首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hypoxia exposure and subsequent normoxic recovery on the levels of lipid peroxides (LOOH), thiobarbituric acid reactive substances (TBARS), carbonylproteins, total glutathione levels, and the activities of six antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of the common carp Cyprinus carpio. Hypoxia exposure (25% of normal oxygen level) for 5h generally decreased the levels of oxidative damage products, but in liver TBARS content were elevated. Hypoxia stimulated increases in the activities of catalase (by 1.7-fold) and glutathione peroxidase (GPx) (by 1.3-fold) in brain supporting the idea that anticipatory preparation takes place in order to deal with the oxidative stress that will occur during reoxygenation. In liver, only GPx activity was reduced under hypoxia and reoxygenation while other enzymes were unaffected. Kidney showed decreased activity of GPx under aerobic recovery but superoxide dismutase (SOD) and catalase responded with sharp increases in activities. Skeletal muscle showed minor changes with a reduction in GPx activity under hypoxia exposure and an increase in SOD activity under recovery. Responses by antioxidant defenses in carp organs appear to include preparatory increases during hypoxia by some antioxidant enzymes in brain but a more direct response to oxidative insult during recovery appears to trigger enzyme responses in kidney and skeletal muscle.  相似文献   

2.
Hypoxia in the neonate is known to alter the activity of hepatic and pancreatic enzymes involved in lipid and carbohydrate metabolism. The purpose of this study was to evaluate the effect of neonatal hypoxia on the activity of intestinal enzymes, and to determine whether the administration of glucocorticoids to neonates can mimic the effects of hypoxia. Hypoxia in neonatal rats (0-7 days) increased protein content, and lactase and maltase activity in the duodenal and the jejunal segments of the small intestine compared with normoxic controls. Hypoxia in juvenile rats (28-35 days) did not change these enzymes. Two weeks after returning hypoxic (0-7 days) pups to normoxia, their body weight remained lower than the age-matched controls. In the group recovering from hypoxia, sucrase, maltase, and leucine aminopeptidase activities were lower in the duodenal and the jejunal segment. Compared with controls, LDH activity was lower only in the jejunal intestine in the group recovering from hypoxia. All enzyme activities returned to control levels 3 weeks after recovery. Neonatal rats treated with dexamethasone had a decrease in body weight, but increases in sucrase and maltase activity in both the duodenal and the jejunal segment. Hypoxia in newborn rats caused a delayed maturation of small intestinal enzymes. Increases in serum glucocorticoids after hypoxic exposure probably do not play a major role in the delayed maturation of the disaccharidase activity in the small intestine.  相似文献   

3.
4.
The immature brain is more resistant to hypoxia/ischemia than the mature brain. Although chronic hypoxia can induce adaptive-changes on the developing brain, the mechanisms underlying such adaptive changes are poorly understood. To further elucidate some of the adaptive changes during postnatal hypoxia, we determined the activities of four enzymes of glucose oxidative metabolism in eight brain regions of hypoxic and normoxic rats. Litters of Sprague-Dawley rats were put into the hypoxic chamber (oxygen level maintained at 9.5%) with their dams starting on day 3 postnatal (P3). Age-matched normoxic rats were use as control animals. In P10 hypoxic rats, lactate dehydrogenase (LDH) activity in cerebral cortex, striatum, olfactory bulb, hippocampus, hypothalamus, pons and medulla, and cerebellum was significantly increased (by 100%–370%) compared to those in P10 normoxic rats. In P10 hypoxic rats, hexokinase (HK) activity in hypothalamus, hippocampus, olfactory bulb, midbrain, and cerebral cortex was significantly decreased (by 15%–30%). Neither -ketoglutarate dehydrogenase complex (KGDHC, which is believed to have an important role in the regulation of the tricarboxylic acid [TCA] cycle flux) nor citrate synthase (CS) activity was significantly decreased in the eight regions of P10 hypoxic rats compared to those in P10 normoxic rats. In P30 hypoxic rats, LDH activity was only increased in striatum (by 19%), whereas HK activity was only significantly decreased (by 30%) in this region. However, KGDHC activity was significantly decreased in olfactory bulb, hippocampus, hypothalamus, cerebral cortex, and cerebellum (by 20%–40%) in P30 hypoxic rats compared to those in P30 normoxic rats. Similarly, CS activity was decreased, but only in olfactory bulb, hypothalamus, and midbrain (by 9%–21%) in P30 hypoxic rats. Our results suggest that at least some of the mechanisms underlying the hypoxia-induced changes in activities of glycolytic enzymes implicate the upregulation of HIF-1. Moreover, our observation that chronic postnatal hypoxia induces differential effects on brain glycolytic and TCA cycle enzymes may have pathophysiological implications (e.g., decreased in energy metabolism) in childhood diseases (e.g., sudden infant death syndrome) in which hypoxia plays a role.  相似文献   

