首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Abstract. Entactin is a sulfated glycoprotein of basement membranes and recent data indicate that it may play a major role in extracellular matrix (ECM) assembly and in modulating the activities of the other molecular components. We investigated the time of appearance and subsequent distribution of entactin during the earliest stages of morphogenesis and its involvement in the first major cellular migrations and interactions in the chick embryo. Entactin is first detected in the epiblast and in the hypoblast at the blastula stage. The accumulating ECM displays intense presence of entactin in the space between the epiblast and the hypoblast at late blastula. Entactin is increasingly abundant in the neural plate and in the ECM and also at least transiently in many mesodermal tissues such as the notochord, the developing heart and somites in the early chick embryo. Immuno-gold labeling revealed a punctate pattern of entactin distribution in the ECM during the gastrula, neurula and at later stages and at all levels within the embryo. Because of its early appearance in more than one germ layer, entactin may be important in the formation of most embryonic structures. Entactin is detected at the same developmental time and co-localizes with laminin. Antibodies to entactin do not interfere with triggering of the first major cell movements but perturb directional migration of these cells. It would seem that entactin plays a functional role in the directed migration of cells and does not seem to affect cell adhesion during the period of the first morphogenetic events in the early chick embryo.  相似文献   

5.
Abstract. Entactin is a sulfated glycoprotein of basement membranes and recent data indicate that it may play a major role in extracellular matrix (ECM) assembly and in modulating the activities of the other molecular components. We investigated the time of appearance and subsequent distribution of entactin during the earliest stages of morphogenesis and its involvement in the first major cellular migrations and interactions in the chick embryo. Entactin is first detected in the epiblast and in the hypoblast at the blastula stage. The accumulating ECM displays intense presence of entactin in the space between the epiblast and the hypoblast at late blastula. Entactin is increasingly abundant in the neural plate and in the ECM and also at least transiently in many mesodermal tissues such as the notochord, the developing heart and somites in the early chick embryo. Immunogold labeling revealed a punctate pattern of entactin distribution in the ECM during the gastrula, neurula and at later stages and at all levels within the embryo. Because of its early appearance in more than one germ layer, entactin may be important in the formation of most embryonic structures. Entactin is detected at the same developmental time and co-localizes with laminin. Antibodies to entactin do not interfere with triggering of the first major cell movements but perturb directional migration of these cells. It would seem that entactin plays a functional role in the directed migration of cells and does not seem to affect cell adhesion during the period of the first morphogenetic events in the early chick embryo.  相似文献   

6.
Summary A polyclonal antibody (SP-2) has been produced, which recognizes antigens expressed in epidermal cells of Pleurodeles waltlii embryos. The antigens appear first at the end of gastrulation in the external surface of the embryo and are selectively expressed in ectodermally derived epidermal structures. Ectodermal commitment was investigated using cell cultures and blastocoel graft experiments. The four animal blastomeres of the 8-cell stage as well as the animal cap explants of the early gastrula stage cultured in vitro differentiate into epidermis, and SP-2 antigens are expressed. The expression of SP-2-defined antigens is inhibited both in vivo and in vitro by the inductive interaction of chordomesoderm. Once dissociated, ectodermal cells do not react with SP-2. Conversely, the aggregation of ectodermal cells may restore the expression of SP-2 antigens. Transplantation of animal cap explants or isolated ectodermal cells into the blastocoel of a host embryo at the early gastrula stage shows that only cells integrated into the epidermis express the marker antigens. When vegetal cells were dissociated from donor embryos before the mid-blastula stage and implanted into the blastocoel of host embryos at the early gastrula stage, their progeny were found in all germ layers, cells that were found in the host epidermis were stained with SP-2, whereas those contributing to mesoderm and endoderm were not. Thus the acquisition of cell polarity in epidermal differentiation and the organization of cells into epithelial structures are essential for SP-2-defined antigen expression.  相似文献   

