首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The centrosome is the major microtubule-organizing center in animal cells. Although the cytoplasmic dynein regulator Nudel interacts with centrosomes, its role herein remains unclear. Here, we show that in Cos7 cells Nudel is a mother centriole protein with rapid turnover independent of dynein activity. During centriole duplication, Nudel targets to the new mother centriole later than ninein but earlier than dynactin. Its centrosome localization requires a C-terminal region that is essential for associations with dynein, dynactin, pericentriolar material (PCM)-1, pericentrin, and gamma-tubulin. Overexpression of a mutant Nudel lacking this region, a treatment previously shown to inactivate dynein, dislocates centrosomal Lis1, dynactin, and PCM-1, with little influence on pericentrin and gamma-tubulin in Cos7 and HeLa cells. Silencing Nudel in HeLa cells markedly decreases centrosomal targeting of all the aforementioned proteins. Silencing Nudel also represses centrosomal MT nucleation and anchoring. Furthermore, Nudel can interact with pericentrin independently of dynein. Our current results suggest that Nudel plays a role in both dynein-mediated centripetal transport of dynactin, Lis1, and PCM-1 as well as in dynein-independent centrosomal targeting of pericentrin and gamma-tubulin. Moreover, Nudel seems to tether dynactin and dynein to the mother centriole for MT anchoring.  相似文献   

2.
The mitotic checkpoint functions to ensure accurate chromosome segregation by regulating the progression from metaphase to anaphase. Once the checkpoint has been satisfied, it is inactivated in order to allow the cell to proceed into anaphase and complete the cell cycle. The minus end-directed microtubule motor dynein/dynactin has been implicated in the silencing of the mitotic checkpoint by "stripping" checkpoint proteins off kinetochores. A recent study suggested that Nordihydroguaiaretic acid (NDGA) stimulates dynein/dynactin-mediated transport of its cargo including ZW10 (Zeste White 10). We analyzed the effects of NDGA on dynein/dynactin dependent transport of the RZZ (Zeste White 10, Roughdeal, Zwilch) complex as well as other kinetochore components from kinetochores to spindle poles. Through this approach we have catalogued several kinetochore and centromere components as dynein/dynactin cargo. These include hZW10, hZwilch, hROD, hSpindly, hMad1, hMad2, hCENP-E, hCdc27, cyclin-B and hMps1. Furthermore, we found that treatment with NDGA induced a robust accumulation and complete stabilization of hZW10 at spindle poles. This finding suggests that NDGA may not induce dynein/dynactin transport but rather interfere with cargo release. Lastly, we determined that NDGA induced accumulation of checkpoint proteins at the poles requires dynein/dynactin-mediated transport, hZW10 kinetochore localization and kinetochore-microtubule attachments but not tension or Aurora B kinase activity.  相似文献   

3.
Mitosin (also named CENP-F) is a large human nuclear protein transiently associated with the outer kinetochore plate in M phase. Using RNA interference and fluorescence microscopy, we showed that mitosin depletion attenuated chromosome congression and led to metaphase arrest with misaligned polar chromosomes whose kinetochores showed few cold-stable microtubules. Kinetochores of fully aligned chromosomes often failed to show orientation in the direction of the spindle long axis. Moreover, tension across their sister kinetochores was decreased by 53% on average. These phenotypes collectively imply defects in motor functions in mitosin-depleted cells and are similar to those of CENP-E depletion. Consistently, the intensities of CENP-E and cytoplasmic dynein and dynactin, which are motors controlling microtubule attachment and chromosome movement, were reduced at the kinetochore in a microtubule-dependent manner. In addition, after being arrested in pseudometaphase for approximately 2 h, mitosin-depleted cells died before anaphase initiation through apoptosis. The dying cells exhibited progressive chromosome arm decondensation, while the centromeres were still associated with spindles. Mitosin is therefore essential for full chromosome alignment, possibly by promoting proper kinetochore attachments through modulating CENP-E and dynein functions. Its depletion also prematurely triggers chromosome decondensation, a process that normally occurs from telophase for the nucleus reassembly, thus resulting in apoptosis.  相似文献   

