首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of this study was to determine how increased nutrient availability affects foliage morphology of loblolly pine (Pinus taeda L.) without introducing the confounding influence of light availability. Morphology of fascicles from the terminal leader (radius, length, specific needle area, density, and needles per fascicle) and terminal leader traits (length, foliated length, total leaf area, and total fascicles) were measured for different aged (ranged from 5-year-old to 12-year-old) loblolly pine stands growing on the Piedmont and lower Coastal Plain of Georgia, USA. A factorial combination of annual fertilization and complete interspecific competition control was applied as stand level treatments. Competition control and stand age generally did not affect fascicle morphology. In contrast, annual fertilization significantly increased fascicle length (5%), needles per fascicle (4%), and total leaf area of the terminal (18%), while decreasing specific needle area (4%). Fertilization also increased terminal leader growth (5%) and total number of fascicles (6%). Therefore, loblolly pine foliage morphology does have plasticity to respond to increased nutrient availability. However, the magnitude of these morphological changes is small compared to changes in total canopy leaf area.  相似文献   

2.
Herbivory or artificial foliage removal has been shown to affect gas exchange and canopy water relations. In this study, canopy architecture and water relations in response to progressive defoliation were examined in a stand of 8-year-old loblolly pine (Pinus taeda L.) trees, a shade-intolerant, pioneer species common in the south-eastern USA. Sap flux was measured with constant heat sap flow gauges in order to estimate canopy stomatal conductance (Gs) while foliage in the 6 m high stand was harvested in 1 m increments from the bottom up. Leaf-level stomatal conductance and water potential data were also collected. Profiles of silhouette area ratio and specific leaf area showed no trends with crown height, reflecting an open canopy (leaf area index = 1.55). Therefore, short-term changes in Gs with foliage removal were attributed to hydraulic effects rather than influences of changes in mean microclimate conditions on Gs of remaining foliage. A large increase in Gs was observed during the 6 h pruning period which fully compensated for the reductions in foliage area down to 45%. Canopy stomatal conductance and whole plant liquid phase conductance as calculated from sap flux were both influenced by the rate of growth as indicated by the annual basal area increment.  相似文献   

3.
Declining net primary production (NPP) with forest age is often attributed to a corresponding decline in gross primary production (GPP). We tested two hypotheses explaining the decline of GPP in ageing stands (14–115 years old) of Pinus taeda L.: (1) increasing N limitation limits photosynthetic capacity and thus decreases GPP with increasing age; and (2) hydraulic limitations increasingly induce stomatal closure, reducing GPP with increasing age. We tested these hypotheses using measurements of foliar nitrogen, photosynthesis, sap‐flow and dendroclimatological techniques. Hypothesis (1) was not supported; foliar N retranslocation did not increase and declines were not observed in foliar N, leaf area per tree or photosynthetic capacity. Hypothesis (2) was supported; declines were observed in light‐saturated photosynthesis, leaf‐ and canopy‐level stomatal conductance, concentration of CO2 inside leaf air‐spaces (corroborated by an increase in wood δ13C) and specific leaf area (SLA), while stomatal limitation and the ratio of sapwood area (SA) to leaf area increased. The sensitivity of radial growth to inter‐annual variation in temperature and drought decreased with age, suggesting that tree water use becomes increasingly conservative with age. We conclude that hydraulic limitation increasingly limits the photosynthetic rates of ageing loblolly pine trees, possibly explaining the observed reduction of NPP.  相似文献   

4.
To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines ( Pinus taeda L.) in thinned (512 trees ha -1) and non-thinned treatment plots (2,863 trees ha -1) in central Louisiana. Physiological data were collected in the upper and lower canopy positions on 26 sunny days between July 1996 and June 1997 (one-half of the leaf life span). Mean net photosynthesis was highest (4.3 µmol m -2 s -1) in the spring and closely corresponded with light intensity in the canopy. Photosynthesis in the winter was nearly 3.0 µmol m -2 s -1, indicating that loblolly pine enables substantial carbon fixation all year around in the Gulf Coastal Plain region. Mean transpiration and stomatal conductance were highest in the summer and lowest in the winter. With increased light availability after thinning, needle photosynthesis, transpiration and stomatal conductance rose 84, 40 and 23%, respectively, in the lower canopy of the thinned-treatment trees. Light-saturated photosynthetic capacity of the lower canopy needles was 5.2 µmol m -2 s -1 for the thinned treatment and 4.2 µmol m -2 s -1 for the non-thinned treatment. It is concluded that thinning-induced light penetration through the canopy enhances physiological activities in the lower canopy foliage of residual trees, and that light availability is the only significant variable for predicting needle-level photosynthesis rates.  相似文献   

