首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The vertical stratification of lepidopteran and coleopteran communities in a cool-temperate deciduous forest in Japan was examined to evaluate the hypothesis of an expected uniform distribution of mobile flying insects between the canopy and understory of temperate forests. Lepidopteran and coleopteran insects were trapped using light traps at three sites in each of the canopy and understory for three consecutive nights each month from April to October 2001. For Lepidoptera, species richness, abundance, and family richness were significantly higher in the understory than in the canopy. For Coleoptera, only abundance was larger in the canopy relative to the understory; species and family richness did not differ between the strata. The beta diversity of the lepidopteran community was larger between the strata than among sites, but the coleopteran community showed an inverse pattern. These results imply the presence of vertical stratification within the lepidopteran community, but not within the coleopteran community, in the temperate forest. The understory contributes more than the canopy to lepidopteran diversity in the temperate forest, although this stratification may be relatively weak because, in contrast to the situation in tropical forests, the canopy and understory assemblages share many species.  相似文献   

2.
Abstract.  1. The enormous diversity of phytophagous insects in forest canopies is hypothesised to be supported by the number of herbivorous species per host tree species or host specificity. It is therefore necessary to examine the effect of host plant species on compositional changes in the herbivore communities.
2. The lepidopteran larval communities were examined in the canopies of 10 tree species in a temperate deciduous forest of Japan. The phylogeny and leaf flush phenology of host plant species were taken into account as factors affecting the herbivore community assembly.
3. Examination of seasonal changes in the larval community structures on each tree species showed that larval species richness, abundance, and evenness decreased significantly from spring to summer. Larval species richness and abundance were characterised by family-level phylogenetic differences among tree species, whereas evenness was determined at a higher taxonomic level.
4. Compositional changes in the larval communities among tree species showed a remarkable pattern, with a phylogenetic effect at a high taxonomic level in spring, similar to evenness, but a phenological effect in summer. This suggests that host specificity could support the lepidopteran larval diversity in spring.
5. These results suggest that the differences in host utilisation of the herbivore, which reflects the phylogenetic effect of the host plants, can be important as a factor affecting the diversity of lepidopteran larval communities in temperate forests.  相似文献   

3.
Aim  We aim to assess the impact of forest fragmentation on lepidopteran larval community and study the associations of microclimate and tree community with lepidopteran assemblage.
Location  Kibale National Park, Uganda.
Methods  We investigated the effects of forest fragmentation on leaf herbivory, density of lepidopteran caterpillars, species richness and diversity as well as the composition of herbivorous lepidopteran larval community. Microclimate, size of the fragment, distance to the continuous forest, and tree diversity were studied as possible explanatory factors. We sampled 10 Neoboutonia macrocalyx Pax. (Euphorbiaceae) trees in each fragment during dry and rainy season, total of four times, in a year to cover the seasonal variation.
Results  The rates of herbivory, total larval density and species richness were significantly lower in the forest fragments than in the continuous forest but species diversity expressed as Fisher's alpha did not differ. The dominance structure and community composition of the larval communities in the fragments was different from that of the continuous forest. None of the differences we observed were related to the fragment area or distance to the continuous forest. Instead, we found an indication of association between the herbivore and the tree communities. The fragments had significantly lower humidity during most of the day and higher temperature during the afternoons (14–17 h), which might partially explain the differences in lepidopteran larval communities.
Main conclusions  Decreased larval density and species richness as well as differences in the community composition and structure all highlight the importance of large continuous forest areas for maintaining larval biodiversity.  相似文献   

4.
The specialization of herbivores among tree species is poorly understood despite its fundamental importance as a factor regulating diversity. To examine the effect of tree species on larval community structure, the larval communities in 10 temperate deciduous tree species that differed in leaf emergence pattern (flush- vs. intermediate-type) were seasonally surveyed. The newly developed soft, nitrogen-rich leaves of all species became tough and nitrogen-poor as the season progressed. Following the changes in leaf quality, two distinct seasonal lepidopteran larval communities emerged, with a marked turnover in early July. The beta diversity, or dissimilarity, of species composition in the larval communities among tree species was higher in summer than in spring. These results imply that the lepidopteran larval communities as a whole were supported by alpha diversity in spring and by beta diversity in summer, demonstrating that the plant diversity of this forest could support a caterpillar community. We examined the importance of spatio-temporal variations in leaf quality within and among tree species in promoting herbivore diversity, although other factors, such as tree species phylogeny and predators, may also have a large effect on lepidopteran larval communities.  相似文献   