4.
Axonal transport is critical for neuronal function and survival. Cytoplasmic dynein and its accessory complex dynactin form a microtubule minus end-directed motor in charge of retrograde transport. In this study, we show that Nudel, a dynein regulator, was highly expressed in dorsal root ganglion (DRG) neurons. Microinjection of anti-Nudel antibody into cultured DRG neurons abolished retrograde transport of membranous organelles in the axon and led to dispersions of Golgi cisternae in the soma. As a result, lysosomes, which are normally enriched in the soma, moved persistently into and thus accumulated in axons. Endo-lysosome formation was also markedly delayed. As anterograde motility of mitochondria was not inhibited, the antibody apparently did not abolish retrograde transport by destructing axonal microtubule tracks. Similar results were obtained by microinjecting N-terminal Nudel, anti-dynein antibody or a p150Glued mutant capable of abrogating the dynein–dynactin association. These results indicate a critical role of Nudel in dynein-mediated axonal transport. Moreover, the effects of dynein on endolysosome formation and regional sequestration of lysosomes may contribute to defects in the endocytic pathway seen in neurons of patients or animals with malfunction of dynein.  相似文献   

5.
Li Y  Yu W  Liang Y  Zhu X 《Cell research》2007,17(8):701-712
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetoehores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetoehores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment.  相似文献   

6.
Mutations in the human LIS1 gene cause type I lissencephaly, a severe brain developmental disease involving gross disorganization of cortical neurons. In lower eukaryotes, LIS1 participates in cytoplasmic dynein-mediated nuclear migration. We previously reported that mammalian LIS1 functions in cell division and coimmunoprecipitates with cytoplasmic dynein and dynactin. We also localized LIS1 to the cell cortex and kinetochores of mitotic cells, known sites of dynein action. We now find that the COOH-terminal WD repeat region of LIS1 is sufficient for kinetochore targeting. Overexpression of this domain or full-length LIS1 displaces CLIP-170 from this site without affecting dynein and other kinetochore markers. The NH2-terminal self-association domain of LIS1 displaces endogenous LIS1 from the kinetochore, with no effect on CLIP-170, dynein, and dynactin. Displacement of the latter proteins by dynamitin overexpression, however, removes LIS1, suggesting that LIS1 binds to the kinetochore through the motor protein complexes and may interact with them directly. We find that of 12 distinct dynein and dynactin subunits, the dynein heavy and intermediate chains, as well as dynamitin, interact with the WD repeat region of LIS1 in coexpression/coimmunoprecipitation and two-hybrid assays. Within the heavy chain, interactions are with the first AAA repeat, a site strongly implicated in motor function, and the NH2-terminal cargo-binding region. Together, our data suggest a novel role for LIS1 in mediating CLIP-170-dynein interactions and in coordinating dynein cargo-binding and motor activities.  相似文献   

7.
Yang ZY  Guo J  Li N  Qian M  Wang SN  Zhu XL 《Cell research》2003,13(4):275-283
Mitosin/CENP-F is a human nuclear protein transiently associated with the outer kinetochore plate in M phase and is involved in M phase progression. LEK1 and CMF1, which are its murine and chicken orthologs, however, are implicated in muscle differentiation and reportedly not distributed at kinetochores.We therefore conducted several assays to clarify this issue. The typical centromere staining patterns were observed in mitotic cells from both human primary culture and murine, canine, and mink cell lines. A C-terminal portion of LEK1 also conferred centromere localization. Our analysis further suggests conserved kinetochore localization of mammalian mitosin orthologs. Moreover, mitosin was associated preferentially with kinetochores of unaligned chromosomes. It was also constantly transported from kinetochores to spindle poles by cytoplasmic dynein. These properties resemble those of other kinetochore proteins important for the spindle checkpoint, thus implying a role of mitosin in this checkpoint. Therefore, mitosin family may serve as multifunctional proteins involved in both mitosis and differentiation.  相似文献   

8.
Cytoplasmic dynein has been implicated in diverse mitotic functions, several involving its association with kinetochores. Much of the supporting evidence comes from inhibition of dynein regulatory factors. To obtain direct insight into kinetochore dynein function, we expressed a series of dynein tail fragments, which we find displace motor-containing dynein heavy chain (HC) from kinetochores without affecting other subunits, regulatory factors, or microtubule binding proteins. Cells with bipolar mitotic spindles progress to late prometaphase-metaphase at normal rates. However, the dynein tail, dynactin, Mad1, and BubR1 persist at the aligned kinetochores, which is consistent with a role for dynein in self-removal and spindle assembly checkpoint inactivation. Kinetochore pairs also show evidence of misorientation relative to the spindle equator and abnormal oscillatory behavior. Further, kinetochore microtubule bundles are severely destabilized at reduced temperatures. Dynein HC RNAi and injection of anti-dynein antibody in MG132-arrested metaphase cells produced similar effects. These results identify a novel function for the dynein motor in stable microtubule attachment and maintenance of kinetochore orientation during metaphase chromosome alignment.  相似文献   

