首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The insulin-binding and protein tyrosine kinase subunits of the Drosophila melanogaster insulin receptor homolog have been identified and characterized by using antipeptide antibodies elicited to the deduced amino acid sequence of the alpha and beta subunits of the human insulin receptor. In D. melanogaster embryos and cell lines, the insulin receptor contains insulin-binding alpha subunits of 110 or 120 kilodaltons (kDa), a 95-kDa beta subunit that is phosphorylated on tyrosine in response to insulin in intact cells and in vitro, and a 170-kDa protein that may be an incompletely processed receptor. All of the components are synthesized from a proreceptor, joined by disulfide bonds, and exposed on the cell surface. The beta subunit is recognized by an antipeptide antibody elicited to amino acids 1142 to 1162 of the human insulin proreceptor, and the alpha subunit is recognized by an antipeptide antibody elicited to amino acids 702 to 723 of the human proreceptor. Of the polypeptide ligands tested, only insulin reacts with the D. melanogaster receptor. Insulinlike growth factors type I and II, epidermal growth factor, and the silkworm insulinlike prothoracicotropic hormone are unable to stimulate autophosphorylation. Thus despite the evolutionary divergence of vertebrates and invertebrates, the essential features of the structure and intrinsic functions of the insulin receptor have been remarkably conserved.  相似文献   

2.
The Drosophila insulin receptor (INR) homolog includes an extension of approximately 400 amino acids at the carboxyl-terminal end of its beta subunit containing several tyrosine-based motifs known to mediate interactions with signaling proteins. In order to explore the role of this extension in INR function, mammalian expression vectors encoding either the complete INR beta subunit (beta-Myc) or the INR beta subunit without the carboxyl-terminal extension (betaDelta) were constructed, and the membrane-bound beta subunits were expressed in 293 and Madin-Darby canine kidney cells in the absence of the ligand-binding alpha subunits. beta-Myc and betaDelta proteins were constitutively active tyrosine kinases of 180 and 102 kDa, respectively. INR beta-Myc co-immunoprecipitated a phosphoprotein of 170 kDa identified as insulin receptor substrate-1 (IRS-1), whereas INR betaDelta did not, suggesting that the site of interaction was within the carboxyl-terminal extension. IRS-1 was phosphorylated on tyrosine to a much greater extent in cells expressing INR beta-Myc than in parental or INR betaDelta cells. Despite this, a variety of PTB or SH2 domain-containing signaling proteins, including IRS-2, mSos-1, Shc, p85 subunit of phosphatidylinositol 3-kinase, SHP-2, Raf-1, and JAK2, were not associated with the INR beta-Myc.IRS-1 complex. Overexpression of INR beta-Myc and betaDelta kinases conferred an equivalent increase in cell proliferation in both 293 and Madin-Darby canine kidney cells, indicating that this growth response is independent of the carboxyl-terminal extension. However, INR beta-Myc-expressing cells exhibited enhanced survival relative to parental and betaDelta cells, suggesting that the carboxyl-terminal extension, through its interaction with IRS-1, plays a role in the regulation of cell death.  相似文献   

3.
An insulin receptor mutant was constructed utilizing site-directed mutagenesis to delete the Arg-Lys-Arg-Arg basic amino acid cleavage site (positions 720-723) from the cDNA encoding the human insulin proreceptor. This mutant was transfected into Chinese hamster ovary cells. Immunoprecipitation of metabolically labeled cells revealed a 205-kDa proreceptor which bound to wheat germ agglutinin. Processed 130-kDa alpha and 95-kDa beta subunits were also observed and contained approximately 20% as much protein as the proreceptor on a molar basis. Trypsin digestion of intact metabolically labeled cells decreased the proreceptor band by 80%. Pulse-chase studies revealed a half-life of 28 h for the proreceptor. When cells were photolabeled with 125I-B2(2-nitro-4-azidophenylacetyl)-des-PheB1 (NAPA)-insulin, the proreceptor incorporated 10% as much label as the 130-kDa alpha subunit in spite of a 5-fold molar excess. Incubation of NAPA-labeled cells at 37 degrees C for 20 min resulted in 60% of the labeled subunits, but little labeled proreceptor, becoming resistant to trypsin degradation. Immunoprecipitation of NAPA-insulin-stimulated cells with anti-phosphotyrosine antibodies revealed that 62% of the processed labeled receptors, but very little proreceptor, contained phosphotyrosine. Thus, this mutant receptor is synthesized, glycosylated, and expressed on the cell surface as uncleaved proreceptor, although some processing to alpha and beta subunits still occurs. It exhibits a markedly decreased affinity for insulin, and when insulin is bound to, demonstrates defective internalization, down-regulation, and autophosphorylation. These data suggest that cleavage of the mutant proreceptor into subunits is required not only for the development of high affinity binding sites, but also for normal transduction of the signal which activates the beta subunit tyrosine kinase.  相似文献   