7.
8.
Origin and organization of the zebrafish fate map   总被引:15,自引:0,他引:15  
We have analyzed lineages of cells labeled by intracellular injection of tracer dye during early zebrafish development to learn when cells become allocated to particular fates during development, and how the fate map is organized. The earliest lineage restriction was described previously, and segregates the yolk cell from the blastoderm in the midblastula. After one or two more cell divisions, the lineages of epithelial enveloping layer (EVL) cells become restricted to generate exclusively periderm. Following an additional division in the late blastula, deep layer (DEL) cells generate clones that are restricted to single deep embryonic tissues. The appearance of both the EVL and DEL restrictions could be causally linked to blastoderm morphogenesis during epiboly. A fate map emerges as the DEL cell lineages become restricted in the late blastula. It is similar in organization to that of an amphibian embryo. DEL cells located near the animal pole of the early gastrula give rise to ectodermal fates (including the definitive epidermis). Cells located near the blastoderm margin give rise to mesodermal and endodermal fates. Dorsal cells in the gastrula form dorsal and anterior structures in the embryo, and ventral cells in the gastrula form dorsal, ventral and posterior structures. The exact locations of progenitors of single cell types and of local regions of the embryo cannot be mapped at the stages we examined, because of variable cell rearrangements during gastrulation.  相似文献   

9.
The embryonic ectoderm, or epiblast, is the source of the three primary germ layers that form during gastrulation in the mouse embryo. Previous studies have investigated the fate of epiblast cells in early gastrulation stages using clonal analysis of cell lineage and in late gastrulation stages using transplantation of labeled grafts. In this study, we studied the fate of late gastrulation stage epiblast using a clonal analysis based on a retroviral vector encoding the Escherichia coli lacZ gene. We found that by reducing the volume of viral suspension injected into each embryo, it was possible to achieve single infectious events. Our analysis of 20 embryos singly infected at the late streak stage and 21 at the head fold stage revealed clonal descendants in only a single germ layer in each embryo. These results indicate that allocation of epiblast progenitors to a single germ layer fate has occurred by late gastrulation in mouse embryos. © 1995 Wiley-Liss, Inc.  相似文献   

10.
An organizer population has been identified in the anterior end of the primitive streak of the mid-streak stage embryo, by the expression of Hnf3beta, Gsc(lacZ) and Chrd, and the ability of these cells to induce a second neural axis in the host embryo. This cell population can therefore be regarded as the mid-gastrula organizer and, together with the early-gastrula organizer and the node, constitute the organizer of the mouse embryo at successive stages of development. The profile of genetic activity and the tissue contribution by cells in the organizer change during gastrulation, suggesting that the organizer may be populated by a succession of cell populations with different fates. Fine mapping of the epiblast in the posterior region of the early-streak stage embryo reveals that although the early-gastrula organizer contains cells that give rise to the axial mesoderm, the bulk of the progenitors of the head process and the notochord are localized outside the early gastrula organizer. In the mid-gastrula organizer, early gastrula organizer derived cells that are fated for the prechordal mesoderm are joined by the progenitors of the head process that are recruited from the epiblast previously anterior to the early gastrula organizer. Cells that are fated for the head process move anteriorly from the mid-gastrula organizer in a tight column along the midline of the embryo. Other mid-gastrula organizer cells join the expanding mesodermal layer and colonize the cranial and heart mesoderm. Progenitors of the trunk notochord that are localized in the anterior primitive streak of the mid-streak stage embryo are later incorporated into the node. The gastrula organizer is therefore composed of a constantly changing population of cells that are allocated to different parts of the axial mesoderm.  相似文献   

11.
In order to know when the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) first appears in germ line cells and whether the protein is also present in somatic cells as is vasa protein in Drosophila , the spatio-temporal distribution of the protein in Xenopus embryos was carefully investigated by fluorescent microscopy. Part of the observation was performed by whole-mount immunocytochemistry and immunoblotting. A distinct fluorescence of XVLG1 protein was first recognized in a juxta-nuclear location of germ line cells or presumptive primordial germ cells (pPGC) at stage 12 (late gastrula) and remained associated with the pPGC or primordial germ cells (PGC) throughout the following stages until stage 46 (feeding tadpole). In contrast, weak fluorescence was seen in the animal hemisphere rather than in the vegetal hemisphere of cleaving embryos and in the perinuclear region of somatic cells at stages 10–42 (early gastrula to young tadpole), respectively. Nearly the same pattern as revealed by fluorescence was seen by whole-mount immunocytochemistry, except that a small amount of XVLG1 protein seemed to be present in the germ plasm and pPGC of embryos earlier than stage 12. The presence of the protein in the somatic cells and the PGC was also shown by immunoblotting.  相似文献   

