首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in alpha-minimal essential medium containing either vehicle, genistein (l0(-7) - 10(-5) M) or daidzein (10(-7) - 10(-5) M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein ( 10(-5) M) or daidzein ( 10(-5) M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10(-7) M) or cycloheximide (10(-6) M) in the absence or presence of isoflavones. Moreover, when genistein (10(-7) 10(-5) M) or daidzein (10(-6) and 10(-5) M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10(-7) M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10(-6) and 10(-5) M) or daidzein (10(-5) M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

2.
Menaquinone-7, which is vitamin K2 (menatetrenone) with seven isoprene units, is highly contained in the fermented soybean. The effect of menaquinone-7 (MK-7) on osteoblastic bone formation was investigated. Femoral-diaphyseal and metaphyseal tissues of young male rats (4 weeks old) were cultured for 48 h in a medium containing either vehicle or MK-7 (10–7–10–5 M). Calcium content, alkaline phosphatase activity, and deoxyribonuclic acid (DNA) content in the diaphyseal and metaphyseal tissues was significantly increased in the presence of MK-7 (10–6 and 10–5 M). The effect of MK-7 in increasing the diaphyseal and metaphyseal calcium content and alkaline phosphatase activity was completely prevented in the presence of cycloheximide (10–6 M), an inhibitor of protein synthesis. Moreover, osteoblastic MC3T3-E1 cells after subculture were cultured for 24 h in a serum-free medium containing MK-7 (10–7–10–5 M). Protein content, alkaline phophatase activity, osteocalcin and DNA content in the cells was significantly increased in the presence of MK-7 (10–6 and 10–5 M). The effect of MK-7 in increasing protein content, alkaline phosphatase activity, and osteocalcin production in the cells was completely blocked by cycloheximide. This study demonstrates that MK-7 has an anabolic effect on bone tissue and osteoblastic MC3T3-E1 cells in vitro, suggesting that the compound can stimulate osteoblastic bone formation.  相似文献   

3.
The effect of -alany-L-histidinato zinc (AHZ) on bone cell function was investigated in osteoblastic MC3T3-E1 cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus AHZ (10–7–10–5 M) or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5 M) produced a remarkable increase of alkaline phosphatase activity and protein concentration in osteoblastic cells. Thus increases were seen with the prolonged cultivation (12–21 days). With the culture of 1, 3 and 12 days, the effect of AHZ (10–6 M) to increase alkaline phosphatase activity and protein concentration was more intensive than the effect of zinc sulfate, (10–6 M). The AHZ effects were completely abolished by the presence of cycloheximide (10–6 M), indicating that AHZ stimulates protein synthesis in the cells. The present study suggests that AHZ has a stimulatory effect on cell differentiation, and that this effect is partly involved on protein synthesis in osteoblastic cells.  相似文献   

4.
The effect of zinc-chelating dipeptides on osteoblastic MC3T3-E1 cells was investigated. As zinc compounds, we used zinc sulfate, AHZ, di(N-acetyl-β-alanyl-l-histidinato)zinc (AAHZ), and di(histidino)zinc (HZ). Cells were cultured for 72 h in the presence of zinc compounds (10−8–10−5M). The effect of AHZ (10−7 and 10−6M) to increase protein and deoxyribonucleic acid (DNA) contents in the cells was the greatest in comparison with those of other zinc compounds. Zinc sulfate and HZ at 10−7M did not have an effect on the cellular protein content. AHZ (10−6M) had a potent effect on cell proliferation, although zinc sulfate (10−6M) had no effect. β-Alanyl-l-histidine (10−6 and 10−5M) did not have an appreciable effect on the cells. Those effects of AHZ (10−6M) on osteoblastic cells were completely abolished by the presence of cycloheximide (10−6M). AHZ (10−8–10−5M) directly activated [3H]leucyl-tRNA synthetase in the cell homogenate, whereas the effect of zinc sulfate was seen at 10−6 and 10−5M. The present study suggests that the chemical form of zinc-chelating β-alanyl-l-histidine (AHZ) can reveal a potent anabolic effect on osteoblastic cells, and that AHZ directly stimulates protein synthesis.  相似文献   