5.
6.
The effects of temperature transition from 19 to 32 °C on oxidative stress indices and activities of the main antioxidant enzymes were investigated in the rotan, Perccottus glenii. Levels of lipid peroxides (LOOH), thiobarbituric acid-reactive substances (TBARS), low- (L-SH) and high-molecular mass (H-SH) thiols and activities of superoxide dismutase (SOD) and catalase were measured in rotan brain, liver and muscle over 1–12 h of high-temperature exposure followed by 3 or 24 h lower (19 °C) temperature recovery. Heat shock exposure during 1 h transiently increased 1.5–3.2-fold LOOH levels in rotan tissues with subsequent suppression of their content; however, 12 h exposure again increased LOOH levels in the brain. TBARS content were elevated by 2–3-fold during the entire heat shock exposure in the brain and liver. Levels of both products of lipid peroxidation were generally near control values during return to 19 °C. L-SH content was lowered during heat shock exposure in the brain, transiently increased after 6 h in the liver and almost disappeared after longer treatment in the muscle. Liver H-SH content slightly decreased under heat shock exposure, but was elevated after 6 h in the brain and muscle. In the latter case, L-SH level was below control values during recovery. SOD activities increased 2-fold in the liver after 6–12 h heat shock. Liver catalase activities decreased at the same conditions. Generally, a quick response to suppression of lipid peroxidation and possible involvement of its products in the up-regulation of antioxidant enzymes seem to be key adaptations to high temperature.  相似文献   

7.
Levels of lipid peroxides (LOOH), thiobarbituric-acid reactive substances (TBARS), protein carbonyls and low- and high-molecular weight thiols were measured in brain, liver, kidney, and white muscle of goldfish, Carassius auratus L., over 1-12 h of high temperature (35 degrees C) exposure followed by 4 or 24 h of lower (21 degrees C) temperature recovery. LOOH and TBARS contents increased during heat shock exposure with a maximal rise of 20-fold for liver TBARS, but both mainly reversed at recovery. Protein carbonyl content was unaffected by heat shock but rose in brain, liver, and kidney during recovery. Low-molecular weight thiol concentrations unexpectedly increased up to approximately 4-fold in brain, kidney and muscle under heat shock and remained high during recovery. Protein thiol contents also rose in liver and muscle during high temperature exposure by 2- and 3-fold, respectively, and decreased to control values or below in all tissues at late recovery. Low- and high-molecular weight thiol levels inversely correlated in liver (R2=0.87) suggesting that the former was used to reduce the latter over the experiment. It is concluded that the redox balance in goldfish tissues is strictly maintained probably contributing to the high tolerance of this species to heat shock.  相似文献   

