首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Six subjects rode a bicycle ergometer on three occasions breathing 17, 21, or 60% oxygen. In addition to rest and recovery periods, each subject worked for 10 min at 55% of maximal oxygen uptake (VO2 max) and then to exhaustion at approximately 90% VO2 max. Performance time, inspired and expired gas fractions, ventilation, and arterialized venous oxygen tension (PO2), carbon dioxide tension (PCO2), lactate, and pH were measured. VO2, carbon dioxide output, [H+]a, and [HCO3-]a were calculated. Performance times were longer in hyperoxia than in normoxia or hypoxia. However, VO2 was not different at exhaustion in normoxia compared with hypoxia or hyperoxia. During exercise, hypoxia was associated with increased lactate levels and decreased [H+]a, PCO2, and [HCO3-]a. The opposite trends were generally associated with hyperoxia. At exhaustion, [H+]a was not different under any inspired oxygen fraction. These results support the contention that oxygen is not limiting for exercise of this intensity and duration. The results also suggest that [H+] is a possible limiting factor and that the effect of oxygen on performance is perhaps related to control of [H+].  相似文献   

2.
The purpose of the present study was to investigate whether, in humans, hypoxia results in an elevated lactate production from exercising skeletal muscle. Under conditions of both hypoxia [inspired oxygen fraction (F1O2): 11.10%] and normoxia (F1O2: 20.94%), incremental exercise of a forearm was performed. The exercise intensity was increased every minute by 1.6 kg.m.min-1 until exhaustion. During the incremental exercise the partial pressure of oxygen (PO2) and carbon dioxide (PCO2), oxygen saturation (SO2), pH and lactate concentration [HLa] of five subjects, were measured repeatedly in blood from the brachial artery and deep veins from muscles in the forearm of both the active and inactive sides. The hypoxia (arterial SO2 approximately 70%) resulted in (1) the difference in [HLa] in venous blood from active muscle (values during exercise-resting value) often being more than twice that for normoxia, (2) a significantly greater difference in venous-arterial (v-a) [HLa] for the exercising muscle compared to normoxia, and (3) a difference in v-a [HLa] for non-exercising muscle that was slightly negative during normoxia and more so with hypoxia. These studies suggest that lower O2 availability to the exercising muscle results in increased lactate production.  相似文献   

3.
This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running.  相似文献   

4.
Values of oxygen consumption, carbon dioxide production, ventilation and blood lactate concentration were determined in eight active male subjects during the minute following submaximal square-wave exercise on a treadmill under two sets of conditions. Square-wave exercise was (1) integrated in a series of intermittent incremental exercises of 4-min duration separated by 1-min rest periods; (2) isolated, of 4- and 12-min duration, and of intensity corresponding to each of the intermittent incremental periods of exercise. For square-wave exercise of the same duration (4 min) and intensity, no significant differences in the above-mentioned parameters were noted between intermittent incremental exercise and isolated exercise. Only at high work rate (greater than 92% maximal oxygen uptake), were blood lactate levels in three subjects slightly higher after 12-min of isolated exercise than after the 4-min periods of isolated exercise. Examination of these results suggests that (1) 80-90% of the blood lactate concentration observed under our experimental conditions results from the accumulation of lactate in the blood during the period of oxygen deficit; (2) therefore the blood lactate concentration/exercise intensity relationship, for the most part, appears to represent the lactate accumulated early in the periods of intermittent incremental exercise.  相似文献   

5.
Six trained males [mean maximal O2 uptake (VO2max) = 66 ml X kg-1 X min-1] performed 30 min of cycling (mean = 76.8% VO2max) during normoxia (21.35 +/- 0.16% O2) and hyperoxia (61.34 +/- 1.0% O2). Values for VO2, CO2 output (VCO2), minute ventilation (VE), respiratory exchange ratio (RER), venous lactate, glycerol, free fatty acids, glucose, and alanine were obtained before, during, and after the exercise bout to investigate the possibility that a substrate shift is responsible for the previously observed enhanced performance and decreased RER during exercise with hyperoxia. VO2, free fatty acids, glucose, and alanine values were not significantly different in hyperoxia compared with normoxia. VCO2, RER, VE, and glycerol and lactate levels were all lower during hyperoxia. These results are interpreted to support the possibility of a substrate shift during hyperoxia.  相似文献   

