首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light microscope analysis of cytological smears of suspicious lesions of the oral cavity is used as a method for detecting early cancer in the oral cavity. the sensitivity of this approach can be improved by quantitative analysis of the cells in the cytological smears. We have compared the efficiency of planimetry and the Vids V system of image analysis, as quantitative methods for discriminating between normal and abnormal cells in cytological smears of suspicious lesions in the oral cavity. Both methods detected an increase in nuclear area and a decrease in cytoplasmic area in abnormal epithelial cells from dysplastic lesions of increasing severity. However, image analysis was better able to discriminate between benign and malignant cells on the basis of nuclear size. Thus the Vids V system of image analysis is more appropriate than planimetry for quantitative analysis of cytological smears from the oral cavity.  相似文献   

2.
Evolution modulates the quantitative characteristics of protein interactions and often uses combinations of weak interactions to achieve a particular specificity. We addressed how quantitative optimization might be used in the design of multidomain proteins, using a chimera containing epidermal growth factor (EGF) as a cell targeting element and interferon-alpha-2a (IFNalpha-2a) to initiate signal transduction. We first connected EGF and IFNalpha-2a via a linker that allows both ligands to bind to their receptors on a cell surface and then incorporated a series of mutations into the IFNalpha-2a portion that progressively decrease both the on rate and the dissociation constant of the IFNalpha-2a-IFNalpha receptor 2 (IFNAR2) interaction. Using this strategy, we designed chimeric proteins in which the activation of the IFNalpha receptor in HeLa, A431, and engineered Daudi cells depends on the presence of EGF receptor on the same cell. The mutant chimeric proteins also inhibited proliferation of IFNalpha-sensitive cells in an EGF receptor-dependent manner. These results provide insights into the quantitative requirements for specific binding to multisubunit receptors and illustrate the value of a quantitative approach in the design of synthetic-biological constructs.  相似文献   

3.
Magnetophoresis and ferromagnetic resonance of magnetically labeled cells   总被引:5,自引:1,他引:4  
We develop in this paper two methods, based on different physical concepts, to quantify the uptake of magnetic nanoparticles in biological cells. The first one, magnetophoresis, is based on the measurement of the velocity of magnetically labeled cells submitted to a magnetic field gradient. The second one quantitates the particles' electronic spin using an electron paramagnetic resonance experiment. We show a quantitative agreement between both methods for macrophagic cells. The uptake kinetics and uptake capacity are discussed for macrophagic cells and other cell lines.  相似文献   

4.
We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming.  相似文献   

5.
We describe a semiquantitative RT-PCR protocol optimized in our laboratory to extract RNA from as little as 10,000 cells and to measure the expression levels of several target mRNAs from each sample. This procedure was optimized on the human erythroleukemia cell line TF-1 but was successfully used on primary cells and on different cell lines. We describe the detailed procedure for the analysis of Bcl-2 levels. Aldolase A was used as an internal control to normalize for sample to sample variations in total RNA amounts and for reaction efficiency. As for all quantitative techniques, great care must be taken in all optimization steps: the necessary controls to ensure a rough quantitative (semi-quantitative) analysis are described here, together with an example from a study on the effects of TGF-β1 in TF-1 cells. Published: November 16, 2001.  相似文献   

6.
We modified existing techniques to optimize conditions for obtaining quantitative, highly replicable, and sensitive transfections. The processes described may serve as a model for investigators initiating transfection procedures who wish to obtain definitive and quantitative results quickly and efficiently. In our example, we compared specific gene expressions of plasmids with the chloramphenicol acetyltransferase (CAT) reporter. Techniques included measuring CAT activity in transfected mammalian cells, selecting a procedure for extracting plasmids from bacterial cells, evaluating the timing of the transfection, choosing a transfection reagent and the reagent: plasmid DNA ratio, and determining procedures for the extraction of cells.  相似文献   

7.
Computational imaging in cell biology   总被引:1,自引:0,他引:1  
Microscopy of cells has changed dramatically since its early days in the mid-seventeenth century. Image analysis has concurrently evolved from measurements of hand drawings and still photographs to computational methods that (semi-) automatically quantify objects, distances, concentrations, and velocities of cells and subcellular structures. Today's imaging technologies generate a wealth of data that requires visualization and multi-dimensional and quantitative image analysis as prerequisites to turning qualitative data into quantitative values. Such quantitative data provide the basis for mathematical modeling of protein kinetics and biochemical signaling networks that, in turn, open the way toward a quantitative view of cell biology. Here, we will review technologies for analyzing and reconstructing dynamic structures and processes in the living cell. We will present live-cell studies that would have been impossible without computational imaging. These applications illustrate the potential of computational imaging to enhance our knowledge of the dynamics of cellular structures and processes.  相似文献   

8.
The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology.  相似文献   

9.
Exogenous reference RNA for normalization of real-time quantitative PCR   总被引:6,自引:0,他引:6  
We have utilized an in vitro transcribed 3' mRNA fragment of the plant gene ribulose bisphosphate carboxylase (RuBisCO) as an exogenous standard for normalization of quantitative PCR data. Both K562 cells and primary erythroid CD34+ progenitor cells were treated with sodium butyrate and changes in gamma-globin mRNA levels were assayed using a previously published TaqMan probe and primer set, while RuBisCO levels were assayed by a SYBR Green detection assay. The data presented show that a correction to measured gamma-globin induction was necessary with both cell types. The correction for the CD34+ progenitor cells was a striking 95% increase, while that for the K562 cells was 44%. The use of an exogenous reference such as in vitro transcribed mRNA for the RuBisCO plant gene provides a robust and sample-independent method for the normalization of quantitative PCR data in bacterial and animal cells.  相似文献   

