首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
To determine which viral molecule(s) is recognized by herpes simplex virus (HSV)-specific cytotoxic T lymphocytes (CTL), target cells were constructed which express individual HSV glycoproteins. A mouse L cell line, Z4/6, which constitutively expressed high levels of HSV type 2 (HSV-2) gD (gD-2) was isolated and characterized previously (D. C. Johnson and J. R. Smiley, J. Virol. 54:682-689, 1985). Despite the expression of gD on the surface of Z4/6 cells, these cells were not killed by anti-HSV-2 CTL generated following intravaginal infection of syngeneic mice. In contrast, parental Z4 or Z4/6 cells infected with HSV-2 were lysed. Furthermore, unlabeled Z4/6 cells were unable to block the lysis of HSV-2-infected labeled target cells. Cells which express HSV-1 gB (gB-1) were isolated by transfecting L cells with the recombinant plasmid pSV2gBneo, which contains the HSV-1 gB structural sequences and the neomycin resistance gene coupled to the simian virus 40 early promoter and selecting G418-resistant cell lines. One such cell line, Lta/gB15, expressed gB which was detected by immunoprecipitation and at the cell surface by immunofluorescence. Additionally, cells expressing HSV-1 gC (gC-1) or gE (gE-1) were isolated by transfecting Z4 cells, which are L cells expressing ICP4 and ICP47, with either the recombinant plasmid pGE15neo, which contains the gE structural sequences and the neomycin resistance gene, or pDC17, which contains the gC structural gene coupled to the gD-1 promoter. A number of G418-resistant cell lines were isolated which expressed gC-1 or gE-1 at the cell surface. Anti-HSV-1 CTL generated following footpad infection of syngeneic mice were unable to lyse target cells expressing gB-1 or gE-1. In contrast, target cells expressing very low levels of gC-1 were killed as well as HSV-1-infected target cells. Furthermore, infection of gC-1-transformed target cells with wild-type HSV-1 or a strain of HSV-1 that does not express gC did not result in a marked increase in susceptibility to lysis. These results suggest that murine class I major histocompatibility complex-restricted anti-HSV CTL recognize gC-1 but do not recognize gB, gD, or gE as these molecules are expressed in transfected syngeneic target cells. The results are discussed in terms of recent evidence concerning the specificity of antiviral CTL.  相似文献   

