首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oviductal functional morphology remains poorly understood in oviparous snakes, particularly in regard to oviductal formation of albumen and the eggshell and to sperm storage. The oviduct of Diadophis punctatus was examined using histology and scanning electron microscopy to determine oviductal functional morphology throughout the reproductive cycle. The oviduct is composed of four morphologically distinct regions: infundibulum, uterine tube, uterus, and vagina. The infundibulum is thin, flaccid, and lined with simple ciliated cuboidal epithelial cells. The tube contains ciliated and secretory epithelial cells, which reach a maximum height and hypertrophy during early gravidity and produce glycosaminoglycans. The posterior portion of the tube contains temporary sperm storage receptacles. The uterus retains eggs throughout gestation and secretes the eggshell constituents. The endometrial glands of the uterus hypertrophy during vitellogenesis and become depleted of the secretory granules during gravidity. The functional morphology of the oviduct therefore shows cyclical changes that are correlated with eggshell formation. The vagina consists of thick longitudinal and circular smooth muscle layers, which may serve in retention of eggs during gestation. Furthermore, the vagina contains long furrows in the mucosa that serve as sperm storage receptacles. These receptacles store sperm following fall mating and overwintering, whereas the receptacles in the tube are utilized briefly during vitellogenesis just prior to ovulation. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The annual oviductal cycle of the American alligator, Alligator mississippiensis, is described using light and electron microscopy. Previous work done by Palmer and Guillette ([ 1992 ] Biol Reprod 46:39–47) shed some light on the reproductive morphology of the female alligator oviduct; however, their study was limited and did not report details relating to variation across the reproductive season. We recognize six variable regions of the oviduct: infundibulum, tube, isthmus, anterior uterus, posterior uterus, and vagina. Each area shows variation, to some degree, in the histochemistry and ultrastructure of oviductal secretions. Peak secretory activity occurs during the months of May and June, with the greatest variation occurring in the tube and anterior uterus. During the month of May, high densities of neutral carbohydrates and proteins are found within the tubal and anterior uterine glands. The epithelium of the entire oviduct secretes neutral carbohydrates throughout the year, but many regions lack protein secretions, and the posterior uterine glands show little secretory activity of any type throughout the year. After oviposition, secretory activity decreases drastically, andthe oviduct resembles that of the premating season. This study also provides evidence to support the homology between alligator and bird oviducts. Sperm were observed in glands at the tubal‐isthmus and utero‐vaginal junctions in preovulatory, postovulatory and postovipository females. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Oviducts of the American alligator (Alligator mississippiensis) were examined histologically for the presence of stored sperm. Two regions containing sperm were identified, one at the junction of the posterior uterus and the vagina (UVJ) and the other at the junction of the tube and isthmus (TIJ). In these areas, sperm were found in the lumina of oviductal glands. The glands in these areas of the oviduct are diffuse and shallow and appear to allow better access to sperm than glands located elsewhere. Histochemically, the glands of the UVJ reacted weakly for carbohydrates and proteins, whereas those of the TIJ reacted strongly for these same two components, secretions of which are associated with sperm storage structures in other reptiles. Sperm were not in contact with the glandular epithelium, and glands at the UVJ contained more sperm than those at the TIJ. Oviductal sperm storage was observed not only in recently mated females but in all females possessing uterine eggs as well as all females known to be associated with a nest. We conclude that female alligators are capable of storing sperm in their oviductal glands, but not from one year to the next.  相似文献   