6.
Intermittent hypoxic exposure (IHE) has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7×1 hour at 4500 m). The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude) at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05). There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = −0.72, p<0.05). Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01) and minute ventilation (r = 0.54, p<0.01). Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.  相似文献   

7.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia.  相似文献   

8.
The present study examined the acute effects of hypoxia on the regulation of skeletal muscle metabolism at rest and during 15 min of submaximal exercise. Subjects exercised on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake while breathing 11% O(2) (hypoxia) or room air (normoxia). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to hypoxia. In the 1st min of exercise, glycogenolysis was significantly greater in hypoxia compared with normoxia. This small difference in glycogenolysis was associated with a tendency toward a greater concentration of substrate, free P(i), in hypoxia compared with normoxia. Pyruvate dehydrogenase activity (PDH(a)) was lower in hypoxia at 1 min compared with normoxia, resulting in a reduced rate of pyruvate oxidation and a greater lactate accumulation. During the last 14 min of exercise, glycogenolysis was greater in hypoxia despite a lower mole fraction of phosphorylase a. The greater glycogenolytic rate was maintained posttransformationally through significantly higher free [AMP] and [P(i)]. At the end of exercise, PDH(a) was greater in hypoxia compared with normoxia, contributing to a greater rate of pyruvate oxidation. Because of the higher glycogenolytic rate in hypoxia, the rate of pyruvate production continued to exceed the rate of pyruvate oxidation, resulting in significant lactate accumulation in hypoxia compared with no further lactate accumulation in normoxia. Hence, the elevated lactate production associated with hypoxia at the same absolute workload could in part be explained by the effects of hypoxia on the activities of the rate-limiting enzymes, phosphorylase and PDH, which regulate the rates of pyruvate production and pyruvate oxidation, respectively.  相似文献   

9.
The effect of acute hypoxia on blood concentration of ammonia ([NH3]b) and lactate (la-]b) was studied during incremental exercise(IE), and two-step constant workload exercises (CE). Fourteen endurance-trained subjects performed incremental exercise on a cycle ergometer under normoxic (21% O2) and hypoxic (10.4% O2) conditions. Eight endurance-trained subjects performed two-step constant workload exercise at sea level and at a simulated altitude of 5000 m (hypobaric chamber, P(B)=405 Torr; P(O2)=85 Torr) in random order. In normoxia, the first step lasted 25 minutes at an intensity of 85 % of the individual ventilatory anaerobic threshold (AT(vent), ind) at sea level. This reduced workload was followed by a second step of 5 minutes at 115% of their AT(vent), ind. This test was repeated into a hypobaric chamber, at a simulated altitude of 5,000 m. The first step in hypoxia was at an intensity of 65 % of AT(vent), ind., whereas workload for the second step at simulated altitude was the same as that of the first workload in normoxia (85 % of AT(vent), ind). During IE, [NH3]b and [la-]b were significantly higher in hypoxia than in normoxia. Increases in these metabolites were highly correlated in each condition. The onset of [NH3]b and [la-]b accumulation occurred at different exercise intensity in normoxia (181W for lactate and 222W for ammonia) and hypoxia (100W for lactate and 140W for ammonia). In both conditions, during CE, [NH3]b showed a significant increase during each of the two steps, whereas [la-]b increased to a steady-state in the initial step, followed by a sharp increase above 4 mM x L(-1) during the second. Although exercise intensity was much lower in hypoxia than in normoxia, [NH3]b was always higher at simulated altitude. Thus, for the same workload, [NH3]b in hypoxia was significantly higher (p<0.05) than in normoxia. Our data suggest that there is a close relationship between [NH3]b and [la-]b in normoxia and hypoxia during graded intensity exercises. The accumulation of ammonia in blood is independent of that of lactate during constant intense exercise. Hypoxia increases the concentration of ammonia in blood during exercise.  相似文献   