2.
We previously demonstrated that anterior chamber (AC) injection of HSV-1 before or simultaneous with topical corneal HSV-1 infection resulted in cellular immune tolerance of HSV-1 Ag and a reduced frequency of corneal stromal lesions. In the present study, we have investigated the role of the HSV-1 cell-surface glycoproteins gC and gB in the induction of tolerance, and the resulting reduced susceptibility to HSV-1 corneal stromal disease. These studies utilized mutant strains of HSV-1 with deletion or point mutations in the gene coding for gC or gB. Groups of mice received topical corneal infections with wild-type HSV-1, followed by AC injection of the same eye with wild-type HSV-1 or a mutant strain. Varying the antigenic composition of the virus injected into the AC resulted in three distinct patterns of immune responsiveness. In agreement with our previous findings, AC injection of wild-type HSV-1 induced a state of HSV-1 specific tolerance that extended to both the delayed type hypersensitivity (DTH) and CTL responses. A mutant strain lacking gC (gC-) induced partial tolerance characterized by undetectable CTL activity but a normal DTH response. A mutant strain lacking gB (gB-) caused partial suppression of the CTL response and no reduction of the DTH response. Thus, whereas gB may be involved in CTL tolerance induction in this model, gC clearly is not involved. In contrast, both gC and gB must be present in the AC to induce detectable DTH tolerance. The latter interpretation was strengthened by the observation that AC injection of a mixture of gC- (expressing normal gB) and gB- (expressing normal gC) effectively suppressed the DTH response to wild-type HSV-1. A panel of mar mutants with individual point mutations affecting gC and gB was used to identify the epitopes responsible for induction of DTH tolerance. Two of the gC mutants failed to induce DTH tolerance to wild-type HSV-1 when injected into the AC, suggesting that the sites on the gC molecule that are altered by these mutations are important for the induction of DTH tolerance. Similarly, one of the mar mutants for gB uniformly failed to suppress the DTH response, while another had a variable effect. The unique pattern of cellular immune reactivity exhibited by the mice receiving simultaneous topical corneal infection with wild-type HSV-1 and AC injection of gC- (no CTL but normal DTH) was associated with significantly reduced susceptibility to HSV-1 corneal stromal lesions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We recently reported that herpes simplex virus type 1 (HSV-1) can cause agglutination of murine erythrocytes (E. Trybala, Z. Larski, and J. Wisniewski, Arch. Virol. 113:89-94, 1990). We now demonstrate that the mechanism of this hemagglutination is glycoprotein C-mediated binding of virus to heparan sulfate moieties at the surface of erythrocytes. Hemagglutination was found to be a common property of all gC-expressing laboratory strains and clinical isolates of HSV-1 tested. Mutants of HSV-1 deficient in glycoprotein C caused no specific hemagglutination, whereas their derivatives transfected with a functional gC-1 gene, thus reconstituting gC expression, regained full hemagglutinating activity. Hemagglutination activity was inhibited by antibodies against gC-1 but not by antibodies with specificity for glycoproteins gB, gD, or gE or by murine antiserum raised against the MP strain of HSV-1, which is gC deficient. Finally, purified gC-1 protein, like whole HSV-1 virions, showed high hemagglutinating activity which was inhibited by heparan sulfate and/or heparin and was completely prevented by pretreatment of erythrocytes with heparitinase, providing evidence that gC-1 mediates hemagglutination by binding to heparan sulfate at the cell surface. Thus, HSV-1-induced hemagglutination is gC-1 dependent and resembles the recently proposed mechanism by which HSV-1 attaches to surface heparans on susceptible cells, providing a simple model for initial events in the virus-cell interaction.  相似文献   

4.
Previous studies have suggested that the attachment of bovine herpesvirus 1 (BHV-1) to permissive cells is mediated by its major glycoproteins B (gB), C (gC), and D (gD). In order to gain further insight into the mechanism of the BHV-1 attachment process, we purified authentic gB, gC, and gD from BHV-1-infected cells and membrane anchor-truncated, soluble gB, gC, and gD from stably transfected cell lines by affinity chromatography and examined their cell-binding properties on Madin-Darby bovine kidney cells. All of the glycoproteins tested exhibited saturable binding to Madin-Darby bovine kidney cells. All of the glycoproteins tested exhibited saturable binding to Madin-Darby bovine kidney cells. Addition of exogenous heparin or treatment of cells with heparinase to remove cellular heparan sulfate (HS) prevented both gC and gB from binding to cells but had no effect on gD binding. An assessment of competition between gB, gC, and gD for cell binding revealed that gC was able to inhibit gB binding, whereas other combinations showed no effect. Cell-bound gC could be dissociated by heparin or heparinase treatment. The response of bound gB to heparin and heparinase treatments differed for the authentic and soluble forms; while soluble gB was susceptible to the treatment, a significant portion of cell-bound authentic gB was resistant to the treatment. Binding affinity analysis showed that soluble gB and both forms of gC and gD each had single binding kinetics with comparable dissociation constants (Kds), ranging from 1.5 x 10(-7) to 5.1 x 10(-7) M, whereas authentic gB exhibited dual binding kinetics with Kd1 = 5.2 x 10(-7) M and Kd2 = 4.1 x 10(-9) M. These results demonstrate that BHV-1 gC binds only to cellular HS, gD binds to a non-HS component, and gB initially binds to HS and then binds with high affinity to a non-HS receptor. Furthermore, we found that while authentic gB was able to inhibit viral plaque formation, soluble gB, which retains the HS-binding property but lacks the high-affinity binding property, was defective in this respect. These results suggest that the interaction between gB and its high-affinity receptor may play a critical role in the virus entry process.  相似文献   

