首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42?kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes.  相似文献   

2.
Eukaryotic RNA polymerases I and III consist of multiple subunits. Each of these enzymes includes two distinct and evolutionarily conserved subunits called α-related subunits which are shared only by polymerases I and III. The α-related subunits show limited homology with the α-subunit of prokaryotic RNA polymerase. To gain further insight into the structure and function of α-related subunits, we cloned and characterized a gene from Schizosaccharomyces pombe that encodes a protein of 17 kDa which can functionally replace AC19 – an α-related subunit of RNA polymerases I and III of Saccharomyces cerevisiae– and was thus named rpa17 +. RPA17 has 125 amino acids and shows 63% identity to AC19 over a 108-residue stretch, whereas the N-terminal regions of the two proteins are highly divergent. Disruption of rpa17 + shows that the gene is essential for cell growth. Sequence comparison with other α-related subunits from different species showed that RPA17 contains an 81-amino acid block that is evolutionarily conserved. Deletion analysis of the N- and C-terminal regions of RPA17 and AC19 confirms that the 81-amino acid block is important for the function of the α-related subunits. Received: 1 October 1998 / Accepted: 3 December 1998  相似文献   

3.
Eukaryotic RNA polymerases I and III consist of multiple subunits. Each of these enzymes includes two distinct and evolutionarily conserved subunits called α-related subunits which are shared only by polymerases I and III. The α-related subunits show limited homology with the α-subunit of prokaryotic RNA polymerase. To gain further insight into the structure and function of α-related subunits, we cloned and characterized a gene from Schizosaccharomyces pombe that encodes a protein of 17?kDa which can functionally replace AC19 – an α-related subunit of RNA polymerases I and III of Saccharomyces cerevisiae– and was thus named rpa17 +. RPA17 has 125 amino acids and shows 63% identity to AC19 over a 108-residue stretch, whereas the N-terminal regions of the two proteins are highly divergent. Disruption of rpa17 + shows that the gene is essential for cell growth. Sequence comparison with other α-related subunits from different species showed that RPA17 contains an 81-amino acid block that is evolutionarily conserved. Deletion analysis of the N- and C-terminal regions of RPA17 and AC19 confirms that the 81-amino acid block is important for the function of the α-related subunits.  相似文献   

4.
We describe the cloning and analysis of mRPA1, the cDNA encoding the largest subunit (RPA194) of murine RNA polymerase I. The coding region comprises an open reading frame of 5151 bp that encodes a polypeptide of 1717 amino acids with a calculated molecular mass of 194 kDa. Alignment of the deduced protein sequence reveals homology to the β′ subunit of Escherichia coli RNA polymerase in the conserved regions a-h present in all large subunits of RNA polymerases. However, the overall sequence homology among the conserved regions of RPA1 from different species is significantly lower than that observed in the corresponding β′-like subunits of class II and III RNA polymerase. We have raised two types of antibodies which are directed against the conserved regions c and f of RPA194. Both antibodies are monospecific for RPA194 and do not cross-react with subunits of RNA polymerase II or III. Moreover, these antibodies immunoprecipitate RNA polymerase I both from murine and human cell extracts and, therefore, represent an invaluable tool for the identification of RNA polymerase I-associated proteins. Received: 27 January 1997 / Accepted: 1 April 1997  相似文献   

5.
[Rpb1 and Rpb2] Mapping of the contact sites␣on two large subunits of the fission yeast Schizosaccharomyces pombe RNA polymerase II with two small subunits, Rpb3 and Rpb5, was carried out using the two-hybrid screening system in the budding yeast Saccharomyces cerevisiae. Rpb5 was found to interact with any fragment of Rpb1 that contained the region H, which is conserved among the subunit 1 homologues of all RNA polymerases, including the β' subunit of prokaryotic RNA polymerases. In agreement with the fact that Rpb5 is shared among all three forms of eukaryotic RNA polymerases, the region H of RNA polymerase I subunit 1 (Rpa190) was also found to interact with Rpb5. On the other hand, two-hybrid screening of Rpb2 fragments from RNA polymerase II indicated the presence of an Rpb3 contact site in the region H which is conserved among the subunit 2 homologues of all RNA polymerases, including the β subunit of prokaryotic RNA polymerases. Possible functions of the regions H in the subunits 1 and 2 are discussed. Received: 10 December 1997 / Accepted: 14 April 1998  相似文献   