9.
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle checkpoint, Mad2, Bub1R, and the 3F3/2 phosphoantigen. Depletion of these components did not disrupt kinetochore outer domain structure or alter metaphase kinetochore microtubule number. Inhibition of dynein/dynactin activity by microinjection in prometaphase with purified p50 "dynamitin" protein or concentrated 70.1 anti-dynein antibody blocked outer domain protein transport to the spindle poles, prevented Mad2 depletion from kinetochores despite normal kinetochore microtubule numbers, reduced metaphase kinetochore tension by 40%, and induced a mitotic block at metaphase. Dynein/dynactin inhibition did not block chromosome congression to the spindle equator in prometaphase, or segregation to the poles in anaphase when the spindle checkpoint was inactivated by microinjection with Mad2 antibodies. Thus, a major function of dynein/dynactin in mitosis is in a kinetochore disassembly pathway that contributes to inactivation of the spindle checkpoint.  相似文献   

10.
CLIP-170 is a microtubule 'plus end tracking' protein involved in several microtubule-dependent processes in interphase. At the onset of mitosis, CLIP-170 localizes to kinetochores, but at metaphase, it is no longer detectable at kinetochores. Although RNA interference (RNAi) experiments have suggested an essential role for CLIP-170 during mitosis, the molecular function of CLIP-170 in mitosis has not yet been revealed. Here, we used a combination of high-resolution microscopy and RNAi-mediated depletion to study the function of CLIP-170 in mitosis. We found that CLIP-170 dynamically localizes to the outer most part of unattached kinetochores and to the ends of growing microtubules. In addition, we provide evidence that a pool of CLIP-170 is transported along kinetochore-microtubules by the dynein/dynactin complex. Interference with CLIP-170 expression results in defective chromosome congression and diminished kinetochore-microtubule attachments, but does not detectibly affect microtubule dynamics or kinetochore-microtubule stability. Taken together, our results indicate that CLIP-170 facilitates the formation of kinetochore-microtubule attachments, possibly through direct capture of microtubules at the kinetochore.  相似文献   

11.
Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.  相似文献   

12.
The ability of kinetochores to recruit microtubules, generate force, and activate the mitotic spindle checkpoint may all depend on microtubule- and/or tension-dependent changes in kinetochore assembly. With the use of quantitative digital imaging and immunofluorescence microscopy of PtK1 tissue cells, we find that the outer domain of the kinetochore, but not the CREST-stained inner core, exhibits three microtubule-dependent assembly states, not directly dependent on tension. First, prometaphase kinetochores with few or no kinetochore microtubules have abundant punctate or oblate fluorescence morphology when stained for outer domain motor proteins CENP-E and cytoplasmic dynein and checkpoint proteins BubR1 and Mad2. Second, microtubule depolymerization induces expansion of the kinetochore outer domain into crescent and ring morphologies around the centromere. This expansion may enhance recruitment of kinetochore microtubules, and occurs with more than a 20- to 100-fold increase in dynein and relatively little change in CENP-E, BubR1, and Mad2 in comparison to prometaphase kinetochores. Crescents disappear and dynein decreases substantially upon microtubule reassembly. Third, when kinetochores acquire their full metaphase complement of kinetochore microtubules, levels of CENP-E, dynein, and BubR1 decrease by three- to sixfold in comparison to unattached prometaphase kinetochores, but remain detectable. In contrast, Mad2 decreases by 100-fold and becomes undetectable, consistent with Mad2 being a key factor for the "wait-anaphase" signal produced by unattached kinetochores. Like previously found for Mad2, the average amounts of CENP-E, dynein, or BubR1 at metaphase kinetochores did not change with the loss of tension induced by taxol stabilization of microtubules.  相似文献   