10.
Greater oxygen availability has been hypothesized to be important in allowing the evolution of larger invertebrates during the Earth’s history, and across aquatic environments. We tested for evolutionary and developmental responses of adult body size of Drosophila melanogaster to hypoxia and hyperoxia. Individually reared flies were smaller in hypoxia, but hyperoxia had no effect. In each of three oxygen treatments (hypoxia, normoxia or hyperoxia) we reared three replicate lines of flies for seven generations, followed by four generations in normoxia. In hypoxia, responses were due primarily to developmental plasticity, as average body size fell in one generation and returned to control values after one to two generations of normoxia. In hyperoxia, flies evolved larger body sizes. Maximal fly mass was reached during the first generation of return from hyperoxia to normoxia. Our results suggest that higher oxygen levels could cause invertebrate species to evolve larger average sizes, rather than simply permitting evolution of giant species.  相似文献   

11.
To evaluate the effect of different levels of arterial oxygen content on hemodynamic parameters during exercise nine subjects performed submaximal bicycle or treadmill exercise and maximal treadmill exercise under three different experimental conditions: 1) breathing room air (control); 2) breathing 50% oxygen (hyperoxia); 3) after rebreathing a carbon monoxide gas mixture (hypoxia). Maximal oxygen consumption (Vo2 max) was significantly higher in hyperoxia (4.99 1/min) and significantly lower in hypoxia (3.80 1/min) than in the control experiment (4.43 1/min). Physical performance changes in parallel with Vo2 max. Maximal cardiac output (Qmax) was similar in hyperoxia as in control but was significantly lower in hypoxia mainly due to a decreased stroke volume. A correlation was found between Vo2 max and transported oxygen, i.e., Cao2 times Amax, thus suggesting that central circulation is an important limiting factor for human maximal aerobic power. During submaximal work HR was decreased in hyperoxia and increased in hypoxia. Corresponding Q values were unchanged except for a reduction during high submaximal exercise in hyperoxia.  相似文献   

12.
We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.  相似文献   

13.
We determined a permissible ratio between carbon dioxide and oxygen concentrations during accidental situations. The experiments (n = 138, 10 h each) on the effect of various concentrations of carbon dioxide and oxygen in the inhaled air were conducted on male volunteers aged 20–40 years subjected to a special medical examination. All experiments were divided into five series: hypercapnia + normoxia, hypercapnia + hyperoxia, hypercapnia + hypoxia, normocapnia + hypoxia, and ambient air (control). The results showed that functional capacities of the body are less impaired under the conditions of hypercapnia combined with hyperoxia. Thus, in accidental situations associated with rapid accumulation of carbon dioxide in the atmosphere of airtight chambers, a synchronous increase in pO2 to 220–230 torr can provide for the highest work capacity.  相似文献   

14.
Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.  相似文献   

15.
We hypothesized that the ventilatory threshold and sensitivity to carbon dioxide in the presence of hypoxia and hyperoxia during wakefulness would be increased following testosterone administration in premenopausal women. Additionally, we hypothesized that the sensitivity to carbon dioxide increases following episodic hypoxia and that this increase is enhanced after testosterone administration. Eleven women completed four modified carbon dioxide rebreathing trials before and after episodic hypoxia. Two rebreathing trials before and after episodic hypoxia were completed with oxygen levels sustained at 150 Torr, the remaining trials were repeated while oxygen was maintained at 50 Torr. The protocol was completed following 8-10 days of treatment with testosterone or placebo skin patches. Resting minute ventilation was greater following treatment with testosterone compared with placebo (testosterone 11.38 +/- 0.43 vs. placebo 10.07 +/- 0.36 l/min; P < 0.01). This increase was accompanied by an increase in the ventilatory sensitivity to carbon dioxide in the presence of sustained hyperoxia (VSco(2)(hyperoxia)) compared with placebo (3.6 +/- 0.5 vs. 2.9 +/- 0.3; P < 0.03). No change in the ventilatory sensitivity to carbon dioxide in the presence of sustained hypoxia (VSco(2 hypoxia)) following treatment with testosterone was observed. However, the VSco(2 hypoxia) was increased after episodic hypoxia. This increase was similar following treatment with placebo or testosterone patches. We conclude that treatment with testosterone leads to increases in the VSco(2)(hyperoxia), indicative of increased central chemoreflex responsiveness. We also conclude that exposure to episodic hypoxia enhances the VSco(2 hypoxia), but that this enhancement is unaffected by treatment with testosterone.  相似文献   

