首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments in gene therapy using adenoviral (Ad) vectors have fueled renewed interest in the 293 human embryonic kidney cell line traditionally used to produce these vectors. Low-glutamine fed-batch cultures of serum-free, suspension cells in a 5-L bioreactor were conducted. Our aim was to tighten the control on glutamine metabolism and hence reduce ammonia and lactate accumulation. Online direct measurement of glutamine was effected via a continuous cell-exclusion system that allows for aseptic, cell-free sampling of the culture broth. A feedback control algorithm was used to maintain the glutamine concentration at a level as low as 0.1 mM with a concentrated glucose-free feed medium. This was tested in two media: a commercial formulation (SFM II) and a chemically defined DMEM/F12 formulation. The fed-batch and batch cultures were started at the same glucose concentration, and it was not controlled at any point in the fed-batch cultures. In all cases, fed-batch cultures with double the cell density and extended viable culture time compared to the batch cultures were achieved. An infection study on the high density fed-batch culture using adenovirus-green fluorescent protein (Ad-GFP) construct was also done to ascertain the production capacity of the culture. Virus titers from the infected fed-batch culture showed that there is an approximately 10-fold improvement over a batch infection culture. The results have shown that the control of glutamine at low levels in cultures is sufficient to yield significant improvements in both cell densities and viral production. The applicability of this fed-batch system to cultures in different media and also infected cultures suggests its potential for application to generic mammalian cell cultures.  相似文献   

2.
A permanent, clonal strain of rat pituitary tumor cells (GH3-cells) spontaneously synthesizes and secretes prolactin (rPRL) and growth hormone (rGH) into the culture medium. The rates of hormone production (microng extracellular hormone/mg cell protein/24 hours) and synthesis (vida infra) as well as the rate of [3H]thymidine incorporation into DNA (DNA synthesis) have been studied. During logarithmic growth rPRL and rGH production increased to 160 and 250% of the value at day 2 after plating, while during the plateau phase of cell growth hormone production decreased to initial values. The fluctuations in rPRL production could be fully explained by variations in the rate of rPRL synthesis: [3H]eucine incorporated into rPRL as measured with immunoprecipitation and polyacryl-amide gel electrophoresis. Also the rates of synthesis and production of rGH showed parallel changes during exponential and plateau phase of growth, but this hormone was probably degraded intracellularly. The relative reduction in the rate of synthesis of rPRL and rGH during the plateau of growth corresponded closely to the fall in the rate of DNA synthesis. The reduction in rPRL synthesis could not be explained through an inhibition by extra-cellular rPRL accumulation or by cell to cell interaction occurring in dense cultures. The intracellular concentrations of both hormones were unaltered during logarithmic growth, but rose to 500% for rPRL and 200% for rGH during the plateau phase. In spite of the marked variations in basal rPRL and rGH production the GH3 cultures of different ages were equally able to increase rPRL and decrease rGH production in response to thyrotropin releasing hormone (3 X 10(-7) M) and 17beta-estradiol (10(-8)M).  相似文献   

3.
A simple method for control of lactate accumulation in suspension cultures of Chinese hamster ovary (CHO) cells based on the culture's pH was developed. When glucose levels in culture reach a low level (generally below 1 mM) cells begin to take up lactic acid from the culture medium resulting in a rise in pH. A nutrient feeding method has been optimized which delivers a concentrated glucose solution triggered by rising pH. We have shown that this high-end pH-controlled delivery of glucose can dramatically reduce or eliminate the accumulation of lactate during the growth phase of a fed-batch CHO cell culture at both bench scale and large scale (2,500 L). This method has proven applicable to the majority of CHO cell lines producing monoclonal antibodies and other therapeutic proteins. Using this technology to enhance a 12-day fed-batch process that already incorporated very high initial cell densities and highly concentrated medium and feeds resulted in an approximate doubling of the final titers for eight cell lines. The increase in titer was due to additional cell growth and higher cell specific productivity.  相似文献   

4.
5.
Established bioprocess monitoring is based on quick and reliable methods, including cell count and viability measurement, extracellular metabolite measurement, and the measurement of physicochemical qualities of the cultivation medium. These methods are sufficient for monitoring of process performance, but rarely give insight into the actual physiological states of the cell culture. However, understanding of the latter is essential for optimization of bioprocess development. Our study used LC-MS metabolomics as a tool for additional resolution of bioprocess monitoring and was designed at three bioreactors scales (10 L, 100 L, and 1,000 L) to gain insight into the basal metabolic states of the Chinese hamster ovary (CHO) cell culture during fed-batch. Metabolites characteristics of the four growth stages (early and late exponential phase, stationary phase, and the phase of decline) were identified by multivariate analysis. Enriched metabolic pathways were then established for each growth phase using the CHO metabolic network model. Biomass generation and nucleotide synthesis were enriched in early exponential phase, followed by increased protein production and imbalanced glutathione metabolism in late exponential phase. Glycolysis became downregulated in stationary phase and amino-acid metabolism increased. Phase of culture decline resulted in rise of oxidized glutathione and fatty acid concentrations. Intracellular metabolic profiles of the CHO fed-batch culture were also shown to be consistent with scale and thus demonstrate metabolomic profiling as an informative method to gain physiological insight into the cell culture states during bioprocess regardless of scale.  相似文献   