4.
Oviductal structure is described in New Zealand's common gecko, Hoplodactylus maculatus, over four reproductive stages (early/mid-vitellogenesis, late vitellogenesis, early pregnancy, late pregnancy), using light, scanning electron, and transmission electron microscopy. Five regions of the oviduct are recognized: infundibulum, uterine tube, isthmus, uterus, and vagina. Up to three cell types make up the luminal epithelium of the oviduct: ciliated, nonciliated, and bleb cells. The function of bleb cells (seen in the infundibulum only) is unknown, but observation of these cells using transmission electron microscopy suggests that they are involved in secretory activity. Mucosal glands in the uterine tube possess large numbers of secretory granules of varying electron densities. Additionally, these glands appear to function as sperm storage tubules. Numerous sperm are seen in the glands during late vitellogenesis and early pregnancy. Very few uterine mucosal (shell) glands are seen during vitellogenesis, which is consistent with the observation that only a fine shell membrane covers the egg during early pregnancy. By late pregnancy, extraembryonic membranes lie adjacent to the uterus allowing the formation of the omphalo- and chorioallantoic placentas. Maximum cell height in the luminal epithelium is seen during vitellogenesis. The maximum percentage of ciliated cells making up the epithelial layer is seen during pregnancy. The low number of uterine mucosal glands seen in H. maculatus is a feature typical of other viviparous reptiles described, despite independent evolutions of viviparity. Although oviductal structure has been described in the literature for various reptiles, several ultrastructural features seen in this study highlight the lack of detailed understanding of this tissue. J. Morphol. 234:51-68, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The annual oviductal cycle of the Cottonmouth, Agkistrodon piscivorus, is described using electron microscopy. This is only the second such study on a snake and the first on a viperid species. Specimens were collected in reproductive and nonreproductive condition throughout the year and five ultrastructurally unique regions were recognized: the anterior infundibulum, posterior infundibulum, glandular uterus, nonglandular uterus, and vagina. Except for the anterior infundibulum and vagina, which exhibit no seasonal variation in ultrastructure, the oviduct becomes highly secretory at the start of vitellogenesis. This includes the entire luminal border of the uterus, the tubular glands of the glandular uterus, and the luminal border and sperm storage tubules of the posterior infundibulum. The secretory materials produced in the oviduct vary among regions of the oviduct, and also can vary among time periods in the same region of the oviduct. Variation is especially evident in the sperm storage tubules. Secretory activity in the sperm storage tubules ceases after ovulation, but the tubular glands of the glandular uterus remain secretory until parturition, at which time secretory activity in the varying sections of the oviduct decreases dramatically. After parturition, the oviduct remains in a dormant state until the next reproductive season. The seasonal variation in oviducal morphology mirrors the temperate primitive reproductive cycle known for some pitvipers. Uterine glands of A. piscivorous are more similar in secretory activity to those of an oviparous lizard than a viviparous colubrid snake, suggesting variation in uterine gland morphology between snakes of different families. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Despite a great deal of work in recent years on the structure of reptilian eggshells, few studies have examined the structure and regulation of the female reproductive tract in the formation of eggshell components, and none have examined the entire process from ovulation to oviposition. In this study, we examined oviductal structure in the oviparous lizard, Sceloporus woodi, followed changes in oviductal structure during gravidity, and determined uterine function in the formation of eggshell components. The endometrial glands of the uterus produce the proteinaceous fibers of the eggshell membrane mainly during the first 24 hours following ovulation, and the fibers are secreted intact and subsequently wrapped around the in utero eggs. Eggshell fibers of different thicknesses are layered around each egg, ranging from an inner layer of thick fibers that gradually become thinner medially and finally forms an outer layer of densely packed particulate matter. These changes in the fibrous layer are reflected by the thickness and length of fibers released from the endometrial glands. Calcium deposition occurs from 3 days following ovulation through day 14 (oviposition) and is accompanied by cellular changes in the luminal epithelium suggestive of secretory activity. Deposition of the eggshell components within the uterus occurs on all eggs simultaneously, rather than sequentially. © 1993 Wiley-Liss, Inc.  相似文献   

