共查询到20条相似文献,搜索用时 0 毫秒
1.
Patterning the early Xenopus embryo 总被引:3,自引:0,他引:3
Heasman J 《Development (Cambridge, England)》2006,133(7):1205-1217
Developmental biology teachers use the example of the frog embryo to introduce young scientists to the wonders of vertebrate development, and to pose the crucial question, 'How does a ball of cells become an exquisitely patterned embryo?'. Classical embryologists also recognized the power of the amphibian model and used extirpation and explant studies to explore early embryo polarity and to define signaling centers in blastula and gastrula stage embryos. This review revisits these early stages of Xenopus development and summarizes the recent explosion of information on the intrinsic and extrinsic factors that are responsible for the first phases of embryonic patterning. 相似文献
2.
3.
Inhibition of DNA replication by aphidicolin in the chick morula interferes with its progression to a normal blastula and prevents induction of the first morphogenetic cell movements of primitive streak formation. Embryos in aphidicolin synthesize some polypeptides typical of blastula but do not display all the characteristic features of morula to blastula transition. Inhibition of DNA replication interferes with the sequential synthesis of maternally coded polypeptides and with the activation of the embryonic genome in the chick embryo. 相似文献
4.
5.
Histone gene expression in early development of Xenopus laevis 总被引:3,自引:0,他引:3
Walter M.A.M. Van Dongen Antoon P.M. Moorman Olivier H.J. Destrée 《Differentiation; research in biological diversity》1983,24(1-3):226-233
Abstract. This study comprises the hybridization analysis of electrophoretically separated histone mRNAs from oocytes and embryos of Xenopus laevis , and analysis of in vitro translation products of these mRNAs on polyacrylamide gels containing sodium dodecyl sulfate (SDS) or Triton X-100. In oocytes and embryos up to the tailbud stage, four types of mRNAs complementary to histone H2B DNA and two complementary to histone H4 DNA can be discriminated by their different electrophoretic mobilities on polyacrylamide gels. Electrophoretic heterogeneity was not detected for messengers for histones H2A and H3.
Histone mRNA, purified by hybridization under stringent conditions with a cloned histone gene cluster, was used to direct histone protein synthesis in a wheat-germ cell free system. The proteins synthesized comigrate with purified marker histones when electrophoresed on SDS-gels or acid-urea gels containing Triton X-100. When hybrid-selected histone mRNAs from oocytes and embryos in different developmental stages are translated, the proteins made by the mRNA from one stage can not be discriminated from those made by the mRNA from another stage after electrophoresis on SDS-gels or acid urea Triton X-100 gels. 相似文献
Histone mRNA, purified by hybridization under stringent conditions with a cloned histone gene cluster, was used to direct histone protein synthesis in a wheat-germ cell free system. The proteins synthesized comigrate with purified marker histones when electrophoresed on SDS-gels or acid-urea gels containing Triton X-100. When hybrid-selected histone mRNAs from oocytes and embryos in different developmental stages are translated, the proteins made by the mRNA from one stage can not be discriminated from those made by the mRNA from another stage after electrophoresis on SDS-gels or acid urea Triton X-100 gels. 相似文献
6.
Tight junctions (TJs) perform a critical role in the transport functions and morphogenetic activity of the primary epithelium formed during Xenopus cleavage. Biogenesis of these junctions was studied by immunolocalization of TJ-associated proteins (cingulin, ZO-1 and occludin) and by an in vivo biotin diffusion assay. Using fertilized eggs synchronized during the first division cycle, we found that membrane assembly of the TJ initiated at the animal pole towards the end of zygote cytokinesis and involved sequential incorporation of components in the order cingulin, ZO-1 and occludin. The three constituents appeared to be recruited from maternal stores and were targeted to the nascent TJ site by different pathways. TJ protein assembly was focused precisely to the border between the oolemma-derived apical membrane and newly-inserted basolateral membrane generated during cytokinesis and culminated in the formation of functional TJs in the two-cell embryo, which maintained a diffusion barrier. New membrane formation and the generation of cell surface polarity therefore precede initiation of TJ formation. Moreover, assembly of TJ marker protein precisely at the apical-basolateral membrane boundary was preserved in the complete absence of intercellular contacts and adhesion. Thus, the mechanism of TJ biogenesis in the Xenopus early embryo relies on intrinsic cues of a cell autonomous mechanism. These data reveal a distinction between Xenopus and mammalian early embryos in the origin and mechanisms of epithelial cell polarization and TJ formation during cleavage of the egg. 相似文献
7.