5.
The effect of -alanyl-L-histidinato zinc (AHZ) on protein components in osteoblastic MC3T3-E1 cells was investigated. Cells were cultured for 3 days at 37°C in CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus various concentrations of AHZ or other reagents, and the cells were cultured further 3 or 6 days. The homgenate of cells was analyzed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The presence of AHZ (10–7 to 10–5 M) caused an appreciable increase of many protein components in cells. Especially, the 67 killo-dalton (kDa) and 44 kDa proteins which are the major components from control cells were clearly increased by the presence of AHZ. Furthermore, the concentrations of osteocalcin, insulin-like growth factor-I and transforming growth factor- in the culture medium secreted from osteoblastic cells were markedly increased by the presence of AHZ (10–6 and 10–5 M). The effect of AHZ was a greater than that of zinc sulfate (10–6 and 10–5 M). The present findings suggest that AHZ can increase many proteins which are involved in the stimulation of bone formation and cell proliferation in osteoblastic cells.  相似文献   

6.
The effect of -alanyl-L-histidinato zinc (AHZ) on bone metabolism was investigated in osteoblastic MC3T3-El cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus various concentrations of AHZ or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5M) stimulated the proliferation of cells. AHZ (10–6 and 10–5M) increased deoxyribonucleic acid (DNA) content in the cells with 48hr-culture. This increase was completely blocked by the presence of cycloheximide (10–6M) or hydroxyurea (10–3M). Also, the presence of cycloheximide (10–6M) completely inhibited the AHZ (10–5M)-induced increase in the proliferation of cells. Meanwhile, parathyroid hormone (10–7M), estrogen (10–9M) and insulin (10–M) significantly increased cellular DNA content. However, these hormonal effects clearly lowered in comparison with that of AHZ (10–5M). Dibutyryl cyclic AMP (10–4M) and zinc sulfate (10–5M) did not cause a significant increase in cellular DNA content. The present results support the view that AHZ has a direct specific proliferative effect on osteoblastic cellsin vitro and that this effect is dependent on protein synthesis.  相似文献   

7.
8.
Suh KS  Koh G  Park CY  Woo JT  Kim SW  Kim JW  Park IK  Kim YS 《Phytochemistry》2003,63(2):209-215
The effects of individual soybean isoflavones, genistein (4',5,7-trihydroxyisoflavone) and daidzein (4',7-dihydroxyisoflavone), on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis and the production of local factors in osteoblastic cells has been investigated. Soybean isoflavones increased DNA synthesis and the number of viable cells. When cells were treated with TNF-alpha, the number of viable cells dose-dependently decreased. The decrease in cell number caused by TNF-alpha treatment was due to apoptosis, which was confirmed by TUNEL and cell death ELISA analyses. Soybean isoflavones inhibited apoptosis of osteoblastic cells subjected to TNF-alpha treatment. MC3T3-E1 osteoblastic cells secrete interleukin-6 (IL-6), interleukin-1beta (IL-1beta), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) constitutively, but at low levels. Soybean isoflavones had no effect on the constitutive production of these local factors. When cells were treated with TNF-alpha (10(-10)M), the production of IL-6 and PGE(2), but not that of IL-1beta and NO, significantly increased. Treatment with soybean isoflavones (10(-5)M), in the presence of TNF-alpha (10(-10)M), for 48 h inhibited production of IL-6 and PGE(2), suggesting the antiresorptive action of soy phytoestrogen may be mediated by decreases in these local factors. The findings of this study thus suggest that soybean isoflavones may promote the function of osteoblastic cells and play an important role in bone remodeling.  相似文献   

9.
In this in vitro study, the hypothesis that the beneficial effects of dietary genistein on bone are through the modulation of the bone marker synthesis by osteoblastic MC3T3-E1 cells was tested, and the possible roles of estrogen receptors in the actions of genistein on osteoblastic cells were also examined. Interleukin-6 production was decreased 40% to 60% in osteoblastic cells treated with genistein from either day 8-16 or day 12-16, at dietarily achievable concentrations (10(-10) to 10(-8) M) (P<0.05). The mRNA expression of osteoprotegerin increased about 140% in cells treated from with genistein day 4-8 at a concentration of 10(-8) M (P<0.05). The ratio of estrogen receptor-alpha to beta expression increased 10-fold from day 0 to 12 of culture (P<0.05). Correlating with this time-dependent variation in estrogen receptor expression, treatments of 17beta-estradiol and genistein had opposite dose patterns on the ratio of estrogen receptor-alpha to beta expression following treatment from day 4 to 6 compared to from day 0 to 2. The addition of ICI-182,780, an estrogen receptor blocker, reduced the inhibitory effect of genistein on IL-6 production by 30-50%. In summary, these findings suggest that the beneficial skeletal effects of genistein, at dietarily achievable levels, appear to be mediated, at least in part, by interleukin-6 and osteoprotegerin, and estrogen receptors play important roles in the inhibition of interleukin-6 synthesis by genistein in osteoblastic MC3T3-E1 cells.  相似文献   