7.
This article is the first ultrastructural study on the annual oviducal cycle in a snake. The ultrastructure of the oviduct was studied in 21 females of the viviparous natricine snake Seminatrix pygaea. Specimens were collected and sacrificed in March, May, June, July, and October from one locale in South Carolina during 1998-1999. The sample included individuals: 1) in an inactive reproductive condition, 2) mated but prior to ovulation, and 3) from early and late periods of gravidity. The oviduct possesses four distinct regions from cranial to caudal: the anterior infundibulum, the posterior infundibulum containing sperm storage tubules (SSTs), the uterus, and the vagina. The epithelium is simple throughout the oviduct and invaginations of the lining form tubular glands in all regions except the anterior infundibulum and the posterior vagina. The tubular glands are not alveolar, as reported in some other snakes, and simply represent a continuation of the oviducal lining with no additional specializations. The anterior infundibulum and vagina show the least amount of variation in relation to season or reproductive condition. In these regions, the epithelium is irregular, varying from squamous to columnar, and cells with elongate cilia alternate with secretory cells. The secretory product of the infundibulum consists largely of lipids, whereas a glycoprotein predominates in the vagina; however, both products are found in these regions and elsewhere in the oviduct. In the SST area and the anterior vagina, tubular glands are compound as well as simple. The epithelium of the SST is most active after mating, and glycoprotein vacuoles and lipid droplets are equally abundant. When present, sperm form tangled masses in the oviducal lumen and glands of the SST area. The glands of the uterus are always simple. During sperm migration, a carrier matrix composed of sloughed epithelial cells, a glycoprotein colloid, lipids, and membranous structures surround sperm in the posterior uterus. During gravidity, tubular glands, cilia, and secretory products diminish with increasing development of the fetus, and numerous capillaries abut the basal lamina of the attenuated epithelial lining of the uterus.  相似文献   

8.
The effect of i.v. injected prostaglandins (PG) F2α and E2 on intraluminal pressure of the different oviductal parts (infundibulum, magnum, isthmus, uterus and vagina) was investigated in the domestic hen. PGF2α induced only a pressure rise in all oviduct segments. Administration of PGE2 resulted in variable changes in oviductal tone: pressure rise in the infundibulum; pressure increase often preceded by a small decrease in the magnum, isthmus and uterus; pressure decrease in the vagina and sometimes in the uterus. Simultaneous i.v. injection of both PG's induced mostly a decrease in vaginal tone. Intraluminal administration of PGF2α or E2 resulted only in an increase in uterine pressure.The observed effects on oviduct tone are discussed and a possible in intervention of both PG's in the mechanism of ovum transport and oviposition in the domestic hen is proposed.  相似文献   

9.
Oviducal sperm storage in the viviparous (lecithotrophic) colubrid snake Seminatrix pygaea was studied by light and electron microscopy. Out of 17 adult snakes examined from May–October, sperm were found in the oviducts of only two specimens. In a preovulatory female sacrificed 14 May, sperm were found in the oviducal lumen and sperm storage tubules (SSTs) of the posterior infundibulum. In a nonvitellogenic female sacrificed 9 June, sperm were found in the lumen and glands of the posterior uterus and anterior vagina, indicating a recent mating. The glands in the posterior infundibulum and vagina were simple or compound tubular, whereas glands in the uterus always were simple tubular. The epithelium of the sperm storage glands was not modified from that lining the rest of the oviduct. The cuboidal or columnar epithelium consisted of alternating ciliated and secretory areas. The secretory product released into the lumen by a merocrine process contained mucoprotein. Lipid droplets also were numerous in the epithelium. Portions of sperm sometimes were embedded in the apical cytoplasm or in secretory material. A carrier matrix containing a mucoid substance, desquamated epithelium, lipids, membranous structures, and possibly phagocytes was found around sperm in the posterior uterus. J. Morphol. 241:1–18, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Studies on histomorphometrical changes in different segments (infundibulum, magnum, isthmus, shell gland and vagina) of oviduct of mallard, Anas platyrhynchos during active and quiescent phases of the reproductive cycle have been made. The absolute and per cent length and width of each segment showed a marked change. The magnum showed an increase of 280 per cent. Of all the histological parameters studied the number and height of mucosal folds and mucosal epithelium showed more marked increase in all segments of oviduct. The size of tubular glands and frequency of ciliated and secretory cells were studied in relation to oviductal activity.  相似文献   