5.
Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption.  相似文献   

6.
The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the baculovirus system. We studied the ability of these proteins to bind to mammalian cells, to bind to immobilized heparin, to block HSV type 1 (HSV-1) attachment to cells, and to inhibit plaque formation by HSV-1. Each of these gC proteins bound to conformation-dependent monoclonal antibodies and to human complement component C3b, indicating that they maintained the same conformation of gC proteins expressed in mammalian cells. Biotinylated gC1(457t) and gC2(426t) each bind to several cell lines. Binding was inhibited by an excess of unlabeled gC but not by gD, indicating specificity. The attachment of gC to cells involves primarily heparan sulfate proteoglycans, since heparitinase treatment of cells reduced gC binding by 50% but had no effect on gD binding. Moreover, binding of gC to two heparan sulfate-deficient L-cell lines, gro2C and sog9, both of which are mostly resistant to HSV infection, was markedly reduced. Purified gD1 (306t), however, bound equally well to the two mutant cell lines. In contrast, saturating amounts of gC1(457t) interfered with HSV-1 attachment to cells but failed to block plaque formation, suggesting a role for gC in attachment but not penetration. A mutant form of gC lacking residues 33 to 123, gC1(delta 33-123t), expressed in the baculovirus system, bound significantly less well to cells than did gC1(457t) and competed poorly with biotinylated gC1(457t) for binding. These results suggest that residues 33 to 123 are important for gC attachment to cells. In contrast, both the mutant and wild-type forms of gC bound to immobilized heparin, indicating that binding of these proteins to the cell surface involves more than a simple interaction with heparin. To determine that the contribution of the N-terminal region of gC is important for HSV attachment, we compared several properties of a mutant HSV-1 which contains gC lacking amino acids 33 to 123 to those of its parental virus, which contains full-length gC. The mutant bound less well to cells than the parental virus but exhibited normal growth properties.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Glycoproteins homologous to gB of herpes simplex virus (HSV) constitute the most highly conserved family of herpesvirus glycoproteins. All gB homologs analyzed so far have been shown to play essential roles in penetration and direct viral cell-to-cell spread. In studies aimed at assessing whether the high sequence homology is also indicative of functional homology, we analyzed the ability of the gB-homologous glycoprotein (former designation gII) of pseudorabies virus (PrV) to complement a gB- HSV type 1 (HSV-1) mutant and vice versa. The results show that a PrV gB-expressing cell line phenotypically complemented the lethal defect in gB- HSV-1 whereas reciprocal complementation of a gB- PrV mutant by HSV-1 gB was not observed.  相似文献   

8.
Although heparan sulfate (HS) serves as an initial receptor for the binding of both herpes simplex virus type 1 (HSV-1) and HSV-2 to cell surfaces, the two serotypes differ in epidemiology, cell tropism, and ability to compete for viral receptors in vitro. These observations are not necessarily contradictory and can be explained if the two serotypes recognize different structural features of HS. To compare the specific features of HS important for the binding and infection of HSV-1 and HSV-2, we took advantage of structural similarities between heparin and cell surface HS and compared the abilities of chemically modified heparin compounds to inhibit plaque formation. We found that the antiviral activity of heparin for both serotypes was independent of anticoagulant activity. Moreover, specific negatively charged regions of the polysaccharide, including N sulfations and the carboxyl groups, are key structural features for interactions of both HSV-1 and HSV-2 with cell surfaces since N desulfation or carboxyl reduction abolished heparin's antiviral activity. In contrast, 6-O sulfations and 2-,3-O sulfations are important determinants primarily for HSV- 1 infection. The O-desulfated heparins had little or no inhibitory effect on HSV-1 infection but inhibited HSV-2 infection. Using a series of intertypic recombinant mutant viruses, we found that susceptibility to O-desulfated heparins can be transferred to HSV-1 by the gene for glycoprotein C of HSV-2 (gC-2). This supports the notion that the envelope glycoproteins of HSV-1 and HSV-2 interact with different affinities for different structural features of heparin. To determine if the modified heparin compounds inhibited plaque formation by competing with cell surface HS for viral attachment, binding studies were also performed. As anticipated, most compounds inhibited binding and plaque formation in parallel. However, several compounds inhibited the binding of HSV-1 to cells during the initial attachment period at 4 degrees C; this inhibitory effect was reversed when the cells and inoculum were shifted to 37 degrees C. This temperature-dependent differential response to modified heparin compounds was evident primarily when glycoprotein C of HSV-1 (gC-1) was present in the virion envelope. Minimal temperature-dependent differences were seen for HSV-1 with gC-1 deleted and for HSV-2. These results suggest differences in the interactions of HSV-1 and HSV-2 with cell surface HS that may influence cell tropism.  相似文献   