10.
Summary It is known that estrogen can protect neurons from excitotoxicity. Since isoflavones possess estrogen-like activity, it is of interest to determine whether isoflavones can also protect neurons from glutamate-induced neuronal injury. Morphological observation and lactate dehydrogenase (LDH) release assay were used to estimate the cellular damage. It is surprising that, contrary to estrogen, isoflavones, specifically genistein and daidzein, are toxic to primary neuronal culture at high concentration. Treatment of neurons with 50 μM genistein and daidzein for 24 h increased LDH release by 90% and 67%, respectively, indicating a significant cellular damage. Under the same conditions, estrogen such as 17β-estradiol did not show any effect on primary culture of brain cells. At 100 μM, both genistein and daidzein increased LDH release by 2.6- and 3-fold, respectively with a 30-min incubation. Furthermore, both genistein and daidzein at 50 μM increased the intracellular calcium level, [Ca2+]i, significantly. To determine their mode of action, genistein and daidzein were tested on glutamate and GABAA receptor binding. Both genistein and daidzein were found to have little effect on glutamate receptor binding, while the binding of [3H]muscimol to GABAA receptors was markedly inhibited. However, 17β-estradiol did not affect GABAA receptor binding suggesting that the toxic effect of genistein and daidzein could be due to their inhibition of the GABAA receptor resulting in further enhancement of excitation by glutamate and leading to cellular damage. Ying Jin, Heng Wu contributed equally to this article.  相似文献   

11.
The effect of flavonoids of various structures (baikalein, baikalin, quercetin, dihydroquercetin, genistein, and daidzein) on the process of formation of lipid hydroperoxides during thermoinduced autooxidation of neutral lipids of animal origin is studied. The minimum inhibitory concentration of isoflavones was found to be equal to 10-3 M. The effective inhibitory concentration of other flavonoids (except baikalin) was equal to 10-4 M. Baikalin was an effective promoter of lipid peroxidation. The antioxidant activity of the flavonoids tested was calculated, taking ionol as a reference.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 1, 2005, pp. 23–28.Original Russian Text Copyright © 2005 by Antoshina, Selishcheva, Sorokoumova, Utkina, Degtyarev, Shvets.  相似文献   

12.
Diabetic bone disease is associated with increased oxidative damage and 2-deoxy-d-ribose (dRib) is used to induce oxidative damage similar to that observed in diabetics. To determine if hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) could influence osteoblast dysfunction induced by dRib, osteoblastic MC3T3-E1 cells were treated with dRib and hesperetin. Then, markers of osteoblast function and oxidative damage were examined. Hesperetin (10−7–10−5 M) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and total antioxidant potential of MC3T3-E1 cells in the presence of 20 mM dRib (p < 0.05). Moreover, hesperetin (10−7 M) decreased cellular protein carbonyl (PCO), advanced oxidation protein products (AOPP), and malondialdehyde (MDA) contents of osteoblastic MC3T3-E1 cells in the presence of 20 mM dRib. These results demonstrate that hesperetin attenuates dRib-induced damage, suggesting that hesperetin may be a useful dietary supplement for minimizing oxidative injury in diabetes related bone diseases.  相似文献   

13.
14.
Of the primary neuronal tissue cultures (glia cell, neuronal cells, mixed and retina cultures), the neuronal cells of (cells + medium) display the highest total porphyrin production from 10–3 M delta-aminolaevulinic acid (ALA). In the presence of 10–3–10–6 M melatonin, the quantity of total prophyrins produced by the neuronal cultures decreases in inverse proportion to the concentration. Oxytocin, lysine-vasopressin, CCK-8 sulphate ester and des-Tyr-gamma-endorphin in concentrations of 10–5 and 10–6 M block the porphyrin synthesis of the glia cells and display different effects on that of the neuronal cells. They enhance the total porphyrin synthesis of the cell cultures, with the exception of 10–5 M des-Tyr-gamma-endorphin, which exerts an inhibitory effect on the glia cells.  相似文献   

15.
Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI50) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.  相似文献   

