首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like other AAA proteins, Escherichia coli FtsH, a membrane-bound AAA protease, contains highly conserved aromatic and glycine residues (Phe228 and Gly230) that are predicted to lie in the central pore region of the hexamer. The functions of Phe228 and Gly230 were probed by site-directed mutagenesis. The results of both in vivo and in vitro assays indicate that these conserved pore residues are important for FtsH function and that bulkier, uncharged/apolar residues are essential at position 228. None of the point mutants, F228A, F228E, F228K, or G230A, was able to degrade sigma32, a physiological substrate. The F228A mutant was able to degrade casein, an unfolded substrate, although the other three mutants were not. Mutation of these two pore residues also affected the ATPase activity of FtsH. The F228K and G230A mutations markedly reduced ATPase activity, whereas the F228A mutation caused a more modest decrease in this activity. The F228E mutant was actually more active ATPase. The substrates, sigma32 and casein, stimulated the ATPase activity of wild type FtsH. The ATPase activity of the mutants was no longer stimulated by casein, whereas that of the three Phe228 mutants, but not the G230A mutant, remained sigma32-stimulatable. These results suggest that Phe228 and Gly230 in the predicted pore region of the FtsH hexamer have important roles in proteolysis and its coupling to ATP hydrolysis.  相似文献   

2.
FtsH (HflB) is an ATP-dependent protease found in prokaryotic cells, mitochondria and chloroplasts. Here, we have identified, in the carboxy-terminal region of FtsH (HfIB), a short alpha helix predicted of forming a coiled-coil, leucine zipper, structure. This region appears to be structurally conserved. The presence of the coiled-coil motif in the Escherichia coli FtsH (HflB) was demonstrated by circular dichroism and cross-linking experiments. Mutational analysis showed that three highly conserved leucine residues are essential for FtsH (HfIB) activity in vivo and in vitro. Purified proteins mutated in the conserved leucine residues, were found to be defective in the degradation of E. coli sigma(32) and the bacteriophage lambda CII proteins. In addition, the mutant proteins were defective in the binding of CII The mutations did not interfere with the ATPase activity of FtsH (HflB). Finally, the mutant proteins were found to be more sensitive to trypsin degradation than the wild-type enzyme suggesting that the alpha helical region is an important structural element of FtsH (HflB).  相似文献   

3.
4.
Bruckner RC  Gunyuzlu PL  Stein RL 《Biochemistry》2003,42(36):10843-10852
FtsH from Escherichia coli is an ATP- and Zn(2+)-dependent integral membrane protease that is involved in the degradation of regulatory proteins such as sigma(32) and uncomplexed subunits of membrane protein complexes such as secY of the protein translocase. We describe a protocol for solubilizing the recombinant enzyme from inclusion bodies and its subsequent refolding and purification to near homogeneity. This is a high-yield protocol and produces in excess of 20 mg of purified FtsH per liter of E. coli culture. We found that refolded FtsH has biochemical properties similar to detergent extracted overexpressed protein described previously. FtsH forms a large complex with an apparent mass of 1200 kDa as determined by gel filtration. Both ATPase and protease activities are coincident with this large complex; smaller forms of FtsH do not exhibit either activity. While FtsH-catalyzed hydrolysis of ATP can occur in the absence of protein substrate (k(c) = 22 min(-1); K(m) = 23 microM), proteolysis shows an absolute dependence on nucleoside-5'-triphosphates, including ATP, CTP, and various analogues. In the presence of 5 mM ATP, FtsH catalyzes the hydrolysis of sigma(32) with the following observed kinetic parameters: k(c) = 0.18 min(-1) and K(m) = 8.5 microM. Significantly, this reaction is processive and generates no intermediate species, but rather, approximately 10 peptide products, all of MW <3 kDa. FtsH protease also efficiently hydrolyzes the peptide Phe-Gly-His-(NO)2Phe-Phe-Ala-Phe-OMe. Hydrolysis occurs exclusively at the (NO)2Phe-Phe bond (k(c) = 2.1 min(-1); K(m) = 12 microM), and like proteolysis, shows an absolute dependence on NTPs. We propose a mechanism for the coupled hydrolytic activities of FtsH toward ATP and peptide substrates that is consistent with a recently proposed structural model for FtsH.  相似文献   