4.
In this report we describe the use of the baculovirus expression system to overproduce the human insulin holoreceptor (HIR) and a truncated, secretory version of the HIR cDNA (HIRsec) consisting of the alpha subunit and the extracellular portion of the beta subunit (beta'). Sf9 cells infected with the full-length HIR viruses synthesize recombinant HIR (rHIR) with an insulin-binding alpha subunit of apparent Mr = 110,000 and a beta subunit of apparent Mr = 80,000. Uncleaved alpha beta proreceptor accumulates in infected cells. Both of these forms assemble into higher order disulfide-linked dimers or heterotetramers of apparent Mr greater than 350,000. Insulin-binding activity in cells infected with rHIR viruses is present predominantly on the extracellular aspect of the plasma membrane (greater than 80%). Insulin binding to the full-length rHIR occurs with typical complex kinetics with Kd1 = 0.5-1 x 10(-9) M and Kd2 = 10(-7) M and receptors are present in large amounts in infected cells (1 x 10(6) receptors/cell; 1-2 mg HIR/10(9) cells). The full-length rHIR undergoes insulin-dependent autophosphorylation; half-maximal activation of beta subunit autophosphorylation occurs at 1-2 x 10(-8) M. The alpha beta proreceptor also becomes phosphorylated in vitro. Analysis of tryptic phosphopeptides derived from in vitro autophosphorylated beta subunit and alpha beta proreceptor reveals a pattern of phosphorylation that is indistinguishable from that of authentic placental HIR. Sf9 cells infected with rHIRsec viruses synthesize and secrete an (alpha beta')2 heterotetrameric complex having an insulin-binding alpha subunit of apparent Mr = 110,000 and a truncated beta' subunit of apparent Mr = 45,000 that lacks kinase activity. The rHIRsec complex purified from the conditioned medium of infected cells binds insulin with high affinity (Kd = 10(-9) M).  相似文献   

5.
Chemical degradation and antipeptide antibodies were used to study alterations in the structure and function of the human placental insulin receptor following autophosphorylation in vitro. Antibodies elicited to residues 1143-1162 (P2) of the human insulin proreceptor immunoprecipitated the native, phosphorylated receptor but not the unphosphorylated receptor. Since this antibody recognizes both forms of the receptor on immunoblots, it was concluded that the accessibility of the P2 domain to the antibody is increased by in vitro autophosphorylation. Chemical cleavage at either tryptophan or methionine residues followed by immunoprecipitation with antipeptide antibodies was used to map the in vitro autophosphorylation sites of the beta subunit of the insulin receptor. Two phosphorylated fragments were resolved. One, recognized by antibody elicited to amino acid residues 1328-1343 (P5), is derived from the carboxyl terminus of the beta subunit and includes tyrosine 1316. The other, recognized by antibody to P2, is located in a domain that includes tyrosine 1150. The rate of phosphorylation of this latter site correlates with the rate of activation of the insulin receptor kinase during in vitro autophosphorylation. The results support the following conclusions: autophosphorylation alters the conformation of the beta subunit of the insulin receptor; autophosphorylation in vitro leads to phosphorylation of tyrosine residues near the carboxyl terminus of the protein and in the P2 domain that includes tyrosine 1150; activation of the insulin receptor kinase correlates with autophosphorylation of the domain containing tyrosine 1150.  相似文献   