13.
Lis1 is required for nuclear migration in fungi, cell cycle progression in mammals, and the formation of a folded cerebral cortex in humans. Lis1 binds dynactin and the dynein motor complex, but the role of Lis1 in many dynein/dynactin-dependent processes is not clearly understood. Here we generate and/or characterize mutants for Drosophila Lis1 and a dynactin subunit, Glued, to investigate the role of Lis1/dynactin in mitotic checkpoint function. In addition, we develop an improved time-lapse video microscopy technique that allows live imaging of GFP-Lis1, GFP-Rod checkpoint protein, green fluorescent protein (GFP)-labeled chromosomes, or GFP-labeled mitotic spindle dynamics in neuroblasts within whole larval brain explants. Our mutant analyses show that Lis1/dynactin have at least two independent functions during mitosis: first promoting centrosome separation and bipolar spindle assembly during prophase/prometaphase, and subsequently generating interkinetochore tension and transporting checkpoint proteins off kinetochores during metaphase, thus promoting timely anaphase onset. Furthermore, we show that Lis1/dynactin/dynein physically associate and colocalize on centrosomes, spindle MTs, and kinetochores, and that regulation of Lis1/dynactin kinetochore localization in Drosophila differs from both Caenorhabditis elegans and mammals. We conclude that Lis1/dynactin act together to regulate multiple, independent functions in mitotic cells, including spindle formation and cell cycle checkpoint release.  相似文献   

14.
Emerging evidence supports the idea that a signaling pathway containing orthologs of at least mammalian NudE and Nudel, Lis1, and cytoplasmic dynein is conserved for eukaryotic nuclear migration. In mammals, this pathway has profound impact on neuronal migration during development of the central nervous system. Lis1 and dynein are also involved in other cellular functions, such as mitosis. Here we show that Nudel also participates in a subset of dynein function in M phase. Nudel was specifically phosphorylated in M phase in its serine/threonine phosphorylation motifs, probably by Cdc2 and also Erk1 and -2. A fraction of Nudel bound to centrosomes strongly in interphase and localized to mitotic spindles in early M phase. By using mutants incapable of or simulating phosphorylation, we confirmed that phosphorylation of Nudel regulated the cell-cycle-dependent distribution, possibly by increasing its dissociation rate at the microtubule-organizing center. Moreover, phosphorylated Nudel or the phosphorylation-mimicking mutant bound Lis1 more efficiently. We further demonstrated that a Nudel mutant incapable of binding to Lis1 impaired the poleward movement of dynein and hence the dynein-mediated transport of kinetochore proteins to spindle poles along microtubules, a process contributing to inactivation of the spindle checkpoint in mitosis. These results point to the importance of Nudel-Lis1 interaction for the dynein activity in M phase and to a possible role of Nudel phosphorylation as facilitating such interaction. In addition, comparative studies suggest that NudE is also functionally related to its paralog, Nudel.  相似文献   

15.
Rough Deal (Rod) and Zw10 are components of a complex required for the metazoan metaphase checkpoint and for recruitment of dynein/dynactin to the kinetochore. The Rod complex, like most classical metaphase checkpoint components, forms part of the outer domain of unattached kinetochores. Here we analyze the dynamics of a GFP-Rod chimera in living syncytial Drosophila embryos. Uniquely among checkpoint proteins, GFP-Rod robustly streams from kinetochores along microtubules, from the time of chromosome attachment until anaphase onset. Prometaphase and metaphase kinetochores continuously recruit new Rod, thus feeding the current. Rod flux from kinetochores appears to require biorientation but not tension because it continues in the presence of taxol. As with Mad2, kinetochore- and spindle-associated Rod rapidly turns over with free cytosolic Rod, both during normal mitosis and after colchicine treatment, with a t1/2 of 25-45 s. GFP-Rod coimmunoprecipitates with dynein/dynactin, and in the absence of microtubules both Rod and dynactin accumulate on kinetochores. Nevertheless, Rod and dynein/dynactin behavior are distinguishable. We propose that the Rod complex is a major component of the fibrous corona and that the recruitment of Rod during metaphase is required to replenish kinetochore dynein after checkpoint conditions have been satisfied but before anaphase onset.  相似文献   

16.
NudE and NudEL are related proteins that interact with cytoplasmic dynein and LIS1. Their functional relationship and involvement in LIS1 and dynein regulation are not completely understood. We find that NudE and NudEL each localize to mitotic kinetochores before dynein, dynactin, ZW10, and LIS1 and exhibit additional temporal and spatial differences in distribution from the motor protein. Inhibition of NudE and NudEL caused metaphase arrest with misoriented chromosomes and defective microtubule attachment. Dynein and dynactin were both displaced from kinetochores by the injection of an anti-NudE/NudEL antibody. Dynein but not dynactin interacted with NudE surprisingly through the dynein intermediate and light chains but not the motor domain. Together, these results identify a common function for NudE and NudEL in mitotic progression and identify an alternative mechanism for dynein recruitment to and regulation at kinetochores.  相似文献   