5.
Abstract.  1. A seasonally replicated experimental design was used to address the question of how differences within and among host tree species affect arboreal caterpillar communities.
2. Seasonal variation influenced caterpillar community composition most significantly, and the similarity among caterpillar assemblages did not necessarily follow the pattern of phylogenetic relatedness among host trees.
3. Species richness and abundance of caterpillars were higher on oaks and maples than on American beech. Diversity partitioning models revealed that β diversity was only occasionally greater or less than expected by chance alone.
4. When β diversity was significant, values tended to be greater than expected by chance among replicate trees within each species and lower than expected by chance among the four tree species.
5. Differences among trees appeared important for determining patterns of species presence/absence for rare species and influencing patterns of species dominance within caterpillar assemblages. Differences among tree species had a significant effect on overall lepidopteran community composition and mean species diversity (i.e. α diversity).
6. Because β diversity of caterpillars among host trees was lower than expected by chance, host specificity within the Lepidoptera may be less prevalent than thought previously.  相似文献   

6.
Coleoptera diversity at the family level was investigated along the Kihansi gorge near a 700 m high waterfall system which will be taken to hydropower use, and the current river flow will be diverted due to dam construction. The coleopteran communities of three micro-habitats: spray zone, forest site and riverine site were compared by sweepnetting and pitfall trap methods. The highest Coleopteran family level diversity was found in the spray zone where the Shannon–Weaver index of diversity was 0.71 (forest site 0.31; riverine site 0.50). Coleopterans were most abundant in the forest site where 44% of all sampled individuals were found (spray zone 31%; riverine site 23%). Most of less frequently recorded families were found in the spray zone. Coleoptera families were found to be unequally partitioned in all three micro-habitats. The highest percentage similarity index (85%) was found between forest and riverine sites (spray/forest 76%; spray/riverine 79%). Distributions of abundances of coleopteran families were significantly different between all studied habitats. The study revealed that the spray generated by the waterfall provide a special micro-habitat for Coleoptera. It is suggested that conservation efforts and monitoring in the study area using selected taxonomic indicator Coleopteran groups should be carried out in order to help to adjust mitigation measures.  相似文献   

7.
An international project, DIWPA-IBOY, took place for simultaneously observing biodiversity throughout the Western-Pacific and Asian regions in 2001–2003, as one of the core projects for International Biodiversity Observation Year, a crosscutting network activity of DIVERSITAS (an international programme of biodiversity science). DIWPA-IBOY provides extensive data on species diversity obtained by the standardized method. Under this project, 51,742 individuals of Lepidoptera and 11,633 of Coleoptera were collected by light traps from the Tomakomai Experimental Forest of Hokkaido University, one of the core DIWPA-IBOY sites, in the cool-temperate region of northern Japan. Based on these data, this study examined the relative abundance distribution (RAD) to evaluate the amount of rare species in the Lepidoptera and Coleoptera communities. The beta diversities between sampling seasons, forest strata, and trap sites were also assessed to evaluate the spatio-temporal variability of species composition in these communities. In the analysis of the RAD, the best-fit model was selected from the log-Normal, Zipf–Mandelbrot, and Zipf models differing in the tail length of the RAD, i.e., the proportion of rare species. To explore the beta diversity between samples, the abundance-based Jaccard index with an unseen species estimator was calculated, and then a hierarchical clustering analysis was conducted. As a result of RAD analysis, the Coleoptera community was regarded as containing a larger proportion of rare species than the Lepidoptera community. The seasonal compartmentalization of the community, deduced from the beta-diversity analysis, was finer in Lepidoptera (seven assemblages recognized) than in Coleoptera (three assemblages). The spatial (vertical and horizontal) compartmentalization was negligible in both communities. The coincidence of the larger proportion of rare species and the lower beta diversity between seasons in the Coleoptera community was explained by the longer life spans of beetles compared to moths, based on the assumption that the length of life span acts as a temporal agent for mass effect on the analogy of the migration rate as a spatial agent for mass effect.  相似文献   