6.
The ability of insulin to activate the insulin receptor protein kinase is shown to be completely dependent on prior beta subunit tyrosine autophosphorylation. Autophosphorylation in the presence of insulin is a highly concerted reaction; tryptic digestion of insulin receptor beta subunits derived from preparations whose kinase activation ranges from under 5% to 100% of maximal yields the same array of [32P]Tyr(P)-containing peptides over the entire range. Of special note is the significant contribution of multiply phosphorylated forms of tryptic peptides corresponding to proreceptor residues 1144-1152 (from the "tyrosine kinase" domain) and 1314-1329 (near the carboxyl terminus) to overall beta subunit phosphorylation at kinase activations of 5% and under. Thus, partially activated/autophosphorylated receptor preparations consist of mixtures of unactivated unphosphorylated receptors and activated fully (or nearly fully) phosphorylated receptors. The latter can be selectively removed by adsorption to antiphosphotyrosine antibodies. This abrupt multiple phosphorylation of individual receptor molecules explains why, in the presence of insulin, overall beta subunit tyrosine phosphorylation tracks closely with kinase, up to approximately 90% activation. Insulin stimulates phosphorylation into all domains (involving at least 6 of the 13 tyrosines on the intracellular portion of the beta subunit) but does not cause the appearance of "new" 32P-labeled species. Rather, insulin directs 32P incorporation preferentially into those domains most productive of kinase activation. Phosphorylation of the tyrosine residues at 1146, 1150, and 1151 correlates most closely with kinase activation. These residues show the largest 32P incorporation during rapid kinase activation; moreover, in comparisons of receptors with similar overall autophosphorylation but very different activations (or similar activations but different extents of autophosphorylation), achieved by omitting insulin or varying [ATP], the phosphorylation of peptide 1144-1152 tracks closely with kinase activation, and phosphorylation of sites and Mr 4000-5000 tryptic peptide (presumably Tyr 953 and/or 960) tract nearly as well. By contrast the extent of phosphorylation of the carboxy-terminal peptide is frequently dissociated from the extent of kinase activation. Phosphorylation of this latter domain probably underlies a beta subunit function other than tyrosine kinase activity.  相似文献   

7.
The MET proto-oncogene encodes a 190-kDa disulfide-linked heterodimeric receptor (p190 alpha beta) whose tyrosine kinase activity is triggered by the hepatocyte growth factor. The mature receptor is made of two subunits: an alpha chain of 50 kDa and a beta chain of 145 kDa, arising from proteolytic cleavage of a single-chain precursor of 170 kDa (pr170). In a colon carcinoma cell line (LoVo), the precursor is not cleaved and the Met protein is exposed at the cell surface as a single-chain polypeptide of 190 kDa (p190NC). The expression of the uncleaved Met protein is due to defective posttranslational processing, since in this cell line (i) the proteolytic cleavage site Lys-303-Arg-Lys-Lys-Arg-Ser-308 is present in the precursor, (ii) p190NC is sensitive to mild trypsin digestion of the cell surface, generating alpha and beta chains of the correct size, and (iii) the 205-kDa insulin receptor precursor is not cleaved as well. p190NC is a functional tyrosine kinase in vitro and is activated in vivo, as shown by constitutive autophosphorylation on tyrosine. The MET gene is neither amplified nor rearranged in LoVo cells. Overlapping cDNA clones selected from a library derived from LoVo mRNA were sequenced. No mutations were present in the MET-coding region. These data indicate that the tyrosine kinase encoded by the MET proto-oncogene can be activated as a consequence of a posttranslational defect.  相似文献   

8.
9.
The stimulation of activated human T lymphocytes with IL-2 results in increased tyrosine kinase activity. IL-2 treatment of Tac+ T cells stimulates the rapid phosphorylation of multiple protein substrates at M of 116, 100, 92, 70 to 75, 60, 56, 55, 33, and 32 kDa. Phosphorylation on tyrosine residues was detected by immunoaffinity purification of protein substrates with Sepharose linked antiphosphotyrosine mAb, 1G2. Although phorbol ester stimulated serine phosphorylation of the IL-2R alpha (p55) subunit recognized by alpha TAC mAb, IL-2 did not stimulate any detectable phosphorylation of IL-2R alpha or associated coimmune precipitated proteins. In fact, the tyrosine phosphorylated proteins did not coprecipitate with alpha Tac antibody and similar phosphoproteins were stimulated by IL-2 in IL-2R alpha- human large granular lymphocytes which express only the 70 to 75 kDa IL-2R beta subunit of the high affinity IL-2R. Anti-Tac mAb could inhibit IL-2-stimulated tyrosine phosphorylation in activated T cells, which express both IL-2R subunits that together form the high affinity receptor complex, but not in large granular lymphocytes expressing only the IL-2R beta subunit. The data suggest that IL-2 stimulation of tyrosine kinase activities requires only the IL-2R beta subunit.  相似文献   

