首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Vascular interstitial cells (VICs) are non‐contractile cells with filopodia previously described in healthy blood vessels of rodents and their function remains unknown. The objective of this study was to identify VICs in human arteries and to ascertain their role. VICs were identified in the wall of human gastro‐omental arteries using transmission electron microscopy. Isolated VICs showed ability to form new and elongate existing filopodia and actively change body shape. Most importantly sprouting VICs were also observed in cell dispersal. RT‐PCR performed on separately collected contractile vascular smooth muscle cells (VSMCs) and VICs showed that both cell types expressed the gene for smooth muscle myosin heavy chain (SM‐MHC). Immunofluorescent labelling showed that both VSMCs and VICs had similar fluorescence for SM‐MHC and αSM‐actin, VICs, however, had significantly lower fluorescence for smoothelin, myosin light chain kinase, h‐calponin and SM22α. It was also found that VICs do not have cytoskeleton as rigid as in contractile VSMCs. VICs express number of VSMC‐specific proteins and display features of phenotypically modulated VSMCs with increased migratory abilities. VICs, therefore represent resident phenotypically modulated VSMCs that are present in human arteries under normal physiological conditions.  相似文献   

2.
Shi JH  Wen JK  Han M 《生理科学进展》2006,37(3):211-215
血管平滑肌细胞(VSMC)表型转化是动脉粥样硬化、高血压和血管成形术后再狭窄等血管重塑性疾病的共同病理生理过程。VSMC表型转化过程中平滑肌特异基因的表达变化和细胞骨架的组构是当前研究的热点问题之一。平滑肌22α(SM22α)是近年发现的一种VSMC分化标志物,其表达具有平滑肌组织特异性和细胞表型特异性,该蛋白作为一种肌动蛋白细胞骨架相关蛋白参与VSMC骨架组构和收缩调节。本文就SM22α的结构特征及其在VSMC骨架组构和血管重塑中的作用机制进行综述。  相似文献   

3.
Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (PparaΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.  相似文献   

4.
目的探讨雌激素对血管平滑肌细胞(VSMC)增殖的双重效应机制。方法采用Westernblot、电镜形态定量及细胞计数的方法,动态检测原代培养大鼠VSMC在有或无10^-8mol/L17β-雌二醇(E2)存在下,雌激素受体(ER)α和β表达变化与细胞表型转变及增殖时相的关系。结果无E2存在时,VSMC在从收缩型向合成型转变(原代培养第0到5天)及活跃增殖(第5到12天)过程中,ERβ表达无明显变化,但ERα表达明显上升,导致ERα/ERβ比值升高。这种变化并不随VSMC表型的恢复及增殖停止而逆转。有E2存在时,ERα/ERβ比值在第5天时低于对照组,而第9天后各时点均高于对照组;这种影响与E2对不同状态VSMC的不同作用基本对应,即延长原代收缩型SMC的增殖潜伏期,但促进已发生表型转变的VSMC增殖。结论雌激素对不同表型VSMC的双重效应与表型转变前后ERα/ERβ比值变化有关。  相似文献   

5.
The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs.  相似文献   

6.
7.
cGMP is a second messenger that produces its effects by interacting with intracellular receptor proteins. In smooth muscle cells, one of the major receptors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG). PKG has been shown to catalyze the phosphorylation of a number of physiologically relevant proteins whose function it is to regulate the contractile activity of the smooth muscle cell. These include proteins that regulate free intracellular calcium levels, the cytoskeleton, and the phosphorylation state of the regulatory light chain of smooth muscle myosin. Other studies have shown that vascular smooth muscle cells (VSMCs) that are cultured in vitro may cease to express PKG and will, coincidentally, acquire a noncontractile, synthetic phenotype. The restoration of PKG expression to the synthetic phenotype VSMC results in the cells acquiring a more contractile phenotype. These more recent studies suggest that PKG controls VSMC gene expression that, in turn, regulates phenotypic modulation of the cells. Therefore, the regulation of PKG gene expression appears to be linked to phenotypic modulation of VSMC. Because several vascular disorders are related to the accumulation of synthetic, fibroproliferative VSMC in the vessel wall, it is likely that changes in the activity of the nitric oxide/cGMP/PKG pathway is involved the development of these diseases.  相似文献   