In the Xenopus embryo, blastomeres are joined by gap junctions that allow the movement of small molecules between neighboring cells. Previous studies using Lucifer yellow (LY) have reported asymmetries in the patterns of junctional communication suggesting involvement in dorso-ventral patterning. To explore that relationship, we systematically compared the transfer of LY and neurobiotin in embryos containing 16-128 cells. In all cases, the junction-permeable tracer was coinjected with a fluorescent dextran that cannot pass through gap junctions. Surprisingly, while LY appeared to transfer in whole-mount embryos, in no case did we observe junctional transfer of LY in fixed and sectioned embryos. The lack of correspondence between data obtained from whole-mounts and from sections results from two synergistic effects. First, uninjected blastomeres in whole-mounts reflect and scatter light originating from the intensely fluorescent injected cell, creating a diffuse background interpretable as dye transfer. Second, the heavier pigmentation in ventral blastomeres masks this scattered signal, giving the impression of an asymmetry in communication. Thus, inspection of whole-mount embryos is an unreliable method for the assessment of dye transfer between embryonic blastomeres. A rigorous and unambiguous demonstration of gap junctional intercellular communication demands both the coinjection of permeant and impermeant tracers followed by the examination of sectioned specimens. Whereas LY transfer was never observed, neurobiotin was consistently transferred in both ventral and dorsal aspects of the embryo, with no apparent asymmetry. Ventralization of embryos by UV irradiation and dorsalization by Xwnt-8 did not alter the patterns of communication. Thus, our results are not compatible with current models for a role of gap junctional communication in dorso-ventral patterning. 相似文献
8.
Posterior expression of a homeobox gene in early Xenopus embryos 总被引:14,自引:0,他引:14
9.
The canonical, beta-catenin-dependent Wnt pathway is a crucial player in the early events of Xenopus development. Dorsal axis formation and mesoderm patterning are accepted effects of this pathway, but the regulation of expression of genes involved in mesoderm specification is not. This conclusion is based largely on the inability of the Wnt pathway to induce mesoderm in animal cap explants. Using injections of inhibitors of canonical Wnt signaling, we demonstrate that expression of the general mesodermal marker Brachyury (Xbra) requires a zygotic, ligand-dependent Wnt activity throughout the marginal zone. Analysis of the Xbra promoter reveals that putative TCF-binding sites mediate Wnt activation, the first sites in this well-studied promoter to which an activation role can be ascribed. However, established mesoderm inducers like eFGF and activin can bypass the Wnt requirement for Xbra expression. Another mesoderm promoting factor, VegT, activates Xbra in a Wnt-dependent manner. We also show that the activin/nodal signaling is necessary for ectopic Xbra induction by the Wnt pathway, but not by VegT. Our data significantly change the understanding of Brachyury regulation in Xenopus, implying the existence of an unknown zygotic Wnt ligand in Spemann's organizer. Since Brachyury is considered to have a major role in mesoderm formation, it is possible that Wnts might play a role in mesoderm specification, in addition to patterning. 相似文献
10.
11.
12.