8.
Medicinal leeches (Hirudo medicinalis L.) responded to self-induced hypoxia (72 h) with typical anaerobic metabolism characterized by a decrease in adenylate energy charge, utilization of the substrates glycogen and malate, and accumulation of the main anaerobic endproducts succinate and propionate. Propionate was also excreted into the medium. Ammonia excretion was suppressed. Aerobic recovery resulted in a profound O2 debt. Resynthesis of ATP was completed within 30 min. Disposal of succinate and restoring of malate required 2–3 h, and clearance of propionate and recharging of glycogen 6–12 h. Ammonia excretion did not exceed normoxic rates and excretion of propionate during recovery accounted for only 10% of total propionate accumulated during hypoxia. It is postulated that the clearance of succinate and propionate involves oxidation but also resynthesis of malate and glycogen. During hypoxia and recovery blood osmolality remained constant. The Na+ and Cl- ion concentrations in blood, the decrease of which was nearly equimolar during hypoxia, were re-established following different time-courses. Na+ concentration returned to normoxic levels after 2–3 h. The delayed increase in Cl- concentration, however, correlating with 6–12 h necessary to clear blood propionate, is interpretated as an anion regulating effect.Abbreviations AEC adenylate energy charge; fw, fresh weight - HPLC high-performance liquid chromatography - SCCA shortchain carboxylic acids  相似文献   

9.

Background

Greater diaphragm fatigue has been reported after hypoxic versus normoxic exercise, but whether this is due to increased ventilation and therefore work of breathing or reduced blood oxygenation per se remains unclear. Hence, we assessed the effect of different blood oxygenation level on isolated hyperpnoea-induced inspiratory and expiratory muscle fatigue.

Methods

Twelve healthy males performed three 15-min isocapnic hyperpnoea tests (85% of maximum voluntary ventilation with controlled breathing pattern) in normoxic, hypoxic (SpO2 = 80%) and hyperoxic (FiO2 = 0.60) conditions, in a random order. Before, immediately after and 30 min after hyperpnoea, transdiaphragmatic pressure (Pdi,tw ) was measured during cervical magnetic stimulation to assess diaphragm contractility, and gastric pressure (Pga,tw ) was measured during thoracic magnetic stimulation to assess abdominal muscle contractility. Two-way analysis of variance (time x condition) was used to compare hyperpnoea-induced respiratory muscle fatigue between conditions.

Results

Hypoxia enhanced hyperpnoea-induced Pdi,tw and Pga,tw reductions both immediately after hyperpnoea (Pdi,tw : normoxia -22 ± 7% vs hypoxia -34 ± 8% vs hyperoxia -21 ± 8%; Pga,tw : normoxia -17 ± 7% vs hypoxia -26 ± 10% vs hyperoxia -16 ± 11%; all P < 0.05) and after 30 min of recovery (Pdi,tw : normoxia -10 ± 7% vs hypoxia -16 ± 8% vs hyperoxia -8 ± 7%; Pga,tw : normoxia -13 ± 6% vs hypoxia -21 ± 9% vs hyperoxia -12 ± 12%; all P < 0.05). No significant difference in Pdi,tw or Pga,tw reductions was observed between normoxic and hyperoxic conditions. Also, heart rate and blood lactate concentration during hyperpnoea were higher in hypoxia compared to normoxia and hyperoxia.

Conclusions

These results demonstrate that hypoxia exacerbates both diaphragm and abdominal muscle fatigability. These results emphasize the potential role of respiratory muscle fatigue in exercise performance limitation under conditions coupling increased work of breathing and reduced O2 transport as during exercise in altitude or in hypoxemic patients.  相似文献   

10.
A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, β-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.  相似文献   

11.
Dermis isolated adult stem (DIAS) cells, a subpopulation of dermis cells capable of chondrogenic differentiation in the presence of cartilage extracellular matrix, are a promising source of autologous cells for tissue engineering. Hypoxia, through known mechanisms, has profound effects on in vitro chondrogenesis of mesenchymal stem cells and could be used to improve the expansion and differentiation processes for DIAS cells. The objective of this study was to build upon the mechanistic knowledge of hypoxia and translate it to tissue engineering applications to enhance chondrogenic differentiation of DIAS cells through exposure to hypoxic conditions (5% O2) during expansion and/or differentiation. DIAS cells were isolated and expanded in hypoxic (5% O2) or normoxic (20% O2) conditions, then differentiated for 2 weeks in micromass culture on chondroitin sulfate-coated surfaces in both environments. Monolayer cells were examined for proliferation rate and colony forming efficiency. Micromasses were assessed for cellular, biochemical, and histological properties. Differentiation in hypoxic conditions following normoxic expansion increased per cell production of collagen type II 2.3 fold and glycosaminoglycans 1.2 fold relative to continuous normoxic culture (p<0.0001). Groups expanded in hypoxia produced 51% more collagen and 23% more GAGs than those expanded in normoxia (p<0.0001). Hypoxia also limited cell proliferation in monolayer and in 3D culture. Collectively, these data show hypoxic differentiation following normoxic expansion significantly enhances chondrogenic differentiation of DIAS cells, improving the potential utility of these cells for cartilage engineering.  相似文献   