5.
A key step in the regulation of heat shock genes in Escherichia coli is the stress-dependent degradation of the heat shock promoter-specific sigma(32) subunit of RNA polymerase by the AAA protease, FtsH. Previous studies implicated the C termini of protein substrates, including sigma(32), as degradation signals for AAA proteases. We investigated the role of the C terminus of sigma(32) in FtsH-dependent degradation by analysis of C-terminally truncated sigma(32) mutant proteins. Deletion of the 5, 11, 15, and 21 C-terminal residues of sigma(32) did not affect degradation in vivo or in vitro. Furthermore, a peptide comprising the C-terminal 21 residues of sigma(32) was not degraded by FtsH in vitro and thus did not serve as a recognition sequence for the protease, while an unrelated peptide of similar length was efficiently degraded. The truncated sigma(32) mutant proteins remained capable of associating with DnaK and DnaJ in vitro but showed intermediate (5-amino-acid deletion) and strong (11-, 15-, and 21-amino-acid deletions) defects in association with RNA polymerase in vitro and biological activity in vivo. These results indicate an important role for the C terminus of sigma(32) in RNA polymerase binding but no essential role for FtsH-dependent degradation and association of chaperones.  相似文献   

6.
7.
8.
9.
10.
11.
We have established a fluorescence polarization assay system by which degradation of sigma32, a physiological substrate, by FtsH can be monitored spectrometrically. Using the system, it was found that an FtsH hexamer degrades approximately 0.5 molecules of Cy3-sigma32 per min at 42 degrees C and hydrolyzes approximately 140 ATP molecules during the degradation of a single molecule of Cy3-sigma32. Evidence also suggests that degradation of sigma32 proceeds from the N-terminus to the C-terminus. Although FtsH does not have a robust enough unfoldase activity to unfold a tightly folded proteins such as green fluorescent protein, it can unfold proteins with lower [Formula: see text] s such as glutathione S-transferase (Tm = 52 degrees C).  相似文献   

12.
13.
The identity of protease(s), which would degrade bacterial cell division protein FtsZ in vivo, remains unknown. However, we had earlier demonstrated that Escherichia coli metalloprotease FtsH degrades E. coli cell division protein FtsZ in an ATP- and Zn(2+)-dependent manner in vitro. In this study, we examined FtsH protease-mediated degradation of FtsZ in vitro in detail using seven different deletion mutants of FtsZ as the substrates, which lack different extents of specific regions at the N- or C-terminus. FtsH protease assay in vitro on these mutants revealed that FtsH could degrade all the seven deletion mutants irrespective of the deletions or the extent of deletions at the N- or C-terminus. These observations indicated that neither the N-terminus nor the C-terminus was required for the degradation of FtsZ, like already known in the case of the FtsH substrate sigma(32) protein. The recombinant clones expressing full-length FtsZ protein and FtsZ deletion mutant proteins would be useful in investigating the possibility of FtsZ as a potential in vivo substrate for FtsH in ftsH-null cells carrying ftsH suppressor function and ectopically expressed FtsH protease.  相似文献   

14.
15.
Factors contributing to the stability of bacterial cell division protein FtsZ remain unknown. In order to identify FtsZ-stabilizing factor(s), we exploited FtsH protease-based in vitro FtsZ degradation assay system. Whole cell lysate from an ftsH-null strain of Escherichia coli inhibited degradation of FtsZ by FtsH in vitro. However, activated charcoal-treated lysate did not inhibit degradation. The loss of ability of the activated charcoal-treated lysate to inhibit degradation of FtsZ was restored when it was replenished with GTP, but not when replenished with other NTPs or dNTPs. The lysate did not protect either FtsZ deletion mutants, which do not bind GTP, or FtsH substrates, sigma(32) and cI-108 proteins, against FtsH. GDP and GTPgammaS also stabilized FtsZ against FtsH. Neither GTP nor GDP inhibited proteolytic activity of FtsH per se. These observations demonstrate that binding of GTP/GDP ligands is responsible for the proteolytic stability of FtsZ against FtsH.  相似文献   

