首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-year-old Navel orange scions (Citrus sinensis (L.) Osbeck) budded to either Cleopatra mandarin (C. reticulata) and Troyer citrange (C. sinensis × P. trifoliata) rootstocks were used in this experiment. Cleopatra manda in rootstock was considered more tolerant to salinity than Troyer citrange, and this property was attributed to a greater capacity to exclude chloride ions.Plants were grown under glasshouse conditions and supplied with nutrient solution containing either no or 45 mM NaCl. Calcium concentration was increased from 3 to 30 mM. Sodium, potassium, calcium and chloride concentrations in plant organs were analyzed after 90 days of treatment.Supplemental Ca was found to mitigate the adverse effects of salinity on plant growth, defoliation or leaf injury.Chemical analysis indicated that in plants grafted on Troyer citrange Ca restricted uptake and subsequent translocation of Na to the leaves and increased K concentration in both roots and leaves. However, in Cleopatra mandarin-grafted plants increasing Ca levels seemed to reduce transport of Na from roots to leaves, and Na accumulation in roots was associated with reduced concentration of K in this rootstock.Organ chloride analysis showed that Cl accumulation in leaves of plants grafted on both rootstocks was reduced when external Ca concentration increased, whereas Cl concentration in roots remained constant or increased. The data of distribution of Cl in plants showed that a high external Ca level increased Cl accumulation in the basal stem and roots, and reduced the transport of Cl from roots to leaves.  相似文献   

2.
The effect of increased Cd2+ concentrations in the watering solution on citrus physiology was studied by using two citrus genotypes, Cleopatra mandarin and Carrizo citrange. Cadmium content in roots and leaves was tested together with measurements of leaf damage, gas exchange parameters, and hormonal contents. Citrus roots efficiently retained Cd2+ avoiding its translocation to the shoots and Cleopatra mandarin translocated less Cd2+ than Carrizo. With increasing Cd2+ concentration all gas exchange parameters were decreased more in Carrizo than in Cleopatra mandarin. Cd-induced increases in abscisic acid and salicylic acid contents were observed in leaves but not in roots of both genotypes.  相似文献   

3.
Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO3. The Vmax for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks.Additionally, we studied the regulation of root NO3 uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO3 and down-regulated by the N status and by NO3 itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status.The use of various metabolic uncouplers or inhibitors indicated that NO3 net uptake mediated by iHATS and LATS was an active transport system in both rootstocks.Key Words: Citrus, inducible high affinity transport system (iHATS), constitutive high affinity transport system (cHATS), nitrate uptake, regulation  相似文献   

4.
Tetraploid citrus rootstocks are more tolerant to salt stress than diploid   总被引:2,自引:0,他引:2  
Citrus trees are subject to several abiotic constraints such as salinity. Providing new rootstocks more tolerant is thus a requirement. In this article, we investigated salt stress tolerance of three tetraploid rootstock genotypes when compared to their respective diploid rootstocks (Poncirus trifoliata, Carrizo citrange, Cleopatra mandarin). Plant growth, leaf fall and ion contents were investigated. At the end of the experiment, leaf fall was observed only for diploid Poncirus trifoliata plants as well as chlorosis symptoms for Poncirus trifoliata and Carrizo citrange diploid plants. The diploid Cleopatra mandarin plants growth rate was not affected by salt stress and has even been increased for tetraploid Cleopatra mandarin. Ion contents investigation has shown lower accumulations of chloride ions in leaves of the tetraploid plants when compared to diploid plants. Our results suggest that citrus tetraploid rootstocks are more tolerant to salt stress than their corresponding diploid. To cite this article: B. Saleh et al., C. R. Biologies 331 (2008).  相似文献   