5.
 Foliage and wood parameters of branches of 12-year-old loblolly pine (Pinus taeda L.) trees were characterized after 21 months of exposure to fertilizer, irrigation and elevated CO2 treatments. Branches of loblolly pine trees were enclosed in plastic chambers and exposed to ambient, ambient +175 and ambient +350 umol mol–1 CO2 concentrations. Measurements of foliage and wood at the fascicle, flush and branch levels were made at the end of the 21 month study period. The +350 CO2 treatment did not significantly increase fascicle radius or length but did increase the number of fascicles on the first flush. Fertilization significantly increased fascicle radius and length, while irrigation significantly increased number of fascicles and flush length of first flush. The +350 CO2 treatment also significantly increased flush length of the first flush. Significant interaction of fertilization and irrigation with CO2 was observed for fascicle length. Significant interactions of fertilization and irrigation were also observed for flush length, number of fascicles and fascicle length. Observed increases in fascicle radius, fascicle length, number of fascicles and flush length may have been responsible for the significantly higher flush leaf area observed for the all three treatments. Also, a combination of fertilization and irrigation increased leaf area by 82% compared to that in the control when averaged across CO2 treatments. At the branch level +350 CO2 treatment significantly increased shoot length but not the number of flushes on the branch. In general with the exception of bark density and total number of needle scales, neither fertilization nor irrigation had any significant effect on other branch level parameters. Results from this study indicate that with ‘global change’ an increase in CO2 alone may increase leaf area via an increase in flush length and number of fascicles. Combining increases in CO2 with fertilization and irrigation could greatly enhance leaf area which when coupled to observed increases in net photosynthesis as a result of elevated CO2 could greatly increase productivity of loblolly pine trees. Received: 22 August 1996 / Accepted: 5 March 1997  相似文献   

6.
Our objective was to assess the photosynthetic responses of loblolly pine trees (Pinus taeda L.) during the first full growth season (1997) at the Brookhaven National Lab/Duke University Free Air CO2 Enrichment (FACE) experiment. Gas exchange, fluorescence characteristics, and leaf biochemistry of ambient CO2 (control) needles and ambient + 20 Pa CO2 (elevated) needles were examined five times during the year. The enhancement of photosynthesis by elevated CO2 in mature loblolly pine trees varied across the season and was influenced by abiotic and biotic factors. Photosynthetic enhancement by elevated CO2 was strongly correlated with leaf temperature. The magnitude of photosynthetic enhancement was zero in March but was as great as 52% later in the season. In March, reduced sink demand and lower temperatures resulted in lower net photosynthesis, lower carboxylation rates and higher excess energy dissipation from the elevated CO2 needles than from control needles. The greatest photosynthetic enhancement by CO2 enrichment was observed in July during a period of high temperature and low precipitation, and in September during recovery from this period of low precipitation. In July, loblolly pine trees in the control rings exhibited lower net photosynthetic rates, lower maximum rates of photosynthesis at saturating CO2 and light, lower values of carboxylation and electron transport rates (modelled from A–Ci curves), lower total Rubisco activity, and lower photochemical quenching of fluorescence in comparison to other measurement periods. During this period of low precipitation trees in the elevated CO2 rings exhibited reduced net photosynthesis and photochemical quenching of fluorescence, but there was little effect on light- and CO2-saturated rates of photosynthesis, modelled rates of carboxylation or electron transport, or Rubisco activity. These first-year data will be used to compare with similar measurements from subsequent years of the FACE experiment in order to determine whether photosynthetic acclimation to CO2 occurs in these canopy loblolly pine trees growing in a forest ecosystem.  相似文献   