Tao Q Nandadasa S McCrea PD Heasman J Wylie C 《Development (Cambridge, England)》2007,134(14):2651-2661
During embryonic development, each cell of a multicellular organ rudiment polymerizes its cytoskeletal elements in an amount and pattern that gives the whole cellular population its characteristic shape and mechanical properties. How does each cell know how to do this? We have used the Xenopus blastula as a model system to study this problem. Previous work has shown that the cortical actin network is required to maintain shape and rigidity of the whole embryo, and its assembly is coordinated throughout the embryo by signaling through G-protein-coupled receptors. In this paper, we show that the cortical actin network colocalizes with foci of cadherin expressed on the cell surface. We then show that cell-surface cadherin expression is both necessary and sufficient for cortical actin assembly and requires the associated catenin p120 for this function. Finally, we show that the previously identified G-protein-coupled receptors control cortical actin assembly by controlling the amount of cadherin expressed on the cell surface. This identifies a novel mechanism for control of cortical actin assembly during development that might be shared by many multicellular arrays. 相似文献
13.
14.
15.
Pollet N Muncke N Verbeek B Li Y Fenger U Delius H Niehrs C 《Mechanisms of development》2005,122(3):365-439
We have carried out a large-scale, semi-automated whole-mount in situ hybridization screen of 8369 cDNA clones in Xenopus laevis embryos. We confirm that differential gene expression is prevalent during embryogenesis since 24% of the clones are expressed non-ubiquitously and 8% are organ or cell type specific marker genes. Sequence analysis and clustering yielded 723 unique genes displaying a differential expression pattern. Of these, 18% were already described in Xenopus, 47% have homologs and 35% are lacking significant sequence similarity in databases. Many of them encode known developmental regulators. We classified 363 of the 723 genes for which a Gene Ontology annotation for molecular function could be attributed and found 'DNA binding' and 'enzyme' the most represented terms. The most common protein domains encoded in these embryonic, differentially expressed genes are the homeobox and RNA Recognition Motif (RRM). Fifty-nine putative orthologs of human disease genes, and 254 organ or cell specific marker genes were identified. Markers were found for nasal placode and archenteron roof, organs for which a specific marker was previously unavailable. Markers were also found for novel subdomains of various other organs. The tissues for which most markers were found are muscle and epidermis. Expression of cell cycle regulators fell in two classes, containing proliferation-promoting and anti-proliferative genes, respectively. We identified 66 new members of the BMP4, chromatin, endoplasmic reticulum, and karyopherin synexpression groups, thus providing a first glimpse of their probable cellular roles. Cluster analysis of tissues to measure tissue relatedness yielded some unorthodox affinities besides expectable lineage relationships. In conclusion, this study represents an atlas of gene expression patterns, which reveals embryonic regionalization, provides novel marker genes, and makes predictions about the functional role of unknown genes. 相似文献
16.
Yamamoto Y Grubisic K Oelgeschläger M 《Differentiation; research in biological diversity》2007,75(3):235-245
The tetraspanin family of four-pass transmembrane proteins has been implicated in fundamental biological processes, including cell adhesion, migration, and proliferation. Tetraspanins interact with various transmembrane proteins, establishing a network of large multimolecular complexes that allows specific lateral secondary interactions. Here we report the identification and functional characterization of Xenopus Tetraspanin-1 (xTspan-1). At gastrula and neurula, xTspan-1 is expressed in the dorsal ectoderm and neural plate, respectively, and in the hatching gland, cement gland, and posterior neural tube at tailbud stages. The expression of xTspan-1 in the early embryo is negatively regulated by bone morphogenetic protein (BMP) and stimulated by Notch signals. Microinjection of xTspan-1 mRNA interfered with gastrulation movements and reduced ectodermal cell adhesion in a cadherin-dependent manner. Morpholino knock-down of endogenous xTspan-1 protein revealed a requirement of xTspan-1 for gastrulation movements and primary neurogenesis. Our data suggest that xTspan-1 could act as a molecular link between BMP signalling and the regulation of cellular interactions that are required for gastrulation movements and neural differentiation in the early Xenopus embryo. 相似文献
17.
18.
19.
20.
Novel gene expression patterns along the proximo-distal axis of the mouse embryo before gastrulation
Stephen Frankenberg Lee Smith Andy Greenfield Magdalena Zernicka-Goetz 《BMC developmental biology》2007,7(1):8