5.
Effects of Salinity on Some Citrus Scion-Rootstock Combinations   总被引:3,自引:0,他引:3  
Chloride and sodium concentrations, water relations and gasexchange parameters were measured on leaves of Clementine (CitrusClementine Hort. ex. Tan) and Navel orange [C. sinensis (L.)Osb] scions grafted on Cleopatra mandarin (C. reticulata Blanco)and Troyer citrange (C. sinensis x Poncirus trifoliata) rootstocksgrown at increasing levels of NaCl in the external medium. Otherparameters affected by salinity such as growth and defoliationwere also recorded. Scions on Cleopatra mandarin accumulated less Cl- in their leavesthan did scions on Troyer citrange. Also, leaf Cl- levels inClementine scions were lower than in Navel orange when bothwere grafted on the same rootstock. However, sodium concentrationwas lower in scions on Troyer citrange than in Cleopatra mandarin. Leaf water potential, stomatal conductance, photosynthesis andgrowth were reduced more in grafted plants of salt-treated Navelorange than those of salt-treated Clementine. However, choiceof rootstock had little effect on salt-induced changes in theseparameters. For each scion, reduction in leaf stomatal conductancewas closely correlated with decrease in leaf water potential.Also, a significant correlation between photosynthesis and stomatalconductance was found. The results indicate that reductions in gas exchange parametersand growth at increasing salinity levels depended more on thescion type than on Cl- or Na+ concentration in leaves. Otherwise,leaf injury and defoliation were closely correlated with leafCl- concentration.Copyright 1995, 1999 Academic Press Citrus, photosynthesis, salinity, water relations  相似文献   

6.
Seedlings of Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and Alemow (Citrus macrophylla Wester) were inoculated with a mixture of AM fungi (Rhizophagus irregularis and Funneliformis mosseae) (+AM), or left non-inoculated (−AM). From forty-five days after fungal inoculation onwards, half of +AM or −AM plants were irrigated with nutrient solution containing 50 mM NaCl. Three months later, AM significantly increased plant growth in both Cleopatra mandarin and Alemow rootstocks. Plant growth was higher in salinized +AM plants than in non-salinized −AM plants, demonstrating that AM compensates the growth limitations imposed by salinity. Whereas AM-inoculated Cleopatra mandarin seedlings had a very good response under saline treatment, inoculation in Alemow did not alleviate the negative effect of salinity. The beneficial effect of mycorrhization is unrelated with protection against the uptake of Na or Cl and the effect of AM on these ions did not explain the different response of rootstocks. This response was related with the nutritional status since our findings confirm that AM fungi can alter host responses to salinity stress, improving more the P, K, Fe and Cu plant nutrition in Cleopatra mandarin than in Alemow plants. AM inoculation under saline treatments also increased root Mg concentration but it was higher in Cleopatra mandarin than in Alemow. This could explain why AM fungus did not completely recovered chlorophyll concentrations in Alemow and consequently it had lower photosynthesis rate than control plants. AM fungi play an essential role in citrus rootstock growth and biomass production although the intensity of this response depends on the rootstock salinity tolerance.  相似文献   

7.
The effects of three concentrations of sodium chloride (NaCl) on seven citrus rootstocks were studied under greenhouse conditions. Leaf and root mineral concentrations and seedling growth were measured. Sodium chloride was added to the nutrient solution to achieve final osmotic potentials of –0.10, –0.20, and –0.35 MPa. Increasing the concentration of NaCl in the nutrition solution reduced growth proportionally and altered leaf and root mineral concentrations of all rootstocks. Significant differences in leaf and root mineral concentration among rootstocks were also found under stressed and non-stressed conditions. Salinity caused the greatest growth reduction in Milam lemon and trifoliate orange and the least reduction in sour orange and Cleopatra mandarin. No specific nutrient deficiency was the sole factor reducing growth and causing injury to citrus rootstocks. Sodium chloride sensitivity of citrus rootstocks in terms of leaf burn symptoms and growth reduction could be attributed more to Cl than to Na. Sodium and Cl concentrations were greater in the leaves than in the roots, particularly at the medium and high salinity levels. Root Cl was not useful for assessing injury because no differences were found in root Cl concentrations among rootstocks. Increasing salinity level did not affect the level of N and Ca in the roots but did reduce N and Ca levels in the leaves. No relationship in mineral concentration or accumulation seemed to exist between citrus leaves and roots. At the –0.10 MPa salinity level, sour orange, rough lemon, and Milam were not able to exclude either Na or Cl from their leaves. Trifoliate orange and its two hybrids (Swingle citrumelo and Carrizo citrange) excluded Na at the lowest salt level used, but were unable to exclude Na at the higher salinity levels. Similarly, Cleopatra mandarin excluded Cl at the lowest salt level, but was not able to exclude Cl at higher salt concentrations. Hence, the ability of citrus rootstocks to exclude Na or Cl breaks down at higher salt concentrations.Florida Agricultural Experiment Station Journal Series No. R-02276.  相似文献   