12.
Hypoxia (low oxygen conditions) has been found in the southeastern region of Corpus Christi Bay, Texas, U.S.A. every summer since 1988. The objectives of the current study were to determine direct and indirect effects of hypoxia on macrofauna. Direct physiological effects of hypoxia include reduction of benthic abundance, biomass, diversity, species richness and species evenness because of physiological intolerance. Indirect ecological effects of hypoxia include predation of emerging benthic fauna from the sediment. Macrofaunal community characteristics were compared vertically within sediments in caged and uncaged sediment samples in hypoxic and normoxic areas. Cage effects were determined with partial cages, which had reduced flow and no predator exclusion. Dissolved oxygen concentrations during the experiment was monitored in water column profiles and continuous measurement of bottom water in the hypoxic and normoxic areas. Hypoxia in Corpus Christi Bay in 1999 occurred as transient events, many of which were of short duration (less than 1 h) and moderate intensity (around 2 mg l− 1). The macrobenthic community characteristics (i.e., abundance, biomass, species richness, diversity, and evenness) were directly affected by hypoxia as indicated by depressed levels and few deeper-dwelling organisms in the hypoxic area. Community structure was also different between the hypoxic and normoxic areas because of loss of species (presumably due to intolerance to low oxygen) in the hypoxic areas. Benthic invertebrates were found primarily in the surface in the hypoxic area, but there was no significant indication of indirect effects, i.e., increased predation pressure in the hypoxic area. The increased exposure to predation risk may be mitigated by predator avoidance of hypoxic areas. In conclusion, hypoxia in Corpus Christi Bay has negative direct effects on benthic organisms, but no indirect effects, such as increased predation pressure. The most significant finding is the interaction between hypoxia and vertical distributions of infauna, which drive hypoxia intolerant organisms to the surface and out of sediments.  相似文献   

13.
14.
The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

15.
16.
The regional distribution of O2 deficit in muscle and nonmuscle tissues was measured in hypermetabolic dogs ventilated with a low inspired O2 fraction and was compared with excess O2 used in these regions during normoxic recovery. O2 uptake was stimulated by 2,4-dinitrophenol (DNP). Arterial, mixed venous, and muscle venous blood samples were drawn before, during, and after severe hypoxia (9% O2-91% N2) for the calculation of hindlimb O2 uptake and cardiac output. The O2 deficit and excess O2 uptake in recovery were calculated as the cumulative differences between normoxic control and respective hypoxic and recovery O2 uptake values. The DNP data were compared with data previously obtained in our laboratory. A greater whole-body O2 deficit was incurred in the DNP group during hypoxia and was associated with a larger O2 use in recovery. The total O2 deficit was equally distributed between muscle and nonmuscle tissues, but more excess O2 use occurred in nonmuscle tissues. The greater excess O2 used by nonmuscle tissues may have been associated with the restoration of intracellular ion concentrations brought about by the increased activity of energy-using membrane pumps.  相似文献   