7.
Loblolly pine (Pinus taeda L.) exhibits genetic resistance to fusiform rust disease (incited by the biotrophic fungus, Cronartium quercuum f. sp. fusiforme) and pitch canker disease (incited by the necrotrophic fungus, Fusarium circinatum). In this study, a total of 14,015 loblolly pine cuttings from 1,065 clones were screened in controlled greenhouse conditions to identify phenotypes of clones, families, and parents that guide a genetic dissection of disease traits associated with pitch canker and fusiform rust. A total of 23,373 phenotypic data points were collected for lesion length (pitch canker) and gall score, gall length, and gall width (fusiform rust). We verified heritable fusiform rust and pitch canker traits and calculated parental, clonal, and full-sib family rankings for both diseases. Genetic correlations revealed that traits associated with fusiform rust are genetically distinct from one another, and that the genetic mechanisms underlying pitch canker and fusiform rust resistance are independent. The disease phenotyping described here is a critical step towards identifying specific loci and alleles associated with fusiform rust and pitch canker resistance.  相似文献   

8.
Patterns in branch permeability with crown depth and permeability at the top of the main stem were analyzed for loblolly pine (Pinus taeda L.) trees from families selected on the basis of growth rate (fast, slow) and crown size (large, small). Analysis of variance with levels of crown size nested within levels of growth rate was used to test for differences in main stem permeability. Permeability at the top of the stem averaged 2.0×10–12 m2. There were no significant differences in permeability between families selected for fast and slow growth, but permeability was significantly lower for families selected for large crowns than for families selected for small crowns. Branch permeability averaged 0.74×10–12 m2 and decreased significantly with crown depth. Large-crown families had higher overall branch permeability than small-crown families. Average permeability in branches did not differ significantly between fast- and slow-growing families. Large crown-families had significantly larger current leaf area: total leaf area ratios in the lower two-thirds of the crown, and a weak but significant association was found between permeability and current leaf area: total leaf area ratios for a given relative crown depth. Our results suggest that ecotypic and adaptive processes simultaneously affect the overall patterns of stem and branch permeability in loblolly pine families.  相似文献   

9.
Fertilization commonly increases biomass production in loblolly pine (Pinus taeda L.). However, the sequence of short‐term physiological adjustments allowing for the establishment of leaf area and enhanced growth is not well understood. The effects of fertilization on photosynthetic parameters, root respiration, and growth for over 200 d following the application of diammonium phosphate were intensively investigated in an effort to establish a relative sequence of events associated with improved growth. Root respiration, foliar nitrogen concentration [N]f, and light‐saturated net photosynthesis (Asat) temporarily increased following fertilization. Asat was correlated positively with [N]f when non‐fertilized and fertilized treatments were pooled (R2 = 0.47). Increased photosynthetic capacity following fertilization was due to both improved photochemical efficiency and capacity and enhanced carboxylation capacity of Rubisco. Positive effects of fertilization on growth were observed shortly after Asat increased. Fertilized seedlings had 36.5% more leaf area and 36.5% greater total dry weight biomass at 211 d following fertilization. It is concluded that fertilization temporarily increased photosynthetic capacity, which resulted in a pool of photo‐assimilate used to build leaf area. The N from fertilizer initially invested in photosynthetic structures and enzymes probably re‐translocated to newly developing foliage, explaining the reduction in [N]f and Asat that was observed after peak levels were achieved following fertilization.  相似文献   

10.
In the USA, forest genetics research began over 100 years ago and loblolly pine breeding programs were established in the 1950s. However, the genetics underlying complex traits of loblolly pine remains to be discovered. To address this, adaptive and growth traits were measured and analyzed in a clonally tested loblolly pine (Pinus taeda L.) population. Over 2.8 million single nucleotide polymorphism (SNP) markers detected from exome sequencing were used to test for single-locus associations, SNP-SNP interactions, and correlation of individual heterozygosity with phenotypic traits. A total of 36 SNP-trait associations were found for specific leaf area (5 SNPs), branch angle (2), crown width (3), stem diameter (4), total height (9), carbon isotope discrimination (4), nitrogen concentration (2), and pitch canker resistance traits (7). Eleven SNP-SNP interactions were found to be associated with branch angle (1 SNP-SNP interaction), crown width (2), total height (2), carbon isotope discrimination (2), nitrogen concentration (1), and pitch canker resistance (3). Non-additive effects imposed by dominance and epistasis account for a large fraction of the genetic variance for the quantitative traits. Genes that contain the identified SNPs have a wide spectrum of functions. Individual heterozygosity positively correlated with water use efficiency and nitrogen concentration. In conclusion, multiple effects identified in this study influence the performance of loblolly pines, provide resources for understanding the genetic control of complex traits, and have potential value for assisting breeding through marker-assisted selection and genomic selection.  相似文献   