12.
13.
Summary The composition of the surface coat in embryonic cells ofXenopus laevis was examined by agglutination and fluorescent staining with lectins.Cells of early and mid gastrula stages were agglutinated by lectins specific for D-mannose, D-galactose, L-fucose, N-acetyl-D-glucosamine and N-acetyl-D-galactosamine. No differences in agglutinability among ectoderm, mesoderm and endoderm cells were observed with lectins specific for D-mannose, D-galactose and N-acetyl-D-galactosamine, though agglutination of gastrula cells with fluorescent lectins revealed considerable differences in the intensity of lectin binding among cells within an aggregate. These differences in amount of lectin bound were not related to cell size or morphology. Patches of fluorescent material formed on the cells, suggesting that lectin receptors are mobile in the plane of the plasma membrane.In the early cleavage stages intensive lectin binding occurs only at the boundary between preexisting and nascent plasma membranes. The external surface of the embryo has few lectin receptors up to the late gastrula stage. The unpigmented nascent plasma membranes, when exposed to fluorescent lectins, do not assume any fluorescence distinguishable from the background autofluorescence of yolk, in stages up to the mid-blastula. From this stage onwards lectin binding was observed on the membranes of the reverse side of surface layer cells and on the membranes of deep layer cells. During gastrulation there is an accumulation of lectin-binding material on surfaces involved in intercellular contacts.The significance of lectin binding material for morphogenesis is discussed.  相似文献   

14.
Retinoid signalling has been manipulated at different developmental stages to identify a critical period in the gastrula embryo for retinoid-dependent primary neurone formation. The expression of retinoid receptor RARalpha2 in the posterior neuroectoderm of the gastrula embryo is therefore consistent with a role in primary neurogenesis. In addition we show that the expression of neurogenin-1 and XDelta-1, two genes that contribute to the determination of primary neurone cell-fate in the gastrula embryo, respond to retinoid signalling. These results indicate that retinoid signalling is required for an early step in the process of primary neurogenesis. When retinoid signalling is increased, the number of primary neurones increases, but the phenotype is not the same as the neurogenic phenotype that follows the overexpression of a dominant negative form of XDelta-1. Whereas increased retinoid signalling expands the width of primary neurone stripes, dominant negative XDelta-1 increases the density of primary neurones within the stripes. When retinoid signalling is increased and the primary neurone stripes expand, the expression domain of a floorplate marker contracts. Conversely, when retinoid signalling is inhibited, the expression patterns of floorplate markers widen. These results indicate that retinoid signalling acts at an early stage in primary neural development when the fates of different regions of the neuroectoderm are being determined.  相似文献   

15.
The understanding of germ layer formation in vertebrates began with classical experimental embryology. Early in the 20th century, Spemann and Mangold (1924) identified a region of the early embryo capable of inducing an entire embryonic axis. Termed the dorsal organizer, the tissue and the activity have been shown to exist in all vertebrates examined. In mice, for example, the activity resides in a region of the gastrula embryo known as the node. Experiments by the Dutch embryologist Nieuwkoop (1967a, 1967b, 1973, 1977) showed that a signal derived from the vegetal half of the amphibian embryo is responsible for the formation of mesoderm. Nieuwkoop's results allowed the development of in vitro assays that led, in the late 1980s and early 1990s, to the identification of growth factors essential for germ layer formation. Through more recent genetic investigations in mice and zebrafish, we now know that one class of secreted growth factor, called Nodal because of its localized expression in the mouse node, is essential for formation of mesoderm and endoderm and for the morphological rearrangements that occur during gastrulation.  相似文献   