10.
A Salzman  C F Wan  C S Rubin 《Biochemistry》1984,23(26):6555-6565
The biogenesis, intracellular transport, and functional properties of the insulin proreceptor and modified insulin receptors were studied in hormone-responsive 3T3-L1 adipocytes. After control cells were labeled with [35S]Met for 7 min, the principal polypeptide that was precipitated by anti-insulin receptor antibodies had a molecular weight (Mr) of 180 000. This initial precursor was rapidly converted (t1/2 = 35 min) to a 200-kilodalton (kDa) polypeptide, designated the insulin proreceptor, by the apparent posttranslational addition of N-linked, high mannose core oligosaccharide units. Mature alpha (Mr 130 000) and beta (Mr 90 000) subunits were derived from sequences within the proreceptor by proteolytic cleavage and late processing steps, and these subunits appeared on the cell surface 2-3 h after synthesis of the 180-kDa precursor. The cation ionophore monensin was used in combination with metabolic labeling, affinity cross-linking, and external proteolysis to probe aspects of proreceptor function, transit, and the development of insulin sensitivity at the target cell surface. At 5 micrograms/mL, monensin potently inhibited the proteolytic cleavage step, and the 200-kDa polypeptide accumulated. Lower concentrations of the ionophore selectively blocked late processing steps in 3T3-L1 adipocytes so that apparently smaller alpha' (Mr 120 000) and beta' (Mr 85 000) subunits were produced. Proreceptor and alpha' and beta' subunits were translocated to the cell surface, indicating that the signal for intracellular transit occurs in the 200-kDa polypeptide and is independent of the posttranslational proteolysis and late processing steps. The alpha' subunit bound insulin both at the surface of intact cells and after solubilization with Triton X-100; the beta' subunit was phosphorylated in an insulin-stimulated manner. The detergent-solubilized 200-kDa proreceptor also exhibited both functional properties. However, the proreceptor that was transported to and exposed on the cell surface was incapable of binding insulin in intact adipocytes. Thus, late processing is not essential for the expression of functions associated with mature alpha and beta subunits. In contrast, it appears that the proteolytic generation of subunits is required for the correct orientation of the hormone binding site in the plasma membrane bilayer and the development of insulin responsiveness in 3T3-L1 adipocytes.  相似文献   

11.
The dissociation of the purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex into an alpha beta heterodimeric state was found to occur in a pH- and dithiothreitol (DTT)-dependent manner. Formation of the alpha beta heterodimeric complex, under conditions which preserved tracer insulin binding and protein kinase activities (pH 8.75 for 25 min followed by 2.0 mM DTT for 5 min) occurred with an approximate 50% efficiency. The resulting nondissociated alpha 2 beta 2 heterotetrameric complexes could then be separated effectively by Bio-Gel A-1.5m gel filtration chromatography at neutral pH. The isolated DTT-treated but nondissociated alpha 2 beta 2 heterotetrameric complex was resistant to any further dissociation by a second round of DTT and alkaline pH treatment, whereas the isolated alpha beta heterodimeric complex was stable to spontaneous reassociation for at least 72 h at pH 7.60. Kinetic analyses of the insulin receptor protein kinase activity demonstrated that the insulin stimulation of glutamic acid:tyrosine (4:1) synthetic polymer phosphorylation for both the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes occurred via an increase in Vmax without any significant change in Km. Examination of beta subunit autophosphorylation of the alpha beta heterodimeric complex, in the presence but not in the absence of insulin, demonstrated the appearance of the covalent 32P-labeled alpha 2 beta 2 heterotetrameric complex. Further, the initial rate of insulin-stimulated beta subunit autophosphorylation in the isolated alpha beta heterodimeric complex occurred in a dilution-dependent (intermolecular) manner. These data demonstrate that the isolated alpha beta heterodimeric insulin receptor complex is fully capable of expressing insulin-dependent activation of the beta subunit protein kinase domain with the covalent reassociation of the alpha beta heterodimeric complex into an alpha 2 beta 2 heterotetrameric disulfide-linked state.  相似文献   