16.
Chronic excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying NaF-induced cytotoxicity in osteoblasts are not well understood. The objectives of this study were to determine the effects of fluoride treatment on MC3T3-E1 osteoblastic cell viability, cell cycle analysis, apoptosis and the expression levels of bcl-2 family members: bcl-2 and bax. MC3T3-E1 cells were treated with 10−5; 5 × 10−5; 10−4; 5 × 10−4 and 10−3 M NaF for up to 48 h. NaF was found to reduce cell viability in a temporal and concentration dependent manner and promote apoptosis even at low concentrations (10−5 M). This increased apoptosis was due to alterations in the expression of both pro-apoptotic bax and anti-apoptotic bcl-2. The net result was a decrease in the bcl-2/bax ratio which was found at both the mRNA and protein levels. Furthermore, we also noted that NaF-induced S-phase arrest during the cell cycle of MC3T3-E1 cells. These data suggest that fluoride-induced osteoblast apoptosis is mediated by direct effects of fluoride on the expression of bcl-2 family members.  相似文献   

17.
Lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, has been shown to have a strong adjuvant effect towards inhaled antigens contributing to airway inflammation. Isoflavones are anti-inflammatory molecules present in abundant quantities in soybeans. We investigated the effect of isoflavones on human dendritic cell (DC) activation via LPS stimulation and subsequent DC-mediated effector cell function both in vitro and in a mouse model of upper airway inflammation. Human monocyte-derived DCs (MDDC) were matured with LPS (or TNF-α) +/− isoflavones (genistein or daidzein). The surface expression levels of DC activation markers were analyzed by flow cytometry. Mature DCs +/− isoflavones were washed and cultured with freshly-isolated allogenic naïve CD4+ T cells for 5 days or with autologous natural killer (NK) cells for 2 hours. The percentages of proliferating IFN-γ+ CD4+ T cells and cytokine levels in culture supernatants were assessed. NK cell degranulation and DC cytotoxicity were measured by flow cytometry. Isoflavones significantly suppressed the activation-induced expression of DC maturation markers (CD83, CD80, CD86) and MHC class I but not MHC class II molecules in vitro. Isoflavone treatment inhibited the ability of LPS-DCs to induce IFN-γ in CD4+ T cells. NK cell degranulation and the percentage of dead DCs were significantly increased in isoflavone-treated DC-NK co-culture experiments. Dietary isoflavones suppressed the mucosal immune response to intra-nasal sensitization of mice to ovalbumin. Similar results were obtained when isoflavones were co-administered during sensitization. These results demonstrate that soybean isoflavones suppress immune sensitization by suppressing DC-maturation and its subsequent DC-mediated effector cell functions.  相似文献   

18.
19.
The effect of daidzein on cortical bone in vitro was investigated. Femoral-diaphyseal tissues obtained from elderly female rats were cultured for 24 h in Dulbecco's modified Eagle's medium (high glucose, 4.5%) supplementation with antibiotics and bovine serum albumin. The experimental cultures contained 10-7 to 10-5 M daidzein. The presence of daidzein (10-6 and 10-5 M) caused a significant increase of alkaline phosphatase activity, deoxyribonucleic acid (DNA) and calcium contents in bone tissues. This effect was equal to that of genistein (10-6 and 10-5 M). Daidzein (10-5 M) or genistein (10-5 M)-induced increase of calcium content and alkaline phosphatase activity in bone tissues was completely prevented by cycloheximide (10-6 M), an inhibitor of protein synthesis. Anabolic effect of daidzein and genistein on bone components was equal to that of 17-estradiol (10-8 M). The effect of isoflavohoids was not enhanced by the addition of 17-estradiol. The combination of daidzein and genistein did not have an additive effect. These findings indicate that daidzein has an anabolic effect on bone metabolism in tissue culture in vitro, and that this effect is equal to genistein effect. Isoflavonoids may stimulate bone formation and mineralization.  相似文献   

20.
Soybean isoflavonoids have received significant attention due to their potential anticarcinogenic and antiproliferative effects and possible role in many signal transduction pathways. However, their mechanisms of action and their molecular targets remain to be further elucidated. In this paper, we demonstrated that two soybean isoflavones (genistein and daidzein) reduced the proliferation of the human colon adenocarcinoma grade II cell line (HT-29) at concentrations of 25 and 50–100 μM, respectively. We then investigated the effects of genistein and daidzein by RT-PCR on molecules that involved in tumor development and progression by their regulation of cell proliferation. At a concentration of 50 μM genistein, there was suppressed expression of β-catenin (CTNNBIP1). Neither genistein nor daidzein affected APC (adenomatous polyposis coli) or survivin (BIRC5) expression when cells were treated with concentrations of 10 or 50 μM. These data suggest that the down-regulation of β-catenin by genistein may constitute an important determinant of the suppression of HT-29 cell growth and may be exploited for the prevention and treatment of colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号