6.
We describe the cloning and analysis of mRPA1, the cDNA encoding the largest subunit (RPA194) of murine RNA polymerase I. The coding region comprises an open reading frame of 5151?bp that encodes a polypeptide of 1717 amino acids with a calculated molecular mass of 194?kDa. Alignment of the deduced protein sequence reveals homology to the β′ subunit of Escherichia coli RNA polymerase in the conserved regions a-h present in all large subunits of RNA polymerases. However, the overall sequence homology among the conserved regions of RPA1 from different species is significantly lower than that observed in the corresponding β′-like subunits of class II and III RNA polymerase. We have raised two types of antibodies which are directed against the conserved regions c and f of RPA194. Both antibodies are monospecific for RPA194 and do not cross-react with subunits of RNA polymerase II or III. Moreover, these antibodies immunoprecipitate RNA polymerase I both from murine and human cell extracts and, therefore, represent an invaluable tool for the identification of RNA polymerase I-associated proteins.  相似文献   

7.
8.
Subunit 3 (Rpb3) of eukaryotic RNA polymerase II is a homologue of the α subunit of prokaryotic RNA polymerase, which plays a key role in subunit assembly of this complex enzyme by providing the contact surfaces for both β and β′ subunits. Previously we demonstrated that the Schizosaccharomyces pombe Rpb3 protein forms a core subassembly together with Rpb2 (the β homologue) and Rpb11 (the second α homologue) subunits, as in the case of the prokaryotic α2β complex. In order to obtain further insight into the physiological role(s) of Rpb3, we subjected the S. pombe rpb3 gene to mutagenesis. A total of nine temperature-sensitive (Ts) and three cold-sensitive (Cs) S. pombe mutants have been isolated, each (with the exception of one double mutant) carrying a single mutation in the rpb3 gene in one of the four regions (A–D) that are conserved between the homologues of eukaryotic subunit 3. The three Cs mutations were all located in region A, in agreement with the central role of the corresponding region in the assembly of prokaryotic RNA polymerase; the Ts mutations, in contrast, were found in all four regions. Growth of the Ts mutants was reduced to various extents at non-permissive temperatures. Since the metabolic stability of most Ts mutant Rpb3 proteins was markedly reduced at non-permissive temperature, we predict that these mutant Rpb3 proteins are defective in polymerase assembly or the mutant RNA polymerases containing mutant Rpb3 subunits are unstable. In accordance with this prediction, the Ts phenotype of all the mutants was suppressed to varying extents by over-expression of Rpb11, the pairing partner of Rpb3 in the core subassembly. We conclude that the majority of rpb3 mutations affect the assembly of Rpb3, even though their effects on subunit assembly vary depending on the location of the mutation considered. Received: 25 January 1999 / Accepted: 27 April 1999  相似文献   

9.
10.
Eukaryotic RNA polymerase III (Pol III) is a multisubunit enzyme responsible for transcribing tRNA, 5S rRNA, and several small RNAs. Of the 17 subunits in Pol III, the C17 (Rpc17) and C25 (Rpc25) subunits form a stable subcomplex that protrudes from the core polymerase. In this study, we determined the crystal structure of the C17/25 subcomplex from Schizosaccharomyces pombe. The subcomplex adopts an elongated shape, and each subunit has two domains. The two subunits in the subcomplex are tightly packed and extensively interact, with a contact area of 2080 Å2. The overall conformation of S. pombe C17/25 is considerably different from the previously reported structure of C17/25 from Saccharomyces cerevisiae, with respect to the position of the C17 HRDC domain, a helix bundle essential for cell viability. In contrast, the S. pombe C17/25 structure is quite similar to those of the Pol II and archaeal counterparts, Rpb4/7 and RpoE/F, respectively, despite the low sequence similarity. A phylogenetic comparison of the C17 subunits among eukaryotes revealed that they can be classified into three groups, according to the length of the interdomain linker. S. pombe C17, as well as Rpb4 and RpoF, belongs to the largest group, with the short linker. On the other hand, S. cerevisiae C17 belongs to the smallest group, with the long linker, which probably enables the subcomplex to assume the alternative conformation.  相似文献   

11.
12.
13.
Summary Rabbit antibodies against Artemia RNA polymerase II have been raised and utilized to study the immunological relationships between the subunits from RNA polymerases I, II and III from this organism and RNA polymerase II from other eukaryotes. We describe here for the first time the subunit structure of Artemia RNA polymerases I and III. These enzymes have 9 and 13 subunits respectively. The anti-RNA polymerase II antibodies recognize two subunits of 19.4 and 18 kDa common to the three enzymes, and another subunit of 25.6 kDa common to RNA polymerases II and III. The antibodies against Artemia RNA polymerase II also react with the subunits of high molecular weight and with subunits of around 25 and 33 kDa of RNA polymerase II from other eukaryotes (Drosophila melanogaster, Chironomus thummi, triticum (wheat) and Rattus (rat)). This interspecies relatedness is a common feature of eukaryotic RNA polymerases.Abbreviations RNAp RNA polymerase - DPT diazophenylthioether - SDS sodium dodecylsulfate  相似文献   