10.
Using 2-D DIGE, we constructed a quantitative 2-D database including 309 proteins corresponding to 389 protein spots across 42 lymphoid neoplasm cell lines. The proteins separated by 2-D PAGE were identified by MS and assigned to the expression data obtained by 2-D DIGE. The cell lines were categorized into four groups: those from Hodgkin's lymphoma (HL) (4 cell lines), B cell malignancies (19 cell lines), T cell malignancies (16 cell lines), and natural killer (NK) cell malignancies (3 cell lines). We characterized the proteins in the database by classifying them according to their expression level. We found 28 proteins with more than a 2-fold difference between the cell line groups. We also noted the proteins that allowed multidimensional separation to be achieved (1) between HL cells and other cells, (2) between the cells derived from B cells, T cells and NK cells, and (3) between HL cells and anaplastic large cell lymphoma cells. Decision tree classification identified five proteins that could be used to classify the 42 cell lines according to differentiation. These results suggest that the quantitative 2-D database using 2-D DIGE will be a useful resource for studying the mechanisms underlying the differentiation phenotypes of lymphoid neoplasms.  相似文献   

11.
Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.  相似文献   

12.
13.
The interactions between excitatory mitral cells and inhibitory granule cells are critical for the regulation of olfactory bulb activity. Here we review anatomical and physiological data on the mitral cell-granule cell circuit and provide a quantitative estimate of how this connectivity varies as a function of distance between mitral cells. We also discuss the ways in which the functional connectivity can be altered rapidly during olfactory bulb activity.  相似文献   

14.
Liu CY  Lee CF  Wei YH 《Mitochondrion》2007,7(1-2):89-95
In this study, we used a series of human cytoplasmic hybrids (cybrids) harboring different proportions of 4977 bp-deleted mtDNA to investigate the quantitative effect of a pathogenic mutation of mtDNA on apoptosis. We found that the sensitivity of human cells to apoptosis triggered by UV irradiation increases with the proportion of 4977 bp-deleted mtDNA. Moreover, UV-induced activation of caspase 3 was preceded by the activation of caspases 8 and 9. Most importantly, we observed that UV-induced cytochrome c release from mitochondria occurred much earlier and was much more pronounced in the cybrids harboring higher proportions of 4977 bp-deleted mtDNA. We suggest that 4977 bp-deleted mtDNA increases the susceptibility of human cells to UV-induced apoptosis in a quantitative manner through cytochrome c release from mitochondria and caspase 3 activation.  相似文献   

15.
E Cash  M Chamorro    M Brahic 《Journal of virology》1986,60(2):558-563
We developed a quantitative assay for antigens at the single-cell level. Tissue sections were reacted with a primary antibody, a biotinylated secondary antibody, or 35S-streptavidin. Binding of streptavidin to cells was quantitated by microscopic autoradiography. We showed that the number of autoradiographic grains was proportional to the amount of antigen per cell. With this assay, we studied the synthesis of Theiler's virus capsid proteins VP1, VP2, and VP3 in permissive BHK cells grown in vitro and in mouse central nervous system (CNS) cells during a persistent infection. We found that synthesis of the three capsid proteins was restricted in mouse CNS cells. Restricted virus replication could play a major role in the persistence of Theiler's virus in mouse CNS cells.  相似文献   

16.
17.
18.
Photoconvertible fluorescent proteins (PCFPs) are widely used in super-resolution microscopy and studies of cellular dynamics. However, our understanding of their photophysics is still limited, hampering their quantitative application. For example, we do not know the optimal sample preparation methods or imaging conditions to count protein molecules fused to PCFPs by single-molecule localization microscopy in live and fixed cells. We also do not know how the behavior of PCFPs in live cells compares with fixed cells. Therefore, we investigated how formaldehyde fixation influences the photophysical properties of the popular green-to-red PCFP mEos3.2 in fission yeast cells under a wide range of imaging conditions. We estimated photophysical parameters by fitting a three-state model of photoconversion and photobleaching to the time course of fluorescence signal per yeast cell expressing mEos3.2. We discovered that formaldehyde fixation makes the fluorescence signal, photoconversion rate, and photobleaching rate of mEos3.2 sensitive to the buffer conditions likely by permeabilizing the yeast cell membrane. Under some imaging conditions, the time-integrated mEos3.2 signal per yeast cell is similar in live cells and fixed cells imaged in buffer at pH 8.5 with 1 mM DTT, indicating that light chemical fixation does not destroy mEos3.2 molecules. We also discovered that 405-nm irradiation drove some red-state mEos3.2 molecules to enter an intermediate dark state, which can be converted back to the red fluorescent state by 561-nm illumination. Our findings provide a guide to quantitatively compare conditions for imaging mEos3.2-tagged molecules in yeast cells. Our imaging assay and mathematical model are easy to implement and provide a simple quantitative approach to measure the time-integrated signal and the photoconversion and photobleaching rates of fluorescent proteins in cells.  相似文献   

19.
20.
Suppression of gene expression by RNA interference in cultured plant cells   总被引:5,自引:0,他引:5  
Suppression by double-stranded RNA (dsRNA) of the expression of a target gene is known as RNA interference (RNAi). No quantitative analysis of the effects of RNAi on the expression of specific genes in cultured plant cells has been reported. However, as it is possible to produce populations of cultured plant cells that are uniform and divide synchronously for functional analysis of genes of interest, we performed a quantitative study of the effects of RNAi in such cells. We constructed dsRNA expression plasmids for a luciferase gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter by simply connecting sense and antisense sequences in a head-to-head manner. An RNAi effect was observed 24 hours after the introduction of dsRNA expression plasmids into tobacco BY-2 cells by electroporation. The simple system for suppression of specific genes in plant cells should be useful in attempts to elucidate the roles of individual genes in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号