17.
BackgroundAdipose tissue-derived stem cells (ASCs) have been recently isolated from human subcutaneous adipose tissue. ASCs may be useful in regenerative medicine as an alternative to bone marrow-derived stem cells. Changes in the oxygen concentration influence physiological activities, such as stem cell proliferation. However, the effects of the oxygen concentration on ASCs remain unclear. In the present study, the effects of hypoxia on ASC proliferation were examined.MethodsNormal human adipose tissue was collected from the lower abdomen, and ASCs were prepared with collagenase treatment. The ASCs were cultured in hypoxic (1%) or normoxic (20%) conditions. Cell proliferation was investigated in the presence or absence of inhibitors of various potentially important kinases. Hypoxia inducible factor (HIF)-1α expression and MAP kinase phosphorylation in the hypoxic culture were determined with western blotting. In addition, the mRNA expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 in hypoxic or normoxic conditions were determined with real-time RT-PCR. The effects of these growth factors on ASC proliferation were investigated. Chromatin immunoprecipitation (ChIP) of the HIF–1α-binding hypoxia responsive element in FGF–2 was performed. HIF–1α was knocked down by siRNA, and FGF–2 expression was investigated.ResultsASC proliferation was significantly enhanced in the hypoxic culture and was inhibited by ERK and Akt inhibitors. Hypoxia for 5–15 minutes stimulated the phosphorylation of ERK1/2 among MAP kinases and induced HIF–1α expression. The levels of VEGF and FGF–2 mRNA and protein in the ASCs were significantly enhanced in hypoxia, and FGF–2 increased ASC proliferation. The ChIP assay revealed an 8-fold increase in the binding of HIF–1α to FGF–2 in hypoxia. HIF–1α knockdown by siRNA partially inhibited the FGF–2 expression of ASCs induced by hypoxia.ConclusionASC proliferation was enhanced by hypoxia. HIF–1α activation, FGF–2 production, and the ERK1/2 and Akt pathway were involved in this regulatory mechanism.  相似文献   

18.
Hypoxia occurs within adipose tissues as a result of adipocyte hypertrophy and is associated with adipocyte dysfunction in obesity. Here, we examined whether hypoxia affects the characteristics of adipocyte-derived exosomes. Exosomes are nanovesicles secreted from most cell types as an information carrier between donor and recipient cells, containing a variety of proteins as well as genetic materials. Cultured differentiated 3T3-L1 adipocytes were exposed to hypoxic conditions and the protein content of the exosomes produced from these cells was compared by quantitative proteomic analysis. A total of 231 proteins were identified in the adipocyte-derived exosomes. Some of these proteins showed altered expression levels under hypoxic conditions. These results were confirmed by immunoblot analysis. Especially, hypoxic adipocyte-released exosomes were enriched in enzymes related to de novo lipogenesis such as acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and fatty acid synthase (FASN). The total amount of proteins secreted from exosomes increased by 3–4-fold under hypoxic conditions. Moreover, hypoxia-derived exosomes promoted lipid accumulation in recipient 3T3-L1 adipocytes, compared with those produced under normoxic conditions. FASN levels were increased in undifferentiated 3T3-L1 cells treated with FASN-containing hypoxic adipocytes-derived exosomes. This is a study to characterize the proteomic profiles of adipocyte-derived exosomes. Exosomal proteins derived from hypoxic adipocytes may affect lipogenic activity in neighboring preadipocytes and adipocytes.  相似文献   

19.
Increases in plasma lipids occur during hypoxia in suckling but not in weaned rats and may result from altered hepatic enzyme activity. We exposed rats to 7 days of hypoxia from birth to 7 days of age (suckling) or from 28 to 35 days of age (weaned at day 21). Hypoxia led to an increase in hepatic lipid content in the suckling rat only. Hepatic lipase was decreased to approximately 45% of control in 7-day-old rats exposed to hypoxia but not in hypoxic 35-day-old rats. Hypoxic suckling rats also had a 50% reduction in lactate dehydrogenase activity, whereas transaminase activity and CYP1A and CYP3A protein content were not different between hypoxic and normoxic groups. Additional rats were studied 7 and 14 days after recovery from hypoxic exposure from birth to 7 days of age; hepatic lipase activity had recovered to 85% by 7 days and to 100% by 14 days in the rats previously exposed to hypoxia. Administration of dexamethasone to neonatal rats to simulate the hyperglucocorticoid state found in hypoxic 7-day-old rats led to a moderate decrease ( approximately 75% of control) in hepatic lipases. Developmentally, in the normoxic state, hepatic lipases increased rapidly after birth and reached levels more than twofold that of the newborn by 7 days of age. Hypoxia delays the maturation of hepatic lipases. We suggest that the decrease in hepatic lipase activity contributes to hyperlipemia in the hypoxic newborn rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号