16.
Lipopolysaccharide (LPS) biosynthesis is essential in Gram negative bacteria. LpxC, the key enzyme in LPS formation, catalyses the limiting reaction and controls the ratio between LPS and phospholipids. As overproduction of LPS is toxic, the cellular amount of LpxC must be regulated carefully. The membrane-bound protease FtsH controls the level of LpxC via proteolysis making FtsH the only essential protease of Escherichia coli. We found that the chaperones DnaK and DnaJ co-purified with LpxC. However, degradation of LpxC was DnaK/J-independent in contrast to turnover of the heat shock sigma factor sigma32 (RpoH). The stability of LpxC in a bacterial one-hybrid system suggested that a terminus of LpxC might be important for degradation. Different LpxC truncations and extensions were constructed. Removal of at least five amino acids from the C-terminus abolished degradation by FtsH in vivo. While addition of two aspartic acids to LpxC did not alter its half-life, the exchange of the last two residues against aspartic acids resulted in stabilization. All stable LpxC enzymes were active in vivo as assayed by their high toxicity. Our data demonstrate that the C-terminus of LpxC contains a signal sequence necessary for FtsH-dependent degradation.  相似文献   

17.
18.
FtsH of Escherichia coli is an essential membrane-integrated ATP-dependent protease. We cloned a gene for an FtsH homolog (T. FtsH) from Thermus thermophilus HB8, expressed it in E. coli, and purified the expressed protein. ATPase activity of T.FtsH was activated by proteins with unfolded structure ( alpha-casein and pepsin), and T.FtsH digested these proteins in an ATP-, Zn(2+)-dependent manner. alpha-Lactalbumin was digested by T.FtsH when it was largely unfolded, but not in its native form. Analysis of the proteolytic products revealed that, in most cases, T.FtsH cleaved the C-terminal side of hydrophobic residues and produced a characteristic set of small peptides (<30 kDa) without releasing a large intermediate. Thus, T.FtsH recognizes the unfolded structure of the proteins and progressively digests them at the expense of ATP. A soluble domain of T.FtsH, which lacked the N-terminal two transmembrane helices, was also prepared but was found to retain neither ATPase nor protease activities. Thus, the membrane segment appeared to be indispensable for these activities of T.FtsH.  相似文献   

19.
Halder S  Banerjee S  Parrack P 《The FEBS journal》2008,275(19):4767-4772
The CIII protein of bacteriophage lambda exhibits antiproteolytic activity against the ubiquitous metalloprotease HflB (FtsH) of Escherichia coli, thereby stabilizing the lambdaCII protein and promoting lysogenic development of the phage. CIII also protects E.coli sigma(32), another substrate of HflB. We have recently shown that the protection of CII from HflB by CIII involves direct CIII-HflB binding, without any interaction between CII and CIII [HalderS, DattaAB & Parrack P (2007) J Bacteriol189, 8130-8138]. Such a mode of action for lambdaCIII would be independent of the HflB substrate. In this study, we tested the ability of CIII to protect sigma(32) from HflB digestion. The inhibition of HflB-mediated proteolysis of sigma(32) by CIII is very similar to that of lambdaCII, characterized by an enhanced protection by the core CIII peptide CIIIC (amino acids 14-41 of lambdaCIII) and a lack of interaction between sigma(32) and CIII.  相似文献   

20.
The htpR gene product of E. coli is a sigma factor for heat-shock promoters   总被引:150,自引:0,他引:150  
A D Grossman  J W Erickson  C A Gross 《Cell》1984,38(2):383-390
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号