16.
In Wistar rats exposed during one hour to mixtures of oxygen and carbon dioxide producing hypoxia, hypercapnia, hyperoxia and hypocapnia, and so on, adrenaline contents of the suprarenals is reduced by high concentration of carbon dioxide (30%), with or without hypoxia. Noradrenaline contents is increased by carbon dioxide (15 to 30%). Hypercapnia is more potent than hypoxia as a suprarenal stimulus.  相似文献   

17.
We utilized selective carotid body (CB) perfusion while changing inspired O2 fraction in arterial isocapnia to characterize the non-CB chemoreceptor ventilatory response to changes in arterial PO2 (PaO2) in awake goats and to define the effect of varying levels of CB PO2 on this response. Systemic hyperoxia (PaO2 greater than 400 Torr) significantly increased inspired ventilation (VI) and tidal volume (VT) in goats during CB normoxia, and systemic hypoxia (PaO2 = 29 Torr) significantly increased VI and respiratory frequency in these goats. CB hypoxia (CB PO2 = 34 Torr) in systemic normoxia significantly increased VI, VT, and VT/TI; the ventilatory effects of CB hypoxia were not significantly altered by varying systemic PaO2. We conclude that ventilation is stimulated by systemic hypoxia and hyperoxia in CB normoxia and that this ventilatory response to changes in systemic O2 affects the CB O2 response in an additive manner.  相似文献   

18.
Previous studies have reported respiratory, cardiac and muscle changes at rest in triathletes 24 h after completion of the event. To examine the effects of these changes on metabolic and cardioventilatory variables during exercise, eight male triathletes of mean age 21.1 (SD 2.5) years (range 17-26 years) performed an incremental cycle exercise test (IET) before (pre) and the day after (post) an official classic triathlon (1.5-km swimming, 40-km cycling and 10-km running). The IET was performed using an electromagnetic cycle ergometer. Ventilatory data were collected every minute using a breath-by-breath automated system and included minute ventilation (V(E)), oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio, ventilatory equivalent for oxygen (V(E)/VO2) and for carbon dioxide (V(E)/VCO2), breathing frequency and tidal volume. Heart rate (HR) was monitored using an electrocardiogram. The oxygen pulse was calculated as VO2/HR. Arterialized blood was collected every 2 min throughout IET and the recovery period, and lactate concentration was measured using an enzymatic method. Maximal oxygen uptake (VO2max) was determined using conventional criteria. Ventilatory threshold (VT) was determined using the V-slope method formulated earlier. Cardioventilatory variables were studied during the test, at the point when the subject felt exhausted and during recovery. Results indicated no significant differences (P > 0.05) in VO2max [62.6 (SD 5.9) vs 64.6 (SD 4.8) ml x kg(-1) x min(-1)], VT [2368 (SD 258) vs 2477 (SD 352) ml x min(-1)] and time courses of VO2 between the pre- versus post-triathlon sessions. In contrast, the time courses of HR and blood lactate concentration reached significantly higher values (P < 0.05) in the pre-triathlon session. We concluded that these triathletes when tested 24 h after a classic triathlon displayed their pre-event aerobic exercise capacity, bud did not recover pretriathlon time courses in HR or blood lactate concentration.  相似文献   

19.
Aerobic metabolism (oxygen consumption, VO2, and carbon dioxide production, VCO2) has been measured in newborn rats at 2 days of age during normoxia, 30 min of hyperoxia (100% O2) and an additional 30 min of recovery in normoxia at ambient temperatures of 35 degrees C (thermoneutrality) or 30 degrees C. In normoxia, at 30 degrees C VO2 was higher than at 35 degrees C. With hyperoxia, VO2 increased in all cases, but more so at 30 degrees C (+20%) than at 35 degrees C (+9%). Upon return to normoxia, metabolism readily returned to the prehyperoxic value. The results support the concept that the normoxic metabolic rate of the newborn can be limited by the availability of oxygen. At temperatures below thermoneutrality the higher metabolic needs aggravate the limitation in oxygen availability, and the positive effects of hyperoxia on VO2 are therefore more apparent.  相似文献   

20.
The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号