12.
Insulin receptors are disulfide-linked oligotetramers composed of two heterodimers each containing a 130-kDa alpha subunit and a 90-kDa beta subunit. Insulin binds to the extracellular alpha subunit, and in the process stimulates the autophosphorylation of the beta subunit and the expression of tyrosine kinase activity. Studies combining the use of photoaffinity labeling and immunoprecipitation with anti-peptide antibody have directly demonstrated that the cysteine-rich domain, encoded by exon 3, in the alpha subunit is part of the insulin-binding site of the receptor. Experiments with chimeric insulin receptors and chimeric insulin-like growth factor I receptors have confirmed that the cysteine-rich domain constitutes a part of the insulin-binding site. In addition, results from these experiments suggest that the N-terminal sequence, encoded by exon 2, in the alpha subunit also participates in insulin binding. In this review it is proposed that, assuming two insulin-binding sites per each holoreceptor oligotetramer, each insulin-binding domain may contain respectively two sub-domains for hydrophobic and charge contact with insulin, and that high-affinity binding would require the interaction of both subunits with the possibility of each subunit reciprocally contributing one of the sub-domains.  相似文献   

13.
The cytoplasmic domain of the beta subunit of the human insulin receptor has been overexpressed in insect cells using the baculovirus expression system. A recombinant baculovirus (BIR-2) was constructed by inserting the human insulin proreceptor cDNA fragment that encodes the cytoplasmic domain of the receptor into the genome of Autographa californica nuclear polyhedrosis virus adjacent to the strong polyhedrin promoter. Synthesis of the protein (baculovirus insulin receptor kinase (BIRK), Mr 48,000) in BIR-2-infected Spodoptera frugiperda (Sf9) cells was detected 24 h after infection and maximal accumulation (2-3% of the cytosolic protein) was achieved 48-72 h post-infection. The expressed protein is active as a soluble protein tyrosine kinase, both in Sf9 cells and in vitro. Rapid purification to near homogeneity was accomplished by sequential chromatography on Fast-Q-Sepharose and phenyl-Superose with an overall yield of 35% and a specific activity with histone as substrate of 20 nmol/min/mg protein. Autophosphorylation activated the intrinsic kinase activity of BIRK and decreased its mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using a combination of tryptic digestion and immunoprecipitation with specific antipeptide antisera, it was ascertained that 30-40% of the 32P incorporated into BIRK by autophosphorylation is in the carboxyl-terminal domain (that includes tyrosyl residues 1316 and 1322 of the human proreceptor). Of the remaining radioactivity, 75% is in the amino-terminal domain (that includes tyrosyl residues 953, 960, 972, 999, and 1075) and 25% is in the conserved autophosphorylation domain (including tyrosyl residues 1146, 1150, and 1151). Limited digestion of BIRK with trypsin yielded a fragment, Mr 38,000, that lacks the carboxyl-terminal domain. This fragment exhibits protein tyrosine kinase activity that is stimulated by autophosphorylation. The properties of the soluble, monomeric BIRK are similar to those of the intact, activated, oligomeric insulin receptor kinase with respect to specificity, immunoreactivity, divalent cation requirements, and specific activity. These observations coupled with the ease of producing 0.4 mg of purified enzyme from 100 ml of suspension culture suggest that BIRK will be useful for biochemical and biophysical analysis of the insulin receptor protein tyrosine kinase.  相似文献   