8.
The water relations responses to salt of several important citrus rootstocks such as Swingle citrumelo, sour orange, and Milam lemon have not been studied in detail before. Studies were set up to compare growth and root hydraulic properties of these rootstocks to other citrus rootstocks by exposing them to NaCl and polyethylene glycol (PEG) stresses. Seedlings of 7 citrus rootstocks were irrigated for 5 months with nutrient solutions containing NaCl or PEG that had been adjusted to osmotic potentials of -0.10, -0.20 or -0.35 MPa. The 7 rootstocks studied were sour orange (Citrus aurantium), Cleopatra mandarin (Citrus reticulata Blanco), Swingle citrumelo (C. paradisi x P. trifoliata), Carrizo citrange (C. sinensis x P. trifoliata), rough lemon (Citrus jambhiri Lush), Milam lemon (C. jambhiri hybrid), and trifoliate orange (Poncirus trifoliata [L.] Raf.). In both shoot and root growth, Cleopatra mandarin and sour orange were the least sensitive to salt, Milam and trifoliate orange were the most sensitive, and rough lemon, Swingle, and Carrizo were intermediate in sensitivity. Even though the roots were exposed to solutions of equal osmotic potentials, plant growth and root conductivity were reduced more by the PEG treatments than the corresponding NaCl treatments. At -0.10 and -0.20 MPa, shoot and root dry weights were reduced 16 to 55% by NaCl and 24 to 68% by PEG. Shoot root ratio was lowered at the higher concentrations, particularly by PEG. There was a major decrease in root conductivity caused by NaCl at -0.10 MPa (19 to 30% in sour orange and Cleopatra mandarin and 78 to 85% in trifoliate orange and Milam). Conductivity decreased more at -0.20 and -0.35 MPa, but not proportionally as much as at -0.10 MPa. Root weight per unit length increased at the higher salt levels, particularly in trifoliate orange. Water flow rate through root systems followed the same trend as root conductivity; salt affected sour orange and Cleopatra mandarin the least and trifoliate orange and Milam the most. However, reductions in fibrous root length by salt treatment differed. Root lengths of Swingle and Carrizo were least affected by salt while sour orange. Milam, and rough lemon were the most affected. Hence, even though sour orange and Cleopatra mandarin were more tolerant than the other rootstocks in terms of water flow rate or root conductivity, these 2 rootstocks showed a proportionally greater decrease in root length than Carrizo, Swingle, or trifoliate orange.  相似文献   

9.
In this work, reciprocal grafts between the chloride-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the chloride-sensitive Carrizo citrange (Citrus sinensis [L.] Osb. × Poncirus trifoliata [L.] Raf.) rootstocks were grown under saline conditions to identify major transmissible salt tolerance traits in citrus. The data indicate that lower chloride levels in leaves, attenuated shoot growth and smaller vessel size in xylem were the most important transmissible salt tolerance traits. Other tolerance attributes such as larger leaf area and lower transpiration rates were non-transmissible charac teristics. Leaf cation levels and gas interchange parameters were unrelated to salt tolerance. In com parison with sensitive Carrizo, tolerant Cleopatra plants showed reduced capabilities for water uptake as well as lower leaf Cl-concentrations. Carrizo on Cleopatra grafts also possessed these two attributes although they were slightly less tolerant than Cleopatra plants, which had higher shoot to root ratios than the grafted plants. Cleopatra on Carrizo plants showed high sensitivity to salt because they had higher ability for water uptake and accumulated higher Cl-concentrations in leaves.  相似文献   

