattern and composition. LPS-W showed a profile indicating an R-type LPS; LPS-P had a cluster of poorly resolved bands in the high-molecular-weight region. LPS-P contained large amounts of 6-deoxy-l-talose (6dTal), and a small amount of 2-O-methyl-6-deoxy-talose (molar ratio 30:1), both of which were completely absent in LPS-W. Methylation analysis gave only one major product, 2,4-di-O-methyl-6dTal, indicating that the O-chain is composed of a homopolymer of 1,3-linked 6dTal, having the methylated 6dTal (2-O-me-6dTal) probably localized at the non-reducing end of the O-chain. This homopolymeric O-chain was additionally O-acetylated, as evidenced by GC-MS and by 13C NMR analysis. The lipid A moieties of both LPS-W and LPS-P showed almost identical composition, with six, different 3-OH fatty acids and with two, so far not described, long-chain 4-oxo-fatty acids, all being amide-linked, and with 27-OH-28:0 as the main ester-linked fatty acid. Lipid A was of the lipid ADAG-type, i.e., having a (phosphorylated) 2,3-diamino-2,3-dideoxy-d-glucose-containing lipid A backbone. Lipid ADAG is widespread among species of the -2 group of Proteobacteria, but has so far not been encountered in any other rhizobial or agrobacterial species.  相似文献   

19.
The structure of the lipid A component of Rhodopseudomonas gelatinosa 29/1 lipopolysaccharide was established. It constitutes a -1,6-glucosamine disaccharide substituted on either side by ester-and glycosidically-bound phosphate residues. Both phosphate groups are in turn nonstoichiometrically substituted by ethanolamine. The amino groups of the disaccharide are N-acylated by 3-acyloxyacyl residues: that at the reducing glucosamine by 3-O-(14:0) 10:0, and that at the non-reducing one by 3-O-(12:0)10:0. Hydroxyl groups at C-3 and C-3 are esterified by hydroxycapric acid. Hydroxyl groups at C-4 and C-6 in free hydroxycapric acid. Hydroxyl groups at C-4 and C-6 in free lipid A were shown to be unoccupied by methylation with diazomethane. A similar methylation of the intact lipopolysaccharide revealed a free hydroxyl group only at C-4, indicating that C-6 is the attachment site of 3-deoxy-d-anno-octulosonic acid.By preparative thin-layer chromatography free lipid A could be resolved into at least two major and one minor fractions. Lipid A of R. gelatinosa 29/1 shows high lethal toxicity, comparable to that of Salmonella lipid A.Abbreviations GlcN d-Glucosamine - dOclA 2-keto-3-deoxy-d-manno-octonate - GC-MS combined gas liquid chromatographymass spectrometry - LPS lipopolysaccharide Dedicated to Prof. Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   

20.
The sialic acid analogue,N-acetyl-4-deoxy-neuraminic acid, is readily activated by CMP-sialic acid synthase from bovine brain. We also show that sialyl-transfer from CMP-N-acetyl-4-deoxy-neuraminic acid to asialo- 1-acid glycoprotein is achieved at a high rate using Gal1-4GlcNAc (2.6)-sialyltransferase from rat liver.In contrast toVibrio cholerae sialidase, fowl plague virus sialidase liberates boundN-acetyl-4-deoxy-neuraminic acid from the glycoprotein. Thus, as opposed to the general view, the action of neither synthase nor transferase depends on the presence of the hydroxy group at C-4 ofN-acetylneuraminic acid.Abbrevations BSA bovine serum albumin - DTE dithioerythritol - HPLC high performance liquid chromatography - NeuAc N-acetyl-d-neuraminic acid - 4-deoxy-NeuAc N-acetyl-4-deoxy-d-neuraminic acid - 4-epi-NeuAc 4-acetamido-3,5-dideoxy-d-glycero-d-talononulosonic acid - CMP-NeuAc Cytidine-5-monophospho-N-acetylneuraminic acid - CMP-4-deoxy-NeuAc Cytidine-5-monophospho-N-acetyl-4-deoxy-neuraminic acid - FPV-sialidase Fowl plague virus sialidase - VCN Vibrio cholerae neuraminidase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号