6.
We report the scalable production of recombinant proteins in Escherichia coli, reliant on tightly controlled autoinduction, triggered by phosphate depletion in the stationary phase. The method, reliant on engineered strains and plasmids, enables improved protein expression across scales. Expression levels using this approach have reached as high as 55% of the total cellular protein. The initial use of the method in instrumented fed-batch fermentations enables cell densities of ∼30 gCDW/L and protein titers up to 8.1 ± 0.7 g/L (∼270 mg/gCDW). The process has also been adapted to an optimized autoinduction media, enabling routine batch production at culture volumes of 20 μl (384-well plates), 100 μl (96-well plates), 20 ml, and 100 ml. In batch cultures, cell densities routinely reach ∼5–7 gCDW/L, offering protein titers above 2 g/L. The methodology has been validated with a set of diverse heterologous proteins and is of general use for the facile optimization of routine protein expression from high throughput screens to fed-batch fermentation.  相似文献   

7.
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source.  相似文献   

8.
An expression vector that carried an inverted 800 base pair insert of the rat growth hormone (rGH) cDNA downstream of the SV40 promotor was used to transfect two different growth hormone (GH) producing rat pituitary cell strains, GH12C1 and GH3. This resulted in a specific transient inhibition of growth hormone production up to 75 percent in the course of 72 hours. GH synthesis reduction occurred parallel to a decrease of GH cytoplasmic mRNA levels. Levels of beta-actin and guanine nucleotide-binding regulatory protein (G protein) mRNAs were unaltered, but PRL mRNA levels were increased. Transfection with a control vector did not affect GH production.  相似文献   

9.
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source.  相似文献   

10.
The enzyme controlled substrate delivery cultivation technology EnBase(?) Flo allows a fed-batch-like growth in batch cultures. It has been previously shown that this technology can be applied in small cultivation vessels such as micro- and deep well plates and also shake flasks. In these scales high cell densities and improved protein production for Escherichia coli cultures were demonstrated. This current study aims to evaluate the scalability of the controlled glucose release technique to pilot scale bioreactors. Throughout all scales, that is, deep well plates, 3 L bioreactor and 150 L bioreactor cultivations, the growth was very similar and the model protein, a recombinant alcohol dehydrogenase (ADH) was produced with a high yield in soluble form. Moreover, EnBase Flo also was successfully used as a controlled starter culture in high cell density fed-batch cultivations with external glucose feeding. Here the external feeding pump was started after overnight cultivation with EnBase Flo. Final optical densities in these cultivations reached 120 (corresponding to about 40 g L(-1) dry cell weight) and a high expression level of ADH was obtained. The EnBase cultivation technology ensures a controlled initial cultivation under fed-batch mode without the need for a feeding pump. Because of the linear cell growth under glucose limitation it provides optimal and robust starting conditions for traditional external feed-based processes.  相似文献   

11.
Alteration of mammalian cell metabolism by dynamic nutrient feeding   总被引:3,自引:0,他引:3  
Zhou W  Rehm J  Europa A  Hu WS 《Cytotechnology》1997,24(2):99-108
The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nutrient concentrate were adjusted stoichiometrically to provide balanced nutrient conditions for cell growth. Through on-line control of the feeding rate of the nutrient concentrate, both glucose and glutamine concentrations were maintained at low levels of 0.5 and 0.2 mM respectively during the growth stage. The concentrations of the other essential amino acids were also maintained without large fluctuations. The cell metabolism was altered from that observed in batch cultures resulting in a significant reduction of lactate, ammonia and alanine production. Compared to a previously reported fed-batch culture in which only glucose was maintained at a low level and only a reduced lactate production was observed, this culture has also reduced the production of other metabolites, such as ammonium and alanine. As a result, a high viable cell concentration of more than 1.0 × 107 cells/mL was achieved and sustained over an extended period. The results demonstrate an efficient nutrient feeding strategy for controlling cell metabolism to achieve and sustain a high viable cell concentration in fed-batch mammalian cell cultures in order to enhance the productivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We previously reported that, although agitation conditions strongly affected mycelial morphology, such changes did not lead to different levels of recombinant protein production in chemostat cultures of Aspergillus oryzae (Amanullah et al., 1999). To extend this finding to another set of operating conditions, fed-batch fermentations of A. oryzae were conducted at biomass concentrations up to 34 g dry cell weight/L and three agitation speeds (525, 675, and 825 rpm) to give specific power inputs between 1 and 5 kWm(-3). Gas blending was used to control the dissolved oxygen level at 50% of air saturation except at the lowest speed where it fell below 40% after 60-65 h. The effects of agitation intensity on growth, mycelial morphology, hyphal tip activity, and recombinant protein (amyloglucosidase) production in fed-batch cultures were investigated. In the batch phase of the fermentations, biomass concentration, and AMG secretion increased with increasing agitation intensity. If in a run, dissolved oxygen fell below approximately 40% because of inadequate oxygen transfer associated with enhanced viscosity, AMG production ceased. As with the chemostat cultures, even though mycelial morphology was significantly affected by changes in agitation intensity, enzyme titers (AGU/L) under conditions of substrate limited growth and controlled dissolved oxygen of >50% did not follow these changes. Although the measurement of active tips within mycelial clumps was not considered, a dependency of the specific AMG productivity (AGU/g biomass/h) on the percentage of extending tips was found, suggesting that protein secretion may be a bottle-neck in this strain during fed-batch fermentations.  相似文献   