10.
Abstract Fibrous roots of four citrus hybrids and parent rootstocks from which the hybrids were generated, all selected for their different Cl? exclusion abilities, were assayed for phospholipid, galactolipid and free 4-desmethylsterol content. There was no correlation between a plant's ability to exclude Cl? and the level of either phospholipid, galactolipid, or total free sterol in the roots of control plants. However, an inverse correlation was established between the ratio of phospholipid to free sterol in control roots and total leaf Cl? levels of plants treated with 50 mol m?3 NaCl for 56 d. With the exception of a significant decrease in hybrid 80-05-05, galactolipid levels were unaffected by salt treatment. Phospholipid levels were significantly increased in two parent rootstocks viz. Trifoliate orange (Poncirus trifoliata (L.). Raf.) and Carrizo citrange (Citrus sinensis (L.) Osbeck ×P. trifoliata) and one hybrid (80-02-08) but were otherwise unchanged by salt treatment. Free sterol levels were significantly increased by salt treatment in all of the better Cl? excluders except Carrizo citrange i.e. in Rangpur lime (Citrus reticulata Blanco var. austera hybrid?), Cleopatra mandarin (Citrus reticulata Blanco) and all hybrids except 80–05–13. In all genotypes examined, salt-treatment resulted in a significant decrease in the ratio of sitosterol to stigmasterol reflecting, primarily, an increase in the stigmasterol level. The two poorer Cl? excluders (Trifoliate orange and hybrid 80–05–13) both underwent a significant decrease in the ratio of ‘more planar’ to ‘less planar’ sterols. The inverse correlation between the phospholipid to free sterol ratio of control plants and leaf Cl? level of salt treated plants suggests that this ratio has the potential to be used as a biochemical marker of Cl? exclusion ability in citrus.  相似文献   

11.
Leaf gas exchange, water relations and ion content were measured on two-year-old Valencia orange (Citrus sinensis [L.] Osbeck), Washington Navel orange (C. sinensis) and Marsh grapefruit (C. parodisi Macfad) scions budded to either Trifoliata (Poncirus infoliata [L] Raf) or Cleopatra mandarin (C. reticuLua Blanco) rootstoeks. Trees were watered with dülute nutrient solution containing either 0 or 50 mM NaCl for 77 days. Leaf chloride concentrations (cell sap basis) were higher in all scions budded on “Trifoliata but sodium levels were lower than in equivalent foliage budded on Cleopatra mandarin rootstock. Foliar salt levels also varied according to scion. Leaves of Marsh grapefruit had higher levels of both sodium and chloride than leaves of either Valencia orange or Washington Navel orange on both rootstocks. Accumulation of sodium and chloride in salinised leaves caused a reduction in leaf osmotic potential of 0.2–1.4 MPa. and leaf water potential declined by as much as 0.5 MPa. Turgor pressure in salinised leaves was thus maintained at or above the control level. Osmotic potentials determined by psychrometry compared with pressure-volume curves were taken to imply that some accumulation of sodium or chloride in the apoplast of salinised leaves may have occurred. Despite turgor maintenance both co2 assimilation and stomatal conductance were reduced by salinity. Following onset of leaf response to salinisation, gas exchange was impaired to a greater extent in scions budded to Cleopatra mandarin compared to those on Trifoliata. Amongst those scions. leaves of salt-treated Marsh grapefruit showed greater reductions in gas exchange than Valencia orange or Washington Navel orange budded on either rootstock. Increased sensitivity of 1Marsh grapefruit was correlated with a higher foliar sodium and chloride content in this scion. Scion differences in sensitivity of leaf gas exchange to solute concentration were independent of rootstock and appeared unrelated to leaf prolinebetaine concentrations. This implies an inherent difference between scion species with respect to salt tolerance, rather than variation in their capacity to acquire that type of compatible solute. In terms of rootstock effects, all scions proved more sensitive to salinity when budded to Cleopatra mandarin compared with Trifoliata. That response was attributed to a disproportionately higher concentration of leaf sodium in scions on Cleopatra mandarin.  相似文献   

12.
In this work, seedlings of two citrus rootstocks, the salt-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the salt-sensitive Carrizo citrange (Citrus sinensis [L.] Osb. x Poncirus trifoliata [L.] Raf.) were used to study the relationship between chloride and water uptake. The results indicated that net chloride uptake rates in both genotypes were alike and decreased linearly with the time of salinity exposure, although they were more rapidly reduced in the tolerant genotype. In each rootstock, chloride uptake rates paralleled the decreases in transpiration rates. When transpiration was modified, concomitant changes in leaf Cl(-) concentrations were observed. There was a high positive correlation between total chloride content per plant and total water absorbed. In addition, the data indicate that the tolerant genotype "excluded" more chloride, i.e. it absorbed lower amounts of chloride per volume of water. Cleopatra also possessed a less efficient root system for water uptake and a higher shoot-to-root ratio. The results show that, overall, chloride absorption is linked to water use and that further tolerance in Cleopatra is mostly conferred by superior root resistance to Cl(-) uptake. Therefore, it is proposed that chloride absorption and, hence, salt tolerance in citrus depends to a great extent upon water use.  相似文献   