11.
The oviducts of 24 tortoises (Gopherus polyphemus) were examined using histological techniques and scanning electron microscopy to determine endometrial morphology. Measurements of endometrial characteristics (epithelial cell height, cilia length, thickness of endometrial glandular layer, and glandular diameter) in the uterus and tube (tuba uterina) were obtained to determine changes during the reproductive cycle. Epithelial cell height increases in both the uterus and the tube during vitellogenesis and remains hypertrophied during gravidity. Cilia length increases in the uterus during late vitellogenesis and gravidity, but the length of tubal cilia does not change during the reproductive cycle. The ratio of secretory to ciliated epithelial cells in the oviduct increases from quiescence to gravidity. The thickness of the glandular endometrial layer increases in both the uterus and tube during vitellogenesis. In the uterus, the glandular layer decreases in thickness during gravidity. The diameter of the uterine glands increases throughout vitellogenesis and gravidity; however, following ovulation glandular cells become depleted of secretory granules and cell height diminishes. The diameter of the tubal glands is unchanged during the reproductive cycle. Oviductal hypertrophy during vitellogenesis coincides with elevated circulating estradiol, whereas during gravidity progesterone concentrations peak (Taylor, '82, PhD Dissertation, University of Florida, Gainesville) and may induce secretion of albumen and eggshell components.  相似文献   

12.
Internal fertilization and oviparity most likely are symplesiomorphies for modern reptiles, and viviparity has evolved independently numerous times in Sauria and Serpentes. Oviducal sperm storage is known in females of all taxa except Amphisbaenia. However, in Rhynchocephalia and Crocodilia, sperm storage is poorly studied, and specialized sperm storage tubules (Ssts) are unknown. We use the molecular phylogenetic hypothesis [(Chelonia+Archosauria) (Squamata)] to trace evolution of sperm storage characters. Ssts arose independently in Chelonia and Squamata. Turtles possess albumen-secreting glands in the anterior half of the oviduct (the tuba or isthmus), and the most distal of these glands also serve as Ssts; in addition, some turtles possess Ssts in the adjacent segment of the oviduct, the uterus. Squamates lack albumen-secreting glands, and the ancestral state is possession of Ssts in the posterior infundibulum (uterine tube). Secondarily, iguanids have evolved vaginal Ssts. In this paper, we present the first ultrastructural observations on vaginal Ssts in lizards, using Anolis sagrei (Polychrotidae). Proximally, the neck of these simple tubular glands continues the alternation of ciliated and secretory cells lining the lumen of the vagina. However, the epithelial cells of the distal sperm storage area are neither secretory nor ciliated. The Ssts of Anolis are more similar to those of birds more than to infundibular receptacles in snakes and lizards.  相似文献   

13.
The purpose of the present study was: (1) to demonstrate immunocytochemically the localization of histamine in the wall of four chicken oviductal parts, i.e. infundibulum, magnum, isthmus, and shell gland, (2) to identify the presence of mast cells in chicken oviduct, and (3) to determine histamine concentration in oviductal tissue by the spectrofluorometric method. Experiments were carried out on Isa Brown laying hens decapitated just after oviposition. The specific immuno-reactivity for histamine and the presence of mast cells were found in the wall of all the examined oviductal parts. The immuno-reactive histamine was localized in epithelium, tubular glands, connective tissue layer, circular and longitudinal muscles, and endothelium and muscles of blood vessels. The intensity of immuno-positive reaction was as follows: infundibulum > shell gland > magnum = isthmus and correlated with quantitatively determined histamine level and tissue density of mast cells. It is suggested that mast cells are the main source of histamine in the chicken oviduct.  相似文献   