8.
9.
In varicose veins, vascular smooth muscle cells (VSMCs) often show abnormal proliferative and migratory rates and phenotypic transition. This study aimed to investigate whether microRNA (miR)-202 and its potential target, peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), were involved in VSMC phenotypic transition. miR-202 expression was analyzed in varicose veins and in VSMCs conditioned with platelet-derived growth factor. The effect of miR-202 on cell proliferation and migration was assessed. Furthermore, contractile marker SM-22α, synthetic markers vimentin and collagen I, and PGC-1α were analyzed by Western blot analysis. The modulation of PGC-1α expression by miR-202 was also evaluated. In varicose veins and proliferative VSMCs, miR-202 expression was upregulated, with decreased SM-22α expression and increased vimentin and collagen I expression. Transfection with a miR-202 mimic induced VSMC proliferation and migration, whereas a miR-202 inhibitor reduced cell proliferation and migration. miR-202 mimic constrained luciferase activity in HEK293 cells that were cotransfected with the PGC-1α 3′-untranslated region (3′-UTR) but not those with mutated 3′-UTR. miR-202 suppressed PGC-1α protein expression, with no influence on its messenger RNA expression. PGC-1α mediated VSMC phenotypic transition and was correlated with reactive oxygen species production. In conclusion, miR-202 affects VSMC phenotypic transition by targeting PGC-1α expression, providing a novel target for varicose vein therapy.  相似文献   

10.
Primary cultures of vascular smooth muscle cells (VSMCs) from rats offer a good model system to examine the molecular basis of mechanism of vascular contraction–relaxation. However, during pathological conditions such as atherosclerosis and hypertension, VSMCs characteristically exhibit phenotypic modulation, change from a quiescent contractile to a proliferative synthetic phenotype, which impairs this mechanism of vascular contraction–relaxation. Taking in account that Myosin light chain (MLC) and ERK1/2 directly participate in the process of vascular contraction, the aim of the current study was to analyze the involvement of MLC and ERK1/2 signaling during the process of VSMCs phenotypic modulation. Primary cultures of VSMCs from rat thoracic aortas were isolated and submitted to different number of passages or to freezing condition. Semi-quantitative RT-PCR was used to evaluate the mRNA levels of VSMCs differentiation markers, and western blot assays were used to determine the MLC and ERK1/2 phosphorylation levels during VSMCs phenotypic modulation. Also, immunocytochemical experiments were performed to evaluate morphological alterations occurred during the phenotypic modulation. Elevated number of passages (up to 4) as well as the freezing/thawing process induced a significant phenotypic modulation in VSMCs, which was accompanied by diminished MLC and ERK1/2 phosphorylation levels. Phosphorylation of MLC was suppressed completely by the treatment with a synthetic inhibitor of MEK-1, a direct upstream of ERK1/2, PD98059. These findings provide that ERK1/2-promoted MLC phosphorylation is impaired during VSMCs phenotypic modulation, suggesting that ERK1/2 signaling pathway may represent a potential target for understanding the pathogenesis of several vascular disease processes frequently associated to this condition.  相似文献   

11.
In this study, we investigated the role of Akt1 isoform in phenotypic change of vascular smooth muscle cells (VSMCs) and neointima formation. Laminin-induced conversion of synthetic VSMCs into contractile VSMCs was measured by expression of marker proteins for contractile VSMCs and collagen gel contraction assay. Culture of synthetic VSMCs on laminin-coated plates induced expression of marker proteins for contractile VSMCs and showed contraction in response to angiotensin II (AngII) stimulation. Silencing integrin-linked kinase attenuated activation of Akt and blocked phenotypic conversion of VSMCs resulting in the loss of AngII-dependent contraction. Laminin-induced phenotypic conversion of VSMCs was abrogated by phosphatidylinositol 3-kinase inhibitor or in cells silencing Akt1 but not Akt2. Proliferation of contractile VSMCs on laminin-coated plate was enhanced in cells silencing Akt1 whereas silencing Akt2 did not affect. Promoter activity of myocardin and SM22α was enhanced in contractile phenotype and overexpression of myocardin stimulated promoter activity of SM22α in synthetic phenotype. Promoter activity of myocardin and SM22α was reduced in cells silencing Akt1 and promoter activity of SM22α was restored by overexpression of myocardin in cells silencing Akt1. However, silencing of Akt2 affected neither promoter activity of myocardin nor SM22α. Finally, neointima formation in carotid artery ligation and high fat-diet-induced atherosclerosis was facilitated in mice lacking Akt1. This study demonstrates that Akt1 isoform stimulates laminin-induced phenotypic conversion of synthetic VSMCs by regulating the expression of myocardin. VSMCs become susceptible to shifting from contractile to synthetic phenotype by the loss of Akt1 in pathological conditions.  相似文献   