13.
Abstract While citrus rootstocks differ in capacity for sodium and chloride ion exclusion, citrus scion species also vary in foliar sensitivity to NaCl salinisation. Of two common scions, ‘Lisbon’ lemon appears more sensitive, whereas ‘Valencia’ orange in less sensitive to leaf salt. In an attempt to explain this difference. ‘Valencia’ orange (Citrus sinensis [L.] Osbeck) and ‘Prior Lisbon’ lemon (Citrus limon [L.] Burm. F.) were budded to rootstocks known to differ in their ability to exclude sodium ions viz, the strong excluder Trifoliata (Poncirus trifoliata [L.] Raf.), and the weaker excluder Troyer citrange (C. sinensis×P. trifoliata); neither rootstock shows strong exclusion of chloride ions. Budded trees were held under a photosynthetic photon flux density of 450 μmol m 2 S 1 and watered with nutrient solution containing either 0 or 50 mol m 3 NaCl. Growth and photosynthetic responses were measured over 58 d following onset of salinization: salinity effects on leaf gas exchange were studied in relation to changes in leaf water status, compatible solutes and foliar content of sodium and chloride ions, over that same period. Once root-zone salinization began to influence leaf solutes (day 30 onwards), lemon showed a steeper increase in leaf chloride than occurred for orange. Although rootstock differences were without effect on this ingress of chloride ions for either scion, sodium ions were excluded from both scions to a larger extent by Trifoliata than by Troyer citrange. Carbon dioxide assimilation of scion foliage was reduced earlier and to a much larger extent by rootzone salinization in lemon than in orange. Furthermore, comparisons of CO2 assimilation in relation to leaf tissue solutes between scions (on either rootstock) showed stronger responses for both sodium and chloride ions in lemon than in orange. Faster ingress of chloride into lemon leaves was identified as the crucial factor which predisposed towards expression of that contrast between scions. Although contrasts between scions in photosynthetic responses to salinization matched a faster ingress of chloride into lemon than into orange leaves, the sharper photosynthetic response of ‘Prior Lisbon’ lemon to salinity was not solely attributable to higher concentrations of chloride ions (cell sap basis). A difference between species in subcellular compartmentation of the chloride ion under saline conditions was invoked.  相似文献   

14.
Leaf Water Potential Response to Transpiration by Citrus   总被引:3,自引:0,他引:3  
This paper reports on further studies of a model for interpreting leaf water potential data for Citrus. Experimental data confirmed the assumption that the ratio of vapor pressure deficit to leaf diffusion resistance adequately estimates transpiration when leaf-to-air temperature differences are small. Data collected diurnally indicated that the relationship between leaf water potential and transpiration followed a sequence of steady states without hysteresis. No difference in water transport characteristics was found for Valencia orange on three rootstocks in well-watered soil, but the two rootstocks Cleopatra mandarin and Rangpur gave slightly greater leaf water stress in Valencia orange leaves than‘Troyer’ citrange rootstock at high transpiration rates under mild soil water deficits. In laboratory studies, previously unstressed seedlings had higher leaf water potentials than field trees at equivalent transpiration rates. After several drying cycles, however, leaf water potentials were similar to those observed in the field.  相似文献   

15.
Larval growth and intraspecific competition of Diaprepes abbreviatus (L.) larvae and consequent root injury in container-grown citrus in the greenhouse were evaluated. Roots of Carrizo citrange, Citrus sinesis L. Osbeck x Poncirus trifoliata (L.) Raf.; Cleopatra mandarin, C. reticulata Blanco, and Swingle citrumelo, C. paradisi Macf. x P. trifoliata (L.) Raf. rootstock seedlings grown in Candler fine sand and potting soil were colonized with different populations of D. abbreviatus larvae. Larvae were exposed to the seedlings for 79 d. Larval growth and development increased steadily for approximately 70 d on all rootstock-soil combinations, at which time most larvae were instars 6-8. Most feeding injury occurred to roots when larvae were between instars 3 and 6. Larval weight reached a plateau at approximately 70 d, but often declined between 70 and 79 d. When larvae were small, injury to seedlings developed slowly, primarily on fibrous roots, then feeding increased rapidly, often resulting in total consumption of both fibrous root and bark tissue. Although not statistically significant, root injury developed slightly slower on Swingle citrumelo compared with Carrizo and Cleopatra rootstocks, but damage was comparable by 79 d. Little or no difference in consumptive benefit to the larvae was found between the rootstocks. Based on larval weight days, little feeding injury occurred during the first 21 d, but increased rapidly between 21 and 60 d. Soil type affected the rate of larval growth and development, with potting soil contributing to greater growth rates. Detritus in potting soil provided little or no nutritional resource, suggesting that the effect of potting soil on larval development was primarily physical. In addition, fewer inoculated larvae per seedling exhibited greater weight gains than higher infestation densities, suggesting that intraspecific competition for nutritional resources influenced larval development.  相似文献   