11.
A single test, including one pseudo-backcross (Pinus elliottii x Pinus taeda) x P. elliottii and open-pollinated families of the pure species progenitors, was established in North Central Florida in December 2007 to study the transfer of the fast-growing characteristics from a P. taeda L. (loblolly pine) parent into the P. elliottii Engelm. (slash pine) background. Several traits were measured in the first growing season: height growth, phenology, tip moth incidence, stem traits, crown architectural and needle traits. Heterosis was evaluated for each trait using analyses of variance by fitting a linear mixed model. All traits were significantly (p value < 0.05) different among families while the significance for heterosis varied by trait. Positive heterosis was found for average rate of shoot elongation (ASRE), total growth (TG), total height and number of needles per fascicle while the opposite was true for base diameter, top diameter, fascicle length, fascicle diameter, crown projected area and phenological traits (cessation, duration and day to reach 50% of the height). Average performance (i.e., no heterosis) was found for initiation of growth, number of branches, number of nodes, tip moth incidence, sheath length and specific leaf area. The analyses indicated that introgression of loblolly pine alleles into slash pine was effective and novel trait combinations were achieved. The pseudo-backcross had larger variation in early height growth than the slash pine families and was taller than all open-pollinated families at the end of the first season. Tip moth incidence was much lower than the loblolly pine family.  相似文献   

12.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

13.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

14.
 The use of stem sap flow data to estimate diurnal whole-tree transpiration and canopy stomatal conductance depends critically upon knowledge of the time lag between transpiration and water flux through the stem. In this study, the time constant for water movement in stems of 12-year-old Pinus taeda L. individuals was estimated from analysis of time series data of stem water flux and canopy transpiration computed from mean daytime canopy conductance, and diurnal vapor pressure deficit and solar radiation measurements. Water uptake through stems was measured using a constant-heat sapflow probe. Canopy transpiration was correlated to stem uptake using a resistance-capacitance equation that incorporates a time constant parameter. A least-squares auto-regression determined the parameters of the resistance-capacitance equation. The time constants for ten loblolly pine trees averaged 48.0 (SE = 2.0) min and the time lag for the diurnal frequency averaged 47.0 (SE = 2.0) min. A direct-cross correlation analysis between canopy transpiration and sap flow time series showed maximum correlation at an approximately 30 min lag. Residuals (model-predicted minus actual stem flow data) increased with increasing soil moisture depletion. While the time constants did not vary significantly within the range of tree sizes studied, hydraulic resistance and capacitance terms were individually dependent on stem cross-sectional area: capacitance increased and resistance decreased with stem volume. This result may indicate an inverse adjustment of resistance and capacitance to maintain a similar time constant over the range of tree sizes studied.  相似文献   

15.
Leaf area, crown projection area and growth over the last 5 years were measured to assess growth efficiency (GE) and crown efficiency (CE) of dominant (D), codominant (CD) and suppressed (SP) trees growing in height-repressed (P sites) and normally developing (M sites) lodgepole pine stands. Leaf area index (LAI), hydraulic characteristics, and needle nutrient concentrations were also measured. Volume growth of P site trees between 1994 and 1999 was 46% that of M site trees. Volume growth was closely associated with both hydraulic supply capacity (Q*) and leaf area. Height repression was not associated with lower GE, but P site trees had CE that was 24.5% lower than M site trees. Average GE of D and CD trees was 28% lower than that of SP trees, while mean CE for the D trees was 46% greater than that of CD, and 80% greater than for SP trees. Between M and P sites, canopy LAI and Q* per unit leaf area did not differ. Needle nitrogen (N) concentrations of M site trees were 7.6% greater than for P site trees. SP tree needles had the highest concentration of N and phosphorus. The nutrient advantage enjoyed by SP trees presumably allowed them to maintain higher GE for a given Q*/Al. The fastest growing trees were the large D and CD trees from M sites. As LAI did not differ between sites, height repression on P sites may be a result of total leaf area being distributed among too many small trees.  相似文献   