14.
Tertiary and quaternary structural changes that occur during post-translational processing of the insulin proreceptor were examined in 3T3-L1 adipocytes. In pulse-chase experiments with [35S]methionine, labeled insulin receptor species, isolated by immuno- and insulin-affinity adsorption, were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis under conditions where intra- and intermolecular disulfide bonds remained intact or were cleaved by reduction. Reducing SDS-polyacrylamide gel electrophoresis confirmed that the insulin receptor is synthesized as a long-lived (t1/2 = 3 h) proreceptor precursor of 210 kDa which undergoes proteolytic cleavage and carbohydrate maturation to form the alpha- and beta-subunits of the mature receptor. The proreceptor acquires insulin binding activity through a subtle structural change (t1/2 = 45 min) detected only by an autoimmune antibody specific for an epitope of the active insulin binding site. Analysis of insulin receptor species by nonreducing SDS-polyacrylamide gel electrophoresis revealed that the proreceptor undergoes two additional structural changes not detected by reducing SDS-polyacrylamide gel electrophoresis. The proreceptor is synthesized as a monomer (M1) with an apparent molecular mass of 170 kDa that is converted by disulfide rearrangement to another monomeric form of 190-kDa apparent molecular mass (M2). N-Linked glycosylation is required for this transition, since aglycoproreceptor, synthesized in the presence of tunicamycin, does not undergo any detectable tertiary or quaternary structural changes. M2 self-associates to form a disulfide-linked proreceptor dimer (D) which is subsequently proteolytically processed, forming the mature, disulfide-linked alpha 2 beta 2 receptor tetramer. The mature receptor was distinguished from the three proreceptor species (M1, M2, and D) by its cell surface location and its ability to bind tightly to wheat germ agglutinin-agarose, indicating the presence of complex oligosaccharide chains. Subcellular fractionation indicated that both the M1 to M2 and M2 to D conversions occur in the endoplasmic reticulum. Separation of the nonreduced proreceptor species into "active" and "inactive" forms by affinity chromatography on insulin-agarose revealed that neither the transition of M1 to M2, nor of M2 to D, is correlated with the acquisition of insulin binding function. Rather, during its life-time, the M2 species acquires insulin binding activity and an epitope recognized by a binding site specific autoimmune antibody through a subtle structural change not detected by reducing or nonreducing SDS-polyacrylamide gel electrophoresis.  相似文献   

15.
Three peptides were synthesized corresponding to potential autophosphorylation sites of the beta subunit of the human insulin receptor. These were peptide 1150 corresponding to amino acids 1142-1153 of the pro-receptor, peptide 960 corresponding to amino acids 952-961 of the proreceptor, and peptide 1316 corresponding to amino acids 1313-1329 of the proreceptor. Peptide 1150 served as a better substrate for the insulin receptor tyrosine protein kinase than either of the other peptides or than the Src peptide (corresponding to the sequence surrounding the autophosphorylation site at Tyr-416). Microsequencing of the phosphorylated peptide 1150 indicated that Tyr-1150 rather than Tyr-1146 or Tyr-1151 was phosphorylated in the in vitro reaction. The insulin receptor was then isolated from 32P-labeled IM-9 cells that had been exposed to insulin. Tryptic digestion of the beta subunit revealed one peptide whose phosphorylation was dependent upon insulin and occurred exclusively on Tyr. This peptide was selectively immunoprecipitated by an antipeptide antibody directed to the Tyr-1150-containing sequence. We conclude that Tyr-1150 is preferentially phosphorylated by the purified receptor kinase and that one of the autophosphorylation reactions elicited by insulin in intact cells occurs in a sequence that contains this residue.  相似文献   

16.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

17.
The met proto-oncogene is a member of the family of tyrosine kinase growth factor receptors. We describe the isolation and characterization of a cDNA clone (pOK) for the met receptor from a gastric carcinoma cell line. This clone differs from the published cDNA clone by the absence of 54 bp predicted to encode 18 amino acids in the extracellular domain. The pOK cDNA corresponds to the most abundant met RNA species of 8 kb expressed in human cell lines and tissue, and we show that there are in fact two 8-kb met receptor tyrosine kinase (RTK) isoforms that are generated by alternative splicing. This newly described met isoform when transiently expressed in COS cells encodes a protein of 190 kDa which corresponds in size to the p190 met alpha beta heterodimer expressed in human cell lines. Furthermore, we show that the 190-kDa product of pOK consists of the 140-kDa met beta subunit associated with the 50-kDa met alpha subunit. This finding suggests that both the alpha and beta met chains are encoded by this construct and confirms the hypothesis that a single chain precursor is cleaved to produce both subunits of met. In contrast, the previously characterized met isoform corresponds to a minor met RNA species and encodes a protein of 170 kDa that is not cleaved yet is processed in a manner that allows cell surface expression. Both met RTK isoforms are autophosphorylated in the in vitro kinase assay. These results suggest that different isoforms of the met RTK may have distinct biological activities.  相似文献   