8.
Aim  We assessed the rates of turnover of tree species with distance (beta diversity) in wet forests of the Western Ghats (WG) complex of India to see whether climate, topographic variation or species traits influence beta diversity.
Location  The Western Ghats is a chain of mountains about 1600 km in length, running parallel to the western coast of the Indian Peninsula from above 8° N to almost 21° N latitude.
Methods  We used data from 60 small plot inventories concentrated in three regions: the southernmost part of the Western Ghats (SWG) (8°24' to 9°37' N), the Nilgiri Hills (11°12' to 11°14' N), and the central Western Ghats (CWG) (12°32' to 14°51' N). We used Sorensen's index (SI) to estimate the similarity in species composition between two plots and regressed SI against the logarithm of the distance between plots to assess beta diversity. A bootstrapping procedure provided confidence intervals for regression coefficients. To test for the effects of climate, we regressed seasonality differences between plots against SI for low-elevation (< 800 m) plots along the north–south axis, and all plots in the SWG. We assessed the impact of the rainfall gradient in the Kogar region.
Results  Among all three regions, beta diversity was highest along the latitudinal axis, and along the rainfall gradient in the Kogar region. Differences in seasonality between sites were strongly related to beta diversity along the north–south seasonality gradient and within the SWG. Within the three regions, beta diversity was highest in the region with the strongest rainfall gradient and lowest for the topographically heterogeneous SWG. Beta diversity did not differ between forest strata and dispersal modes.
Main conclusions  We conclude that climate, particularly seasonality, is probably the primary driver of beta diversity among rain forest trees of the Western Ghats complex.  相似文献   

9.
Abstract.  1. Lepidoptera larval abundance and diversity in the canopies of oak ( Quercus crispula ) trees and saplings were surveyed in a cool-temperate, deciduous broadleaf forest in northern Japan.
2. In general, newly developed leaves were soft, rich in water and nitrogen, and low in tannin, whereas they became tough, poor in water and nitrogen, and high in tannin as the season proceeded. Leaf quality also varied among forest strata, such variations resulting in seasonal and among-strata differences in the structure of the Lepidoptera larval assemblage.
3. The greater Lepidoptera larval abundance and species richness may related to the higher leaf quality on spring foliage compared with summer foliage. On the other hand, diversity (Shannon's H' ) and evenness (Pielou's J' ) were greater on summer foliage than on spring foliage. Strengthened defences of the host plants against herbivory may cause these differences by filtering the larvae of Lepidoptera species and by constraining the super-dominance of a few species on summer foliage.
4. Canonical Correspondence Analysis (CCA) ordination also revealed a stratified structure of the Lepidoptera larval assemblage in the forest. In both spring and summer, the assemblage composition was more similar between sunlit and shaded canopies than between canopies and saplings. Such assemblage stratification was highly correlated with toughness and tannin content (in spring and summer) or water content (in summer).
5. This study emphasised the importance of spatio-temporal variations in leaf quality, even within the same host plant species, for promoting herbivore diversity in forests.  相似文献   

10.
Insect herbivores were collected from five species of dipterocarp tree seedling within a large‐scale reciprocal transplant experiment in Sabah, Malaysia, on alluvial and sandstone soils in both gap and understory plots. The aim was to determine whether the location and ecological specialization of seedlings influenced the herbivore communities found on and around them. Three major groups of folivores were collected: Coleoptera, Orthoptera, and larval Lepidoptera. Herbivory of all species was confirmed through laboratory trials. Herbivore abundance in the understory plots was extremely low relative to the gaps. Rank‐abundance curves were similar on both soil types, differing only within the Lepidoptera. Coleoptera and Orthoptera communities were numerically dominated by a small suite of species capable of feeding on all dipterocarp species tested, whereas lepidopteran communities had both greater species richness and diversity. When corrected for leaf area surveyed, the abundance of Coleoptera was similar on both soil types, while larval Lepidoptera were more abundant in sandstone plots and Orthoptera were more abundant in alluvial plots. Estimated species richness of all three taxa was greater in alluvial forest, but there were contrasting patterns in Simpson diversity and evenness between groups. Species richness of Lepidoptera was greatest on seedlings when grown in their native soil type, providing partial evidence for possible escape effects, although this was not matched by differences in folivore abundance. The link between herbivore communities and herbivory rates on rain forest tree seedlings is complex and is unlikely to be detected through simplistic measures of abundance, species richness, or diversity.  相似文献   