14.
The oviduct of the Indian fresh water soft-shelled turtle Lissemys punctata punctata was examined throughout the year under light and scanning electron microscopes to determine the location, histomorphological characteristics, and function of sperm storage structure, as well as their changes at different phases of the seasonal reproductive cycle. Sperm storage structures in the form of tubules were observed in the wall of isthmus throughout the year. These tubules developed either by folding or fusion of the oviductal mucosal folds and were lined by both ciliated and nonciliated epithelial cells. The height and secretory activities of the epithelia were markedly high during the breeding phase (August to September) but low in the nonbreeding phase (October to June). A few short tubules lined by cuboidal epithelium appear in the wall of infundibulum only during the breeding phase. Following mating (May), inseminated sperm were stored within the tubules of isthmus up to the pre-ovulatory stage (August). Thereafter, sperm associated with PAS-positive materials secreted from the epithelium (referred to as a carrier matrix) moved forward to the infundibulum and were stored within the storage tubules of the infundibulum for a short time. Subsequently, sperm evacuated the storage tubules and entered the oviductal lumen to fertilize the subsequently ovulated eggs during or prior to ovulation. The isthmus-tubules become shorter and narrower in the regressive phase (October to November) and remained so until the early preparatory phase (April). Sperm release might have been stimulated by estrogen secreted from the ovarian follicles of pre-ovulatory turtles. Stored sperm not utilized for fertilization remained viable not less than six months in the present turtle species.  相似文献   

15.
SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.  相似文献   

16.
The initiation of innate immunology system could play an important role in the aspect of protection for sperms long‐term storage when the sperms got into oviduct of turtles and come into contact with epithelium. The exploration of TLR2/4 distribution and expression in oviduct during hibernation could help make the storage mechanism understandable. The objective of this study was to examine the gene and protein expression profiles in Chinese soft‐shelled turtle during hibernation from November to April in the next year. The protein distribution of TLR2/4 was investigated in the magnum, isthmus, uterus, and vagina of the turtle oviduct using immunohistochemistry, and the gene expression of TLR2/4 was analyzed using quantitative real‐time PCR (qRT‐PCR). The results showed positive TLR2 protein expression primarily in the epithelium of the oviduct. TLR4 immunoreactivity was widely observed in almost every part of the oviduct, particularly in the epithelium and secretory gland membrane. Analysis of protein, mRNA expression revealed the decreased expression of TLR2/4 in the magnum compared with the isthmus, uterus, and vagina during hibernation. The protein and mRNA expression of TLR2 in the magnum, isthmus, uterus, and vagina was decreased in April compared with that in November. TLR4 protein and mRNA expression in the magnum, isthmus, uterus and vagina was decreased in November compared with that in April. These results indicated that TLR2/4 expression might protect the sperm from microbial infections. In contrast to the function of TLR2, which protects sperm during the early stages of hibernation, TLR4 might play a role in later stages of storage. The present study is the first to report the functions of TLR2/4 in reptiles.  相似文献   

17.
The purpose of the present study was to demonstrate visually and localize the presence of serotonin (5-HT) in the ovary and oviduct of the domestic hen using a histochemical Falck-Hillarp method. Experiments were carried out on White Leghorn laying hens with no egg in the shell gland. The specific yellow fluorescence, indicating the presence of 5-HT, was found both in the ovary and all examined oviductal parts. The strongest fluorescence was present in the ovarian stroma containing small follicles with a diameter under 4 mm. In the wall of the largest preovulatory follicle a very strong fluorescence was located mainly in the theca layer. In the oviductal parts, the intensity of 5-HT fluorescence in the infundibulum and magnum was fairly strong, whereas in the isthmus and shell gland it was weak. Fluorescence seen in the infundibulum, magnum, and isthmus was primarily localized along the luminal borders of the fold surface epithelium. In the shell gland 5-HT fluorescence was found within the uterine folds, especially in the tubular glands. Moreover, the presence of an egg in the definite oviductal segment (infundibulum or isthmus) increased the intensity of yellow fluorescence in this part.  相似文献   