16.
The results presented in this work were obtained with two citrus genotypes, the chloride-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the chloride-sensitive Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.]. The data show that chloride uptake under salinization is driven by passive forces. In both species, net rates of chloride root uptake increased linearly, without saturation, with the increase of external NaCl concentrations (30–240 mol m–3). Uptake rates, on a μ g g root dry weight–1 h–1 basis, in Cleopatra and Carrizo decreased (from 38 to 21) and increased (from 21 to 35), respectively, with the increase (about three-fold) of the shoot to root ratio. With the appropriate shoot to root ratio in each genotype, it was demonstrated that at identical external doses of NaCl, Cl uptake rates and Cl xylem concentrations in the two species were very similar. Root pruning and defoliation showed that the amount of chloride taken by the plant was a function of the size of the root system, whereas leaf chloride concentration, the parameter responsible for salt damage, was dependent upon leaf biomass. Measurements of water transpiration suggested that chloride root uptake and leaf accumulation might be linked to water absorption and transpiration rates, respectively. The data indicate that plant morphology is a crucial factor determining salt-tolerance in citrus.  相似文献   

17.
The effects of shading in combination with salinity treatments were studied in citrus trees on two rootstocks with contrasting salt tolerance to determine if shading could reduce the negative effects of salinity stress. Well-nourished 2-year-old 'Valencia' orange trees grafted on Cleopatra mandarin (Cleo, relatively salt tolerant) or Carrizo citrange (Carr, relatively salt sensitive), were grown either under a 50% shade cloth or left unshaded in full sunlight. Half the trees received no salinity treatment and half were salinized with 50 mM Cl- during two 9 week salinity periods in the spring and autumn interrupted by an 11 week rainy period. The shade treatment reduced midday leaf temperature and leaf-to-air vapour pressure deficit regardless of salinity treatments. In non-salinized trees, shade increased midday CO2 assimilation rate (A(CO2)) and stomatal conductance, but had no effect on leaf transpiration (E(lf)). Shade also increased leaf chlorophyll and photosynthetic water use efficiency (A(CO2)/E(lf)) in leaves on both rootstocks and increased total plant dry weight in Cleo. The salinity treatment reduced leaf growth and leaf gas exchange parameters. Shade decreased Cl- concentrations in leaves of salinized Carr trees, but had no effect on leaf or root Cl- of trees on Cleo. There were no significant differences in leaf gas exchange parameters of shaded and unshaded salinized plants but the growth reduction from salinity stress was actually greater for shaded than for unshaded trees. Shaded trees on both rootstocks had higher leaf Na+ than unshaded trees after the first salinity period, and this shade-induced elevated leaf Na+ persisted after the second salinity period in trees on Carr. Thus, shading did not alleviate the negative effects of salinity on growth and Na+ accumulation.  相似文献   