14.
15.
16.
RPA190, the gene coding for the largest subunit of yeast RNA polymerase A   总被引:33,自引:0,他引:33  
Yeast RNA polymerases are being extensively studied at the gene level. The entire gene encoding the largest subunit of RNA polymerase A, A190, was isolated and characterized in detail. Southern hybridization and gene disruption experiments showed that the RPA190 gene is unique in the haploid yeast genome and essential for cell viability. Nuclease S1 mapping was used to identify mRNA 5' and 3' termini. RPA190 encodes a polypeptide chain of 186,270 daltons in a large uninterrupted reading frame. A dot matrix comparison of the deduced amino acid sequence of subunit A190 with Escherichia coli beta' and cognate subunits B220 and C160 from yeast RNA polymerases B and C showed a conserved pattern of homology regions (I-VI). A potential DNA-binding site (zinc-binding motif) is conserved in the N-terminal region I. Remarkably, the A190 subunit does not harbor the heptapeptide repeated sequence present in the B220 subunit. The sequence of the A190 subunit diverges from B220 and C160 by the presence of two hydrophilic domains inserted between homology regions I and II, and V and VI. From their codon usage and third base pyrimidine bias, RNA polymerase genes RPA190, RPB220, RPC160, and RPC40 fall among yeast genes expressed at an average level. The RPA190 5'-flanking region contains features present in other polymerase genes that might function in regulation.  相似文献   

17.
An incubation medium is described which supports RNA synthesis in isolated oocyte nuclei of the newt Notophthalmus, and which permits subsequent autoradiographic examination of the lampbrush chromosomes and nucleoli. By using different concentrations of α-amanitin we distinguish RNA synthesis due to RNA polymerases I, II and III. All RNA synthesis on loops is inhibited by 0.5 μ/ml of α-amanitin and is therefore due to polymerase II. Polymerase III is responsible for RNA synthesis at a small number of discrete sites in condensed chromatm. These include the centromere bars of three of four chromosomes, which probably represent 5S RNA synthesis, as well as 15–20 lesser sites scattered elsewhere. Polymerase I activity is confined to the nucleoli. Dedicated to Professor W. Beermann on the occasion of his 60th birthday  相似文献   

18.
19.
Summary The POL1 gene of the fission yeast, Schizosaccharomyces pombe, was isolated using a POL1 gene probe from the budding yeast Saccharomyces cerevisiae, cloned and sequenced. This gene is unique and located on chromosome II. It includes a single 91 by intron and is transcribed into a mRNA of about 4500 nucleotides. The predicted protein coded for by the S. pombe POL1 gene is 1405 amino acid long and its calculated molecular weight is about 160000 daltons. This peptide contains seven amino acid blocks conserved among several DNA polymerases from different organisms and shares overall 37% and 34% identity with DNA polymerases alpha from S. cerevisiae and human cells, respectively. These results indicate that this gene codes for the S. pombe catalytic subunit of DNA polymerase alpha. The comparisons with human DNA polymerase alpha and with the budding yeast DNA polymerases alpha, delta and epsilon reveal conserved blocks of amino acids which are structurally and/or functionally specific only for eukaryotic alpha-type DNA polymerases.  相似文献   

20.
RNA polymerase I of Saccharomyces cerevisiae contains a small subunit, A12.2, encoded by RPA12, that was previously shown to be involved in the assembly and/or stabilization of the largest subunit, A190, of RNA polymerase I. To examine whether an equivalent subunit is present in another eukaryotic RNA polymerase I, we have cloned a Schizosaccahromyces pombe cDNA that is able to complement the rpa12 mutation in S. cerevisiae. The gene, named Sprpa12+, encodes a polypeptide of 119 amino acids that shows 55% identity to S. cerevisiae A12. 2 over its entire length, including two zinc-finger motifs. Disruption of the chromosomal Sprpa12+ gene shows that it is required for growth at higher temperatures but not at lower temperatures. Expression of Sprpa190+/nuc1+, which encodes the largest subunit of the S. pombe RNA polymerase I, from a multicopy plasmid can partially suppress the growth defect of the Sprpa12 disruptant at higher temperatures. These findings suggest that A12.2 subunit is functionally and structurally conserved between S. cerevisiae and S. pombe. Finally, the analysis of mutants suggests that SpRPA12 requires the zinc-finger domain in the N-terminal region but not the one in the C-terminal region for its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号