11.
Beta diversity – the variation in species composition among spatially discrete communities – and sampling grain – the size of samples being compared – may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground‐foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.  相似文献   

12.
Aim   Which community metrics should be used to reflect community response to large-scale habitat alterations is unclear. Here, we assess what and how community changes should be measured to accurately track community responses to large-scale disturbance in space and/or time.
Location   France.
Method   We first developed a simulation model to examine temporal changes in the species composition of large-scale metacommunities. Using this model, we assessed how species richness, Shannon index, trends of particular subset of species or community indices of habitat specialization were influenced by different disturbance scenarios, and whether these indices were biased by imperfect detectability. We further used more than 1000 empirical bird communities from the French Breeding Bird Survey recently exposed to disturbances of various intensities as a case study.
Results   Our simulation and empirical results both demonstrate that species richness and diversity measures can show confusing trends and even provide misleading messages of communities' fate. In contrast, reflecting the composition of the community in terms of habitat specialist and generalist species was more robust and powerful to reflect disturbance effects.
Main conclusions   We highlight the weakness of using community metrics that fail to incorporate ecological difference among species when summarizing community-level trends in disturbed landscapes.  相似文献   

13.
为探讨小兴安岭凉水自然保护区森林生态系统中地表鞘翅目成虫群落对不同人为干扰梯度的响应,于2015年7月、8月和10月分别对轻度干扰[原始阔叶红松林(KY)和谷地云冷杉林(YL)]、中度干扰[阔叶红松择伐林(ZF)和次生白桦林(BH)]及重度干扰[落叶松人工林(RL)和红松人工林(RHS)]的6个林型进行取样调查。结果表明:(1)整个采样周期共捕获地表鞘翅目成虫879只,隶属9科44物种;其中轻度干扰生境共捕获6科29种251只(KY捕获5科21种150只,YL捕获4科20种101只),中度干扰生境捕获6科27种276只(ZF捕获3科20种144只,BH捕获6科23种132只),重度干扰生境捕获6科29种352只(RL捕获4科22种232只,RHS捕获5科17种120只)。(2)7月和8月步甲科和葬甲科占据数量优势,10月步甲科和葬甲科成虫数量明显减少而隐翅虫科数量占优势;不同林型及不同干扰梯度地表鞘翅目成虫物种总数和总个体数于7、8、10月均表现为下降趋势,且群落多样性也呈不同程度下降。(3)林型和月份对地表鞘翅目成虫群落结构具有显著影响,干扰梯度对群落结构无显著影响;6个林型之间地表鞘翅目成虫个体数量具有显著差异,但在物种组成上无显著差异;不同干扰梯度间地表鞘翅目成虫个体数、物种数无显著差异,且随干扰梯度变化没有明显的梯度性规律;相似性系数和聚类分析表明,属于同一干扰梯度的两个林型没有表现出高度的相似性。本研究表明干扰梯度不是决定各林型间地表鞘翅目成虫群落多样性存在差异的主要原因,凉水森林生态系统地表鞘翅目成虫对不同干扰梯度的响应不符合中度干扰假说,林型和时间则是影响地表鞘翅目成虫群落组成的显著因素,本实验为地表生物多样性保护和森林生态系统管理提供数据支撑。  相似文献   

14.
A decline in species number often occurs after forest fragmentation and habitat loss, which usually results in the loss of ecological functions and a reduction in functional diversity in the forest fragments. However, it is uncertain whether these lost ecological functions are consistently maintained throughout continuous forests, and so the importance of these functions in continuous forests remains unknown. Point counts were used to assess both the taxonomic and functional diversity of specialist and generalist birds from sampling in a continuous primary forest compared with forest fragments in order to investigate the responses of these groups to forest fragmentation. We also measured alpha and beta diversity. The responses of specialists and generalists were similar when we assessed all bird species but were different when only passerines were considered. When examining passerines we found lower total taxonomic beta diversity for specialists than for generalists in the continuous forest, while taxonomic beta diversity was higher in the fragmented forest and similar between bird groups. However, total functional beta‐diversity values indicated clearly higher trait regularity in continuous forest for specialists and higher trait regularity in fragments for generalists. Specialists showed significantly higher functional alpha diversity in comparison with generalists in the continuous forest, while both groups showed similar values in fragments. In passerines, species richness and alpha functional diversity of both specialist and generalist were explained by forest connectivity; but, only fragment size explained those parameters for specialist passerines. We suggest that considering subsets of the community with high similarity among species, as passerines, provides a better tool for understanding responses to forest fragmentation. Due to the regularity of specialists in continuous forest, their lost could highly affect functionality in forest fragments.  相似文献   