16.
Peroxidase activity of desiccation-tolerant loblolly pine somatic embryos   总被引:1,自引:0,他引:1  
Summary Desiccation tolerance can be induced by culturing somatic embryos of loblolly pine (Pinus taeda L.) on medium supplemented with 50 μM abscisic acid (ABA) and/or 8.5% polyethylene glycol (PEG6000). Scanning electron microscopy of desiccated somatic embryos showed that the size and external morphology of the desiccation-tolerant somatic embryos recovered to the pre-desiccation state within 24–36 h, whereas the non-desiccation-tolerant somatic embryos did not recover and remained shriveled, after rehydration. Peroxidase activity of desiccated somatic embryos increased sharply after 1 d of desiccation treatment at 87% relative humidity (RH), and desiccation-tolerant somatic embryos had higher peroxidase activity compared to sensitive somatic embryos. Higher peroxidase activity of desiccation-tolerant somatic embryos may have allowed them to catalyze the reduction of H2O2 produced by drought stress, and protected them from oxidative damage.  相似文献   

17.
A loblolly pine (Pinus taeda L.) cDNA with properties of a nonspecific lipid transfer protein (nsltp) is reported. In contrast to simple family structures reported for a variety of angiosperm nsltp genes, the putative pine nsltp gene is a member of a complex family.  相似文献   

18.
Summary Shade treatments were applied to the terminal portions of branches in loblolly pine trees to test whether portions of branches were autonomous with respect to carbohydrates. The shade treatments reduced light by 50% and 72% compared with full sun conditions resulting in significant reductions in net photosynthesis. Branch growth (branch diameter and length, branch and needle biomass) decreased significantly within the shaded portion of the branch. Branch and needle morphology were also affected by shading. Lateral branches subtending terminal shoots were labelled with 14C 2 times during the growing season. No movement of 14C into the terminal portions of the branch was evident during the first growth flush. However, during the second flush of growth small but statistically significant amounts of 14C were imported into the terminal portion of the shaded branches from subtending laterals. It was concluded that loblolly pine shoots were usually autonomous with respect to carbohydrate supply, but that carbohydrate movement into the terminal shoot from subtending foliage could occur under conditions of very high stress.  相似文献   

19.
We grew loblolly and ponderosa pine seedlings in a factorial experiment with two CO2 partial pressures (35 and 70 Pa), and two nitrogen treatments (1.0 and 3.5 mol m?3 NH4+), for one growing season to examine the effects of carbon and nitrogen availability on leaf construction cost. Growth in elevated CO2 reduced leaf nitrogen concentrations by 17 to 40%, and increased C:N by 22 to 68%. Elevated N availability increased leaf N concentrations and decreased C:N. Non-structural carbohydrates increased in high-CO2-grown loblolly seedlings, except in fascicles from low N, and in ponderosa primary and fascicle leaves grown in high N. In loblolly, increases in starch were nearly 2-fold greater than the increases in soluble sugars. In ponderosa, only the soluble sugars were affected by CO2. Leaf construction cost (g glucose g?1 dm) varied by 9.3% across all treatments. All of the variation in loblolly leaf construction cost could be explained by changes in non-structural carbohydrates. A model of the response of construction cost to changes in the mass of different biochemical fractions suggests that the remainder of the variation in ponderosa, not explained by non-structural carbohydrates, is probably attributable to changes in lignin, phenolic or protein concentrations.  相似文献   

20.
Loblolly pine (Pinus taeda L.) seedlings were grown in sand culture and exposed to solution Al concentrations of 0, 5, 10, 20, 40, and 80 mg.l−1 in two separate studies. Root regeneration potential (RRP) of loblolly pine was found to be very sensitive to Al. Both the total number and total length of new white roots produced during a 24-day period declined with as little as 5 mg Al.l−1 in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号