18.
Leaf water relations, net gas exchange and leaf and root constituent responses to 9 days of drought stress (DS) or soil flooding were studied in 6‐month‐old seedlings of Carrizo citrange [Citrus sinensis (L.) Osb. ×Poncirus trifoliata L.; Carr] and Cleopatra mandarin (Citrus resnhi Hort. ex Tanaka; Cleo) growing in containers of native sand in the greenhouse. At the end of the drought period, both species had similar minimum stem water potentials but Cleo had higher leaf relative water content (RWC) and higher leaf osmotic potential at full turgor () than Carr. Flooding had no effect on RWC but osmotic adjustment (OA) and were higher in Cleo than in Carr. Net CO2 assimilation rate (ACO2) in leaves was decreased more by drought than by flooding in both species but especially in Carr. Leaf water‐use efficiency (ACO2/transpiration) was lower in Carr and was decreased more by DS and flooding stress than in Cleo. Higher values of intercellular CO2 concentration (Ci) in stressed plants than in control plants indicated that non‐stomatal factors including chlorophyll degradation and chlorophyll fluorescence [maximum quantum efficiency of PSII (Fv/Fm, where Fm is the maximum fluorescence and F0, minimum fluorescence in dark‐adapted leaves)] were more important limitations on ACO2 than stomatal conductance. In both genotypes, leaf proline was increased by drought but not by flooding, whereas both stresses increased proline in roots. Soluble sugars in leaves were increased by DS, and flooding decreased leaf sugars in Cleo. In general, DS tended to increase the concentrations of Ca, K, Mg, Na and Cl in both leaves and roots, whereas flooding tended to decrease these ions with the exception of leaf Ca in Cleo. Based on water relations and net gas exchange, Cleo was more tolerant to short‐term DS and flooding stress than Carr.  相似文献   

19.
Citrus species are sensitive to an excess of boron (B). Currently, this toxicity is becoming a serious problem in the soils of arid and semi-arid environments throughout the world, where high concentrations of B may occur due to the agricultural use of wastewater. Citrus rootstocks can greatly influence the tolerance of citrus trees to different abiotic stresses. However, little is known about how the rootstock influences the tolerance of these trees to an excess of B. In this study, the effects of the nutrient solution’s B concentration (0.25, 2, 4.5 or 7?mg?l?1) on the growth and other physiological, nutritional and biochemical parameters of Verna lemon trees that were grafted on four contrasting rootstocks [Carrizo citrange (CC), Cleopatra mandarin (CL), Citrus macrophylla (CM) and sour orange (SO)] were investigated. The plants were grown in a greenhouse in pots containing a universal substrate media and were watered daily with a Hoagland nutrient solution containing different concentrations of B. The results showed that the plant growth was progressively inhibited with an increasing concentration of B in the nutrient solution. However, the shoot was more sensitive to the B toxicity than were the roots. In addition, the growth inhibition was reduced in trees that were grafted on CL and CM when compared with those that were grafted on CC and SO. The concentration of B in the leaves, stems and roots also increased with an increase in the concentration of external B in the following order: leaves?>?roots?>?stem. The rootstock also had an influence on the B concentration in the different plant tissues. In the leaves, the B concentration was lowest in the plants that were grafted on the SO rootstock followed by the plants that were grafted on either the CM or CL rootstock and highest in the plants that were grafted on the CC rootstock. The net assimilation of CO2 ( $ A_{{{\text{CO}}_{2} }} $ ) and the stomatal conductance (g s) leaf gas exchange parameters were reduced with an excess of B in the leaves, and this reduction was less pronounced for trees on CM and CL. The intercellular CO2 concentration (C i) and the chlorophyll fluorescence indicated that the reduction of $ A_{{{\text{CO}}_{2} }} $ that was found with an excess of B was mainly due to non-stomatal factors. The mineral nutrition and organic solute data are also shown in this study. All of the data indicate that the tolerance to an excess of B is not related to the concentration of B that has accumulated in the leaves, which indicates that a combination of rootstock-dependent physiological, biochemical and anatomical responses determine the tolerance to an excess of B in citrus plants.  相似文献   

20.
  1. Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) is a common polyphagous mite in tropical and subtropical areas and is considered as an important citrus pest.
  2. To understand the response of citrus to P. latus infestation, we have characterized the volatile profile and the molecular defence mechanisms of two citrus genotypes, namely sour orange (Citrus aurantium) and Cleopatra mandarin (Citrus reshni), to P. latus infestation. These two species are important rootstocks for the citrus industry and display differential resistance to Tetranychus urticae Koch (Acari: Tetranychidae), with sour orange showing elevated levels of constitutive and induced resistance associated with the jasmonic acid (JA) pathway compared with Cleopatra mandarin.
  3. P. latus infestation activated both the JA- and the salicylic acid-dependent pathways in sour orange but not in Cleopatra mandarin. However, this differential activation resulted in the production of similar volatile blends (a mixture of green leaf volatiles and aromatic compounds).
  4. Contrary to T. urticae infestation, sour orange supported larger densities of P. latus than Cleopatra mandarin with similar injury levels.
  5. Therefore, sour orange may be more tolerant to P. latus than Cleopatra mandarin.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号