12.
Intercellular communication among autonomic nerves, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) plays a central role in an uninterrupted regulation of blood flow through vascular contractile machinery. Impairment of this communication is linked to development of vascular diseases such as hypertension, cerebral/coronary vasospasms, aortic aneurism, and erectile dysfunction. Although the basic concept of the communication as a whole has been studied, the spatiotemporal correlation of ECs/VSMCs in tissues at the cellular level is unknown. Here, we show a unique VSMC response to ECs during contraction and relaxation of isolated aorta tissues through visualization of spatiotemporal activation patterns of smooth muscle myosin II. ECs in the intimal layer dictate the stimulus‐specific heterogeneous activation pattern of myosin II in VSMCs within distinct medial layers. Myosin light chain (MLC) phosphorylation (active form of myosin II) gradually increases towards outer layers (approximately threefold higher MLC phosphorylation at the outermost layer than that of the innermost layer), presumably by release of an intercellular messenger, nitric oxide (NO). Our study also demonstrates that the MLC phosphorylation at the outermost layer in spontaneously hypertensive rats (SHR) during NO‐induced relaxation is quite high and approximately 10‐fold higher than that of its counterpart, the Wister–Kyoto rats (WKY), suggesting that the distinct pattern of myosin II activation within tissues is important for vascular protection against elevated blood pressure.  相似文献   

13.
14.
Phenotypic change of vascular smooth muscle cells (VSMCs) from a differentiated to a dedifferentiated state accompanies the early stage of atherosclerosis and restenosis. Although much progress has been made in determining the molecular mechanisms involved in VSMC dedifferentiation, research on VSMC redifferentiation is hindered by the lack of an appropriate complete redifferentiation model. We established an in vitro model of redifferentiation by using postconfluent VSMCs from human umbilical artery. We demonstrated that serum-deprived VSMCs are capable of complete redifferentiation. After serum deprivation, postconfluent cultured human umbilical VSMCs became elongated and spindle shaped, with elevation of myofilament density, and reacquired contraction. Expressions of VSMC-specific contractile proteins, such as smooth muscle (SM) -actin, SM-myosin heavy chain, calponin, and SM 22, were increased and reached the levels in differentiated cells after serum deprivation. To determine the molecular mechanism of the phenotypic reversion, the levels of expression, phosphorylation, and binding activity of serum response factor (SRF), a key phenotypic modulator for VSMCs, were measured. The results showed that SRF binding activity with CArG motif was significantly increased after serum deprivation, whereas no changes were found in SRF expression and phosphorylation. The increased SRF binding activity was accompanied by an increase in expression of its coactivators such as myocardin. Furthermore, the phenotypic reversion was markedly inhibited by decoy double-strand oligodeoxynucleotides containing SM -actin CArG motif, which was able to competitively bind to SRF. The results suggested that serum deprivation results in redifferentiation of human umbilical VSMCs. This novel model of VSMC phenotypic reversion should be valuable for research on vascular disease. phenotype reversion; gene expression; serum response factor  相似文献   

15.
Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.  相似文献   

16.
17.
The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.  相似文献   

18.
Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.  相似文献   

19.
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.  相似文献   

20.
Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs) synthesis, reduces neointimal formation in animal models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation, drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary smooth muscle cells stimulated with TNF-α (30 ng/mL) or fetal bovine serum (5%). Bindarit (100–300 µM) reduced the embryonic form of smooth muscle myosin heavy chain while increased smooth muscle α-actin and calponin in both TNF-α- and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day) significantly reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle α-actin and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this drug inhibits neointimal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号