15.
Abstract.  1. Interspecific competition among parasitoids may play a key role in the community dynamics of tritrophic plant–herbivore–parasitoid systems and has important implications for management of herbivorous insect pests.
2. A model system was used to explore the outcome of interspecific competition between parasitoids that differ in host specificity. The system included the lepidopteran pest Heliothis virescens , the generalist parasitoid Cotesia marginiventris , and two specialist parasitoids, Microplitis croceipes and Cardiochiles nigriceps .
3. The generalist, C. marginiventris , dominated intrinsic competition when given an 8-h developmental head start over C. nigriceps or when its oviposition was simultaneous with that of M. croceipes . Microplitis croceipes and especially C. nigriceps larvae prevailed when they were allowed to oviposit prior to C. marginiventris .
4. Rates of host mortality prior to parasitoid emergence varied with parasitoid species composition and with the order of oviposition.
5. Implications for integrated pest management and the adaptive significance of competition as related to host specialisation are discussed.  相似文献   

16.
Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico   总被引:2,自引:0,他引:2  
1  This study documents patterns of rodent and bat diversity related to abiotic and biotic factors along elevational gradients in the Sierra Mazateca (640–2600 m a.s.l.) and Sierra Mixteca (700–3000 m a.s.l.) in Oaxaca, Mexico.
2  The two transects share similar faunas: 17 and 23 rodent species were captured in the sierras Mazateca and Mixteca, respectively, 14 of which occurred on both transects. Rodent species richness was similar in the wet season and the dry season along both transects. Rodent species richness peaked at 1025–1050 m in tropical semi-deciduous forest on both transects. Endemic species were restricted to high-elevation habitats.
3  Sixteen and 17 bat species were captured in the sierras Mazateca and Mixteca, respectively; 11 occurred on both transects. Bat species richness was higher in the wet season than in the dry season in the Sierra Mazateca. Bat species richness peaked at 1850 m in pine–oak forest in the Sierra Mazateca, and at 750 m and 1050 m in tropical semi-deciduous forest in the Sierra Mixteca, decreasing abruptly at higher elevations on both transects.
4  Patterns of trophic diversity of rodents and bats coincided with those of species richness on each transect. Species richness increased with increasing habitat diversity; increased with increasing rainfall and productivity; increased with increasing resource diversity; and increased in areas with high rates of speciation (rodents only).
5  The need for conservation action in Oaxaca is urgent and proponents should promote establishment of protected areas linking lowland habitats with high species richness to high-elevation habitats harbouring large numbers of endemic forms.  相似文献   

17.
Abstract.  1. The density (rate of encountering foraging raids) and species richness of army ants (Formicidae: Ecitoninae, and behaviourally convergent Ponerinae) was measured in montane tropical forest. Above-ground and subterranean army ant raids were sampled using standard protocols at four sites across an elevational gradient (1200–1650 m above mean sea level) in and near cloud forest in the area of Monteverde, Costa Rica.
2. Mean ambient temperature differed among sites, and decreased with elevation. For the above-ground foraging army ant species, raid rates also declined with elevation. Surface army ant raid rates, however, were not affected by day to day weather variation within sites (temperature, cloud cover, or precipitation).
3. For the underground foraging army ant species, raid rates did not vary directionally with elevation, and subterranean raid rates were not affected by day to day weather variation within sites.
4. Army ant species richness was not directionally related to elevation, and species sharing among sites was generally high.
5. Army ant community structure changes with elevation in Neotropical montane forest, and the results suggest that the strongest effects are of temperature regimes on the density of raids. These findings provide a baseline against which to detect changes in army ant communities that may accompany directional climate change in tropical cloud forests.  相似文献   