18.
Sceloporus aeneus exhibits reproductive bimodality. That is, one taxon (Sceloporus aeneus bicanthalis) is viviparous whereas the other (Sceloporus aeneus aeneus) is oviparous. Morphological differences in luteal and oviductal structure were examined. Oviparous and viviparous females have distinct corpora lutea that form immediately after ovulation and remain active until just prior to oviposition or parturition. Luteal activity is correlated positively with follicular atresia. The oviduct of both subspecies is divided into three distinct morphological regions: an anterior infundibulum, a median uterus, and a posterior vagina. The infundibulum and vagina of females exhibiting either parity type are similar, whereas distinct differences in utering morphology are apparent. Primarily, these differences include the loss of uterine glands and a reduction in epithelial cell height in the viviparous form. Moreover, viviparous females possess a simple but well-developed chorioallantoic placenta and a simple choriovitelline placenta. Chorioallantoic placentation is associated with a significant increase in uterine vascularity, indicating a role in gas and/or water exchange. The evolution of viviparity and placentation are discussed in relation to these observations.  相似文献   

19.
Morphometric, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations have displayed regional differences in the mare oviductal epithelium. The entire mucosa of the oviduct was lined with a pseudostratified epithelium, which consisted of two distinct cell types, ciliated and non-ciliated. Ciliated cells were predominant in the three different segments of the oviduct and their percentage increased from fimbriae to ampulla and significantly decreased in the isthmus. SEM revealed in the infundibulum finger-like mucosal folds, some of them interconnected, in the ampulla numerous and elaborated branched folds of the mucosa, whereas the isthmus displayed a narrow lumen, short and non-branched mucosal folds. In the ampulla and isthmus the majority of non-ciliated cells showed apical blebs provided or not of short microvilli. TEM displayed different ultrastructural features of ciliated and non-ciliated cells along the oviduct. Isthmus ciliated cells presented a more electron-dense cytoplasm than in infundibulum and ampulla cells and its cilia were enclosed in an amorphous matrix. The non-ciliated cells of infundibulum did not contain secretory granules but some apical endocytic vesicles and microvilli coated by a well developed glycocalyx. Non-ciliated cells of ampulla and isthmus contained secretory granules. Apical protrusions of ampulla displayed two types of secretory granules as well as occasional electron-lucent vesicles. Isthmus non-ciliated cells showed either electron-lucent or electron-dense cytoplasm and not all contained apical protrusions. The electron-dense non-ciliated cells displayed microvilli coated with a well developed glycocalyx. Three types of granules were observed in the isthmus non-ciliated cells. The regional differences observed along the epithelium lining the mare oviduct suggest that the epithelium of the each segment is involved in the production of a distinctive microenvironment with a unique biochemical milieu related to its functional role.  相似文献   

20.
Previous studies in our laboratory demonstrated the presence of sialomucin complex (SMC)/Muc4 covering the rat uterine luminal epithelium. SMC/Muc4 expression in the uterus is regulated by estrogen and progesterone and lost at the time of receptivity. In contrast to this hormonal regulation at the uterine luminal surface, SMC/Muc4 in the uterine glandular epithelium, oviduct, cervix, and vagina was constitutively expressed at all stages of the estrous cycle. Furthermore, SMC was expressed in the cervix and vagina of the ovariectomized rat, even though it is not found in the uterine luminal epithelium. Both soluble and membrane-bound forms of SMC were present in these tissues. Immunohistochemical analyses showed distinctive localization patterns of SMC in the various tissues during the estrous cycle. Moreover, the previously unreported expression of SMC/Muc4 in the isthmus, ampulla, and infundibulum of the oviduct suggests potential functions in gamete development. These results indicate that SMC/Muc4 is expressed in most tissues of the female reproductive tract, in which it may have multiple functions. However, hormonal regulation appears to be restricted to the uterine luminal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号