17.
Aurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct. Inhibition of AurB reduced accumulation of dynein at kinetochores substantially; however, this reflected a loss of dynein-associated proteins rather than a defect in dynein phosphorylation. We determined that AurB inhibition affected recruitment of the ROD, ZW10, zwilch (RZZ) complex to kinetochores but not zwint-1 or more-proximal kinetochore proteins. AurB phosphorylated zwint-1 but not ZW10 in vitro, and three novel phosphorylation sites were identified by tandem mass spectrometry analysis. Expression of a triple-Ala zwint-1 mutant blocked kinetochore assembly of RZZ-dependent proteins and induced defects in chromosome movement during prometaphase. Expression of a triple-Glu zwint-1 mutant rendered cells resistant to AurB inhibition during prometaphase. However, cells expressing the triple-Glu mutant failed to satisfy the spindle assembly checkpoint (SAC) at metaphase because poleward streaming of dynein/dynactin/RZZ was inhibited. These studies identify zwint-1 as a novel AurB substrate required for kinetochore assembly and for proper SAC silencing at metaphase.  相似文献   

18.
Cytoplasmic dynein is involved in a wide range of cellular processes, but how it is regulated and how it recognizes an extremely wide range of cargo are incompletely understood. The dynein light intermediate chains, LIC1 and LIC2 (DYNC1LI1 and DYNC1LI2, respectively), have been implicated in cargo binding, but their full range of functions is unknown. Using LIC isoform-specific antibodies, we report the first characterization of their subcellular distribution and identify a specific association with elements of the late endocytic pathway, but not other vesicular compartments. LIC1 and LIC2 RNA interference (RNAi) each specifically disrupts the distribution of lysosomes and late endosomes. Stimulation of dynein-mediated late-endosomal transport by the Rab7-interacting lysosomal protein (RILP) is reversed by LIC1 RNAi, which displaces dynein, but not dynactin, from these structures. Conversely, expression of ΔN-RILP or the dynactin subunit dynamitin each fails to displace dynein, but not dynactin. Thus, using a variety of complementary approaches, our results indicate a novel specific role for the LICs in dynein recruitment to components of the late endocytic pathway.  相似文献   