18.
Aim Most of the Atlantic Forest in Brazil occurs in fragments of various sizes. Previous studies indicate that forest fragmentation affects fruit‐feeding butterflies. Conservation strategies that seek to preserve organisms that are distributed in high‐fragmented biomes need to understand the spatial distribution of these organisms across the landscape. In view of the importance of understanding the fauna of these forest remnants, the objective of the present work is to investigate the extent to which the diversity of this group varies across spatial scales ranging from within‐forest patches to between landscapes. Location South America, south‐eastern Brazil, São Paulo State. Methods We used bait traps to sample fruit feeding butterflies at 50 points in 10 fragments in two different landscapes during a period of 12 months. Total species richness and Shannon index were partitioned additively in diversity at trap level, and beta diversity was calculated among traps, among forest patches, and between landscapes. We used permutation tests to compare these values to the expected ones under the null hypothesis that beta diversity is only a random sampling effect. Results There was significant beta diversity at the smallest scale examined; however, the significance at higher scales depends on the diversity measurement used. Beta diversity with Shannon index was smaller than expected by chance among fragments, whereas species richness was not. Among landscapes, only beta diversity in richness was higher than expected by chance. Main conclusions The results observed occur because there is great variability in species composition among forest patches in the same landscape, changing this diversity even though the communities are formed from the same pool of species. At the largest scale evaluated (between landscapes), these pattern changes and differences in beta diversity in richness were detectable. This difference is probably caused by the presence of rare species. Thus, a conservation strategy that seeks to preserve as many species as possible per unit of area in high‐fragmented biomes should give priority to protecting fragments in different landscapes, rather than more fragments in the same landscape.  相似文献   

19.
Abstract.  1. Urban brownfields offer an excellent opportunity to study successional processes. Changes in the frequencies of biological traits during succession are of particular interest. They shed light on the general reasons why species emerge and vanish during the course of succession.
2. Leafhopper (Hemiptera: Auchenorrhyncha) occurrence data (3763 species observations) of 194 species were studied. Data was collected on 246 brownfield plots, aged 0–40 years, in two cities in Northern Germany.
3. Four categorical traits were studied: host-plant type, phagy, dormancy, and voltinism. In these traits, two aspects were analysed: (1) changes in trait category frequencies during succession, and (2) distribution of trait categories (i) within the brownfield species pool versus the German species pool and (ii) within species observations.
4. Trait categories showed clear successional trends. Young successional stages were related to feeding on herbs, polyphagy, egg overwintering, and two generations per year.
5. By analysing combinations of two traits, species could be assigned to four functional groups: species associated with young, intermediate and old sites, and one group indifferent to site age. The pioneer group comprised the least number of species, but the highest number of observations.
6. Categories associated with young site age were over-represented in the brownfield species pool. Moreover, within this already biased species pool, species with pioneer trait categories occurred with higher frequency. For the slow colonisers among leafhoppers, brownfields seem to be habitats that are hard to exploit.  相似文献   

20.
Abstract.  1. Bark and ambrosia beetles are crucial for woody biomass decomposition in tropical forests worldwide. Despite that, quantitative data on their host specificity are scarce.
2. Bark and ambrosia beetles (Scolytinae and Platypodinae) were reared from 13 species of tropical trees representing 11 families from all major lineages of dicotyledonous plants. Standardised samples of beetle-infested twigs, branches, trunks, and roots were taken from three individuals of each tree species growing in a lowland tropical rainforest in Papua New Guinea.
3. A total of 81 742 beetles from 74 species were reared, 67 of them identified. Local species richness of bark and ambrosia beetles was estimated at 80–92 species.
4. Ambrosia beetles were broad generalists as 95% of species did not show any preference for a particular host species or clade. Similarity of ambrosia beetle communities from different tree species was not correlated with phylogenetic distances between tree species. Similarity of ambrosia beetle communities from individual conspecific trees was not higher than that from heterospecific trees and different parts of the trees hosted similar ambrosia beetle communities, as only a few species preferred particular tree parts.
5. In contrast, phloeophagous bark beetles showed strict specificity to host plant genus or family. However, this guild was poor in species (12 species) and restricted to only three plant families (Moraceae, Myristicaceae, Sapindaceae).
6. Local diversity of both bark and ambrosia beetles is not driven by the local diversity of trees in tropical forests, since ambrosia beetles display no host specificity and bark beetles are species poor and restricted to a few plant families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号