16.
The orientation of the anterior-posterior (A-P) axis was examined in gastrula-stage Hnf3beta, Otx2 and Lim1 null mutant embryos that display defective axis development. In situ hybridization analysis of the expression pattern of genes associated with the posterior germ layer tissues and the primitive streak (T, Wnt3 and Fgf8) and anterior endoderm (Cer1 and Sox17) revealed that the A-P axis of mutant embryos remains aligned with the proximo-distal plane of the gastrula. Further analysis revealed that cells which express Chrd activity are either absent in Hnf3beta mutant embryos or localised in heterotopic sites in Lim1 and Otx2 null mutants. Lim1-expressing cells are present in the Hnf3beta mutant embryo albeit in heterotopic sites. In all three mutants, Gsc-expressing cells are missing from the anterior mesendoderm. These findings suggest that although some cells with organizer activity may be present in the mutant embryo, they are not properly localised and fail to contribute to the axial mesoderm of the head. By contrast, in T/T mutant embryos that display normal head fold development, the expression domains of organizer, primitive streak and anterior endoderm genes are regionalised correctly in the gastrula.  相似文献   

17.
O N Golubeva 《Ontogenez》1986,17(6):648-654
The X. laevis neuroectoderm (NE) at the mid and late gastrula stages is capable to form mesoderm in vitro after its separation from mesoderm. This capacity is inherent in posterior 2/3 of NE underlied by axial mesoderm in the embryo and forming deuterencephalic and trunk regions of the brain in the normal development. The archencephalic 1/3 of NE of the late gastrula, underlied in the embryo by prechordal plate, is capable of differentiation into archencephalic regions of the brain, rather than into mesoderm. For the typical differentiation of archencephalic NE to be realized, it should be surrounded by the outer ectoderm layer. In the absence of the latter, the whole explant develops into retina and brain only. Inside the closed explants, ectomesenchyme and melanophores arise and the eye material is subdivided into retina and pigmented epithelium. The archencephalic NE, dissociated to individual cells and wrapped into epidermis, forms much more ectomesenchyme and melanophores than the usual NE explants.  相似文献   

18.
The gatae gene of Strongylocentrotus purpuratus is orthologous to vertebrate gata-4,5,6 genes. This gene is expressed in the endomesoderm in the blastula and later the gut of the embryo, and is required for normal development. A gatae BAC containing a GFP reporter knocked into exon one of the gene was able to reproduce all aspects of endogenous gatae expression in the embryo. To identify putative gatae cis-regulatory modules we carried out an interspecific sequence conservation analysis with respect to a Lytechinus variegatus gatae BAC, which revealed 25 conserved non-coding sequence patches. These were individually tested in gene transfer experiments, and two modules capable of driving localized reporter expression in the embryo were identified. Module 10 produces early expression in mesoderm and endoderm cells up to the early gastrula stage, while module 24 generates late endodermal expression at gastrula and pluteus stages. Module 10 was then deleted from the gatae BAC by reciprocal recombination, resulting in total loss of reporter expression in the time frame in which it is normally active. Similar deletion of module 24 led to ubiquitous GFP expression in the gastrula and pluteus. These results show that Module 10 is uniquely necessary and sufficient to account for the early phase of gatae expression during endomesoderm specification. In addition, they imply a functional cis-regulatory module exclusion, whereby only a single module can associate with the basal promoter and drive gene expression at any given time.  相似文献   

19.
In the tadpole larvae of the ascidian Halocynthia roretzi, six motor neurons, Moto-A, -B, and -C (a pair of each), are localized proximal to the caudal neural tube and show distinct morphology and innervation patterns. To gain insights into early mechanisms underlying differentiation of individual motor neurons, we have isolated an ascidian homologue of Islet, a LIM type homeobox gene. Earliest expression of Islet was detected in a pair of bilateral blastomeres on the dorsal edge of the late gastrula. At the neurula stage, this expression began to disappear and more posterior cells started to express Islet. Compared to expression of a series of motor neuron genes, it was confirmed that early Islet-positive blastomeres are the common precursors of Moto-A and -B, and late Islet-positive cells in the posterior neural tube are the precursors of Moto-C. Overexpression of Islet induced ectopic expression of motor neuron markers, suggesting that Islet is capable of regulating motor neuron differentiation. Since early expression of Islet colocalizes with that of HrBMPb, the ascidian homologue of BMP2/4, we tested a role of BMP in specification of the motor neuron fate. Overexpression of HrBMPb led to expansion of Lim and Islet expression toward the central area of the neural plate, and microinjection of mRNA coding for a dominant-negative BMP receptor weakened the expression of these genes. Our results suggest that determination of the ascidian motor neuron fate takes place at late gastrula stage and local BMP signaling may play a role in this step.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号