19.
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein and dynactin at kinetochores, but not polar regions, during mitosis. Like dynein and dynactin, a fraction of the total CLIP-170 pool can be detected on kinetochores of unattached chromosomes but not on those that have become aligned at the metaphase plate. The COOH-terminal domain of CLIP-170, when transiently overexpressed, localizes to kinetochores and causes endogenous full-length CLIP-170 to be lost from the kinetochores, resulting in a delay in prometaphase. Overexpression of the dynactin subunit, dynamitin, strongly reduces the amount of CLIP-170 at kinetochores suggesting that CLIP-170 targeting may involve the dynein/dynactin complex. Thus, CLIP-170 may be a linker for cargo in mitosis as well as interphase. However, dynein and dynactin staining at kinetochores are unaffected by this treatment and further overexpression studies indicate that neither CLIP-170 nor dynein and dynactin are required for the formation of kinetochore fibers. Nevertheless, these results strongly suggest that CLIP-170 contributes in some way to kinetochore function in vivo.Microtubules (MTs)1 in vertebrate somatic cells are involved in intracellular transport and distribution of membranous organelles. Fundamental to this role are their tightly controlled, polarized organization, and unusual dynamic properties (Hirokawa, 1994) and their interaction with a complex set of MT-based motor proteins (Hirokawa, 1996; Sheetz, 1996; Goodson et al., 1997). During mitosis, they contribute to the motility of centrosomes, the construction of spindle poles (Karsenti et al., 1996; Merdes and Cleveland, 1997), and the dynamic movements of kinetochores (Rieder and Salmon, 1994) and chromosome arms (Barton and Goldstein, 1996; Vernos and Karsenti, 1996). The motor protein cytoplasmic dynein, drives the transport toward MT minus-ends of a variety of subcellular organelles (Schnapp and Reese, 1989; Schroer et al., 1989; Holzbaur and Vallee, 1994). Dynactin is a molecular complex originally identified as being essential for dynein-mediated movement of salt-washed vesicles in vitro (reviewed in Schroer, 1996; Schroer and Sheetz, 1991). Genetic studies in fungi, yeast, and flies have shown that the two complexes function together to drive nuclear migration, spindle and nuclear positioning and to permit proper neuronal development (Eshel et al., 1993; Clark and Meyer, 1994; Muhua et al., 1994; Plamann et al., 1994; McGrail et al., 1995; Karsenti et al., 1996). Biochemical studies suggest a direct interaction between certain subunits of dynein and dynactin (Karki and Holzbaur, 1995; Vaughan and Vallee, 1995). In vivo, the two molecules may bind one another transiently, since they have not been isolated as a stable complex.There is good evidence indicating that the dynein/dynactin complex, together with other motors (Eg5, and a minus-end oriented kinesin-related protein) and a structural protein (NuMa), drive the focusing of free microtubule ends into mitotic spindle poles (Merdes and Cleveland, 1997; Waters and Salmon, 1997). A trimolecular complex composed of NuMa and dynein/dynactin may be crucial in this process in both acentriolar (Merdes et al., 1996), and centriolar spindles (Gaglio et al., 1997). A number of findings also indicate that the combined actions of dynein and dynactin at the kinetochore contribute to chromosome alignment in vertebrate somatic cells. First, the initial interaction between polar spindle MTs and kinetochores seems to involve a tangential capture event (Merdes and De Mey, 1990; Rieder and Alexander, 1990) which is followed by a poleward gliding along the surface lattice of the MT (Hayden et al., 1990). Both in vivo and in vitro (Hyman and Mitchison, 1991) this gliding movement appears similar to the dynein-mediated retrograde transport of vesicular organelles along MTs. Consistent with this is the finding that both dynein (Pfarr et al., 1990; Steuer et al., 1990) and its activator, dynactin (Echeverri et al., 1996), are present at prometaphase kinetochores. Overexpression of dynamitin, a 50-kD subunit of the dynactin complex, results in the partial disruption of the dynactin complex and in the loss, from kinetochores, of dynein, as well as dynactin. Therefore, it has been proposed that dynactin mediates the association of dynein with kinetochores. Abnormal spindles with poorly focused poles are observed and the cells become arrested in pseudoprometaphase (Echeverri et al., 1996). Despite these findings, rigorous proof for a role of the dynein motor complex in kinetochore motility is still lacking, and its role may differ between lower and higher eucaryotes, and between mitosis and meiosis.CLIP-170 (Rickard and Kreis, 1996) is needed for in vitro binding of endocytic transport vesicles to MTs (Pierre et al., 1992). It is a nonmotor MT-binding protein that accumulates preferentially in the vicinity of MT plus ends and on early endosomes and endocytic transport vesicles in nondividing cells (Rickard and Kreis, 1990; Pierre et al., 1992). Like many MT-binding proteins, CLIP-170 is a homodimer whose NH2-terminal head domains and COOH-terminal tail domains flank a central α-helical coiled-coil domain. The binding of CLIP-170 to MTs involves a 57–amino acid sequence present twice in the head domain (Pierre et al., 1992) and is regulated by phosphorylation (Rickard and Kreis, 1991). The COOH-terminal domain has been proposed to participate in targeting to endocytic membranes (Pierre et al., 1994). The fact that the latter move predominantly toward microtubule minus ends in a process most likely mediated by cytoplasmic dynein and dynactin (Aniento and Gruenberg, 1995), suggests that CLIP-170 may act in concert with this motor complex, and may be subject to regulated interactions with one or more dynactin or dynein subunits at the vesicle membrane.Here we report that during mitosis, CLIP-170 codistributes with dynein and dynactin at kinetochores, but not spindle poles. Evidence is presented that the COOH-terminal domain of CLIP-170 is responsible for its kinetochore targeting, and that this may be mediated by the complex of dynein and dynactin. The effects on mitotic progression of overexpression of wild type and several deletion mutants of CLIP-170 provide evidence for the involvement of CLIP-170 in kinetochore function early in mitosis. We also present in vivo evidence that neither CLIP-170 nor the complex of dynein and dynactin are required for formation of kinetochore fibers.  相似文献   

20.
Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号