13.
Presented is a novel antibody production platform based on the fed-batch culture of recombinant, NS0-derived cell lines. A standardized fed-batch cell culture process was developed for five non-GS NS0 cell lines using enriched and optimized protein-free, cholesterol-free, and chemically defined basal and feed media. The process performed reproducibly and scaled faithfully from the 2-L to the 100-L bioreactor scale achieving a volumetric productivity of > 120 mg/L per day. Fed-batch cultures for all five cell lines exhibited significant lactate consumption when the cells entered the stationary or death phase. Peak and final lactate concentrations were low relative to a previously developed fed-batch process (FBP). Such low lactate production and high lactate consumption rates were unanticipated considering the fed-batch culture basal medium has an unconventionally high initial glucose concentration of 15 g/L, and an overall glucose consumption in excess of 17 g/L. The potential of this process platform was further demonstrated through additional media optimization, which has resulted in a final antibody concentration of 2.64 +/- 0.19 g/L and volumetric productivity of > 200 mg/L per day in a 13-day FBP for one of the five production cell lines. Use of this standardized protein-free, cholesterol-free NS0 FBP platform enables consistency in development time and cost effectiveness for manufacturing of therapeutic antibodies.  相似文献   

14.
以表达人重组尿激酶原中国仓鼠卵巢 (CHO) 工程细胞系11G-S为研究对象,运用基因芯片技术比较了CHO工程细胞在批次及流加培养不同生长阶段基因表达水平的差异,在此基础上采用Genmapp软件,同时结合已知的细胞周期信号通路图,着重分析了批次及流加培养CHO工程细胞的细胞周期调控基因转录谱差异。在基因芯片涉及的19 191个目标基因中,批次和流加培养不同生长阶段CHO工程细胞的下调表达的基因数量多于上调表达基因数目;两种培养模式下的基因差异表达有着明显的不同,尤其是在细胞生长的衰退期,流加培养CHO工程细胞中下调表达的基因数量明显多于批次培养。有关调控细胞周期关键基因的转录谱分析表明,CHO工程细胞主要是通过下调表达CDKs、Cyclin及CKI家族中的Cdk6、Cdk2、Cdc2a、Ccne1、Ccne2基因及上调表达Smad4基因,来达到调控细胞增殖及维持自身活力的目的。  相似文献   

15.
Miniaturized bioreactors for suspension cultures of animal cells, such as Chinese Hamster Ovary (CHO) cells, could improve bioprocess development through the ability to cheaply explore a wide range of bioprocess operating conditions. A miniaturized pressure-cycled bioreactor for animal cell cultures, described previously (Diao et al., 2008), was tested with a suspension CHO cell line producing commercially relevant quantities of human IgG. Results from the suspended CHO cell line showed that the cell growth was comparable to conventional flask controls and the target protein production was enhanced in the minibioreactor, which may be due to the relatively high oxygen transfer rate and the moderate shear stress, measured and simulated previously. Microcarrier culture using an anchorage-dependent CHO cell line and Cytodex 3 also showed a similar result: comparable growth and enhanced production of a model protein (secreted alkaline phosphatase or SEAP). Various fed-batch schemes were applied to the CHO cells producing human IgG, yielding cell numbers (1.1 × 10(7) /mL) at day 8 and titers of human IgG (2.3 g/L) at day 14 that are typical industrial values for CHO cell fed-batch cultures. The alteration of the volumetric oxygen transfer coefficient is a key parameter for viability of the CHO cell line producing human IgG. We conclude that the minibioreactor can provide favorable cell culture environments; oxygen transfer coefficient and mixing time can be altered to mimic values in a larger scale system allowing for potential prediction of response during scale-up.  相似文献   