18.
Fodrin (nonerythroid spectrin) from porcine brain was found to be phosphorylated on tyrosine residues by the purified insulin receptor kinase. The phosphorylation occurred in an insulin-sensitive manner with a physiologically relevant km. The beta(235 K) subunit of fodrin, but not the alpha(240 K) subunit, was phosphorylated by the kinase. Neither the alpha(240 K) subunit nor the beta(220 K) subunit of erythrocyte spectrin was phosphorylated under the same conditions. Fodrin phosphorylation by the purified insulin receptor kinase was markedly inhibited by F-actin. These data raise the possibility that tyrosine phosphorylation of fodrin plays some roles in the regulation of plasma membrane-microfilament interaction.  相似文献   

19.
Insulin receptor (IR) is a glycoprotein possessing N-linked oligosaccharide side chains on both alpha and beta subunits. The present study focuses for the first time on the potential contribution of N-linked oligosaccharides of the beta subunit in the processing, structure, and function of the insulin receptor. To investigate this point, a receptor mutant (IR beta N1234) was obtained by stable transfection into Chinese hamster ovary cells of an IR cDNA modified by site-directed mutagenesis on the four potential N-glycosylation sites (Asn-X-Ser/Thr) of the beta subunit. The mutated receptor presents an alpha subunit of 135 kDa, indistinguishable from the wild type alpha subunit, but the beta subunit has a reduced molecular mass (80 kDa instead of 95 kDa) most likely due to the absence of N-glycosylation. Metabolic labeling experiments indicate a normal processing and maturation of this mutated receptor which is normally expressed at the surface of the cells as demonstrated by indirect immunofluorescence. The affinity of the mutant for insulin (Kd = 0.12 nM) is similar to that of the wild type receptor (Kd = 0.12 nM). However, a major defect of the mutated IR tyrosine kinase was assessed both in vitro and in vivo by (i) the absence of insulin-stimulated phosphorylation of the poly(Glu-Tyr) substrate in vitro; (ii) the reduction of the insulin maximal stimulation of the mutated IR autophosphorylation in vitro (2-fold stimulation for the mutant receptor as compared to a 7-fold stimulation for the wild type); and (iii) a more complex alteration of the mutated receptor tyrosine autophosphorylation in vivo (3-fold increase of the basal phosphorylation and a 4-fold simulation of this phosphorylation as compared to the wild type receptor, the phosphorylation of which is stimulated 14-fold by insulin). The physiological consequences of this defect were tested on three classical insulin cellular actions; in Chinese hamster ovary IR beta N1234, glucose transport, glycogen synthesis, and DNA synthesis were all unable to be stimulated by insulin indicating the absence of insulin transduction through this mutated receptor. These data provide the first direct evidence for a critical role of oligosaccharide side chains of the beta subunit in the molecular events responsible for the IR enzymatic activation and signal transduction.  相似文献   

20.
The regulation of kinase activity associated with insulin receptor by phosphorylation and dephosphorylation has been examined using partially purified receptor immobilized on insulin-agarose. The immobilized receptor preparation exhibits predominately tyrosine but also serine and threonine kinase activities toward insulin receptor beta subunit and exogenous histone. Phosphorylation of the insulin receptor preparation with increasing concentrations of unlabeled ATP, followed by washing to remove the unreacted ATP, results in a progressive activation of the receptor kinase activity when assayed in the presence of histone and [gamma-32P]ATP. A maximal 4-fold activation is achieved by prior incubation of receptor with concentrations of ATP approaching 1 mM. High pressure liquid chromatographic analysis of tryptic hydrolysates of the 32P-labeled insulin receptor beta subunit reveals three domains of phosphorylation (designated peaks 1, 2, and 3). Phosphotyrosine and phosphoserine residues are present in these three domains while peak 2 contains phosphothreonine as well. Thus, at least seven sites are available for phosphorylation on the beta subunit of the insulin receptor. Incubation of the phosphorylated insulin receptor with alkaline phosphatase at 15 degrees C results in the selective dephosphorylation of the phosphotyrosine residues on the beta subunit of the receptor while the phosphoserine and phosphothreonine contents are not affected. The dephosphorylation of the receptor is accompanied by a marked 65% inhibition of the receptor kinase activity. Almost 90% of the decrease in [32P]phosphate content of the receptor after alkaline phosphatase treatment is accounted for by a decrease in phosphotyrosine content in peak 2, while very small decreases are observed in peaks 1 and 3, respectively. These results demonstrate that the extent of phosphorylation of tyrosine residues in receptor domain 2 closely parallels the receptor kinase activity state, suggesting phosphorylation of this domain may play a key role in regulating the insulin receptor tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号