16.
Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance.  相似文献   

17.
Understanding the cellular responses caused by metabolic stress is crucial for the design of robust fed-batch bioprocesses that maximize the expression of recombinant proteins. Chinese hamster ovary cells were investigated in chemically defined, serum-free cultures yielding 10(7) cells/mL and up to 500 mg/L recombinant tissue-plasminogen activator (t-PA). Upon glutamine depletion increased autophagosome formation and autophagic flux were observed, along with decreased proliferation and high viability. Higher lysosomal levels correlated with decreased productivity. Chemical inhibition of autophagy with 3-methyl adenine (3-MA) increased the t-PA yield by 2.8-fold. Autophagy-related MAP1LC3 and LAMP2 mRNA levels increased continuously in all cultures. Analysis of protein quality revealed that 3-MA treatment did not alter glycan antennarity while increasing fucosylation, galactosylation, and sialylation. Taken together, these findings indicate that inhibition of autophagy can considerably increase the yield of biotechnology fed-batch processes, without compromising the glycosylation capacity of cells. Monitoring or genetic engineering of autophagy provides novel avenues to improve the performance of cell culture-based recombinant protein production.  相似文献   

18.
Growth profiles of the batch and fed-batch culture of hybridoma cells producing monoclonal antibody were simulated using an unstructured model. The model describes the production of cellular macromolecules and monoclonal antibody, the metabolism of glucose and glutamine with the production of lactate and ammonia, and the profiles of cell growth in batch and fed-batch culture. Equations describing the cells arrested in G1 phase [T.I. Linardos, N. Kalogerakis, L.A. Behie, Biotechnol. Bioeng. 40 (1992) 359–368; E. Suzuki, D.F. Ollis, Biotechnol. Bioeng. 34 (1989) 1398–1402] were included in this model to describe the increase of the specific antibody productivity in the near-zero specific growth rate, which was observed in the recent experiments in fed-batch cultures of this study and the semi-continuous culture of hybridoma cells [S. Reuveny, D. Velez, L. Miller, J.D. Macmillan, J. Immnol. Methods 86 (1986) 61–69]. This model predicted the increase of specific antibody production rate and the decline of the specific production rate of cellular macromolecules such as DNA, RNA, protein, and polysaccharide in the late exponential and decline phase of batch culture and at lower specific growth rates in the fed-batch culture.  相似文献   

19.
目的观察Leptin受体(OBR)在雄性大鼠垂体前叶中的表达,研究Leptin对大鼠垂体生长激素细胞胞内游离钙水平的影响。方法用RTPCR方法检测Leptin受体几种形式在大鼠垂体前叶中的表达,用梯度离心的方法分离垂体生长激素(GH)细胞,将Leptin作用于分离的生长激素细胞,检测生长激素细胞胞内钙水平的变化。结果用RTPCR方法检测到在雄性大鼠垂体前叶中有Leptin受体(包括通用型OBR,短型OBRa及长型OBRb)的表达。用Percoll梯度离心法分离出的生长激素细胞约占70%~80%,10-8mol/LLeptin作用于分离培养的生长激素细胞,可引起生长激素细胞[Ca2 ]i相对水平迅速降低。结论在雄性大鼠垂体前叶有Leptin受体三种亚型的表达,且Leptin在体外可明显降低大鼠生长激素细胞胞内游离钙的相对水平。  相似文献   

20.
Bovine and rat growth hormones (bGH and rGH, respectively) possess signal peptides that direct the hormone to the secretory pathway and are proteolytically cleaved prior to secretion. Previous in vitro translation studies indicated that incorporation of the polar leucine analog beta-hydroxyleucine into de novo synthesized polypeptides inhibits signal peptide function. To test the effects of this analog on GH secretion by cultured animal cells, transfections of mouse L-cells with a bGH expression plasmid or metabolic labeling of endogenous rGH in anterior pituitary cells was performed in the absence or presence of beta-hydroxyleucine. Transient expression of bGH in mouse L-cells or endogenous expression of rGH in anterior pituitary cells resulted in an accumulation of GH in the culture medium. Treatment with beta-hydroxyleucine resulted in a block in secretion as evidenced by an accumulation of GHs within these cells. Amino-terminal sequencing of the intracellular form of the analog-substituted GHs demonstrated accurate signal peptide cleavage. In contrast, in vitro translations of bGH RNA performed in the presence of beta-hydroxyleucine and microsomal membranes resulted in the inhibition of signal peptide cleavage. The results suggest that beta-hydroxyleucine can uncouple signal peptide processing and protein secretion in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号