9.
Polyclonal and monoclonal antibodies to individual herpes simplex virus (HSV) glycoproteins were tested for ability to inhibit adsorption of radiolabeled HSV type 1 (HSV-1) strain HFEMsyn [HSV-1(HFEM)syn] to HEp-2 cell monolayers. Polyclonal rabbit antibodies specific for glycoprotein D (gD) or gC and three monoclonal mouse antibodies specific for gD-1 or gC-1 most effectively inhibited HSV-1 adsorption. Antibodies of other specificities had less or no inhibitory activity despite demonstrable binding of the antibodies to virions. Nonimmune rabbit immunoglobulin G and Fc fragments partially inhibited adsorption when used at relatively high concentrations. These results suggest involvement of gD, gC, and perhaps gE (the Fc-binding glycoprotein) in adsorption. The monoclonal anti-gD antibodies that were most effective at inhibiting HSV-1 adsorption had only weak neutralizing activity. The most potent anti-gD neutralizing antibodies had little effect on adsorption at concentrations significantly higher than those required for neutralization. This suggests that, although some anti-gD antibodies can neutralize virus by blocking adsorption, a more important mechanism of neutralization by anti-gD antibodies may be interference with a step subsequent to adsorption, possibly penetration.  相似文献   

10.
Monospecific antisera to herpes simplex virus type 1 (HSV-1) glycoproteins gB, gC, and gD were used to identify the HSV-1-specific glycoproteins associated with the nuclear fraction as compared with those associated with cytoplasmic fraction, whole-cell lysates, and purified virions. The results indicate that a predominance of HSV glycoprotein precursors pgC(105), pgB(110), and pgD(52) is associated with the nuclear fraction. Treatment of the nuclear fraction with the enzyme endo-beta-N-acetylglucosaminidase H indicated that the lower-molecular-weight glycoproteins are sensitive to this endoglycosidase. These results suggest that in the nuclear fraction of HSV-1-infected cells virus-specific glycoproteins gB, gC, and gD are predominately in the high-mannose precursor form; however, detectable amounts of the fully glycosylated forms of gC and gD were also found.  相似文献   

11.
Herpes simplex virus type 2 (HSV-2) interacts with cell surface glycosaminoglycans during virus attachment. Glycoprotein B of HSV-2 can potentially mediate the interaction between the virion and cell surface glycosaminoglycans. To determine the specificity, kinetics, and affinity of these interactions, we used plasmon resonance-based biosensor technology to measure HSV-2 glycoprotein binding to glycosaminoglycans in real time. The recombinant soluble ectodomain of HSV-2 gB (gB2) but not the soluble ectodomain of HSV-2 gD bound readily to biosensor surfaces coated with heparin. The affinity constants (Kds) were determined for gB2 (Kd = 7.7 x 10(-7) M) and for gB2 deltaTM (Kd = 9.9 x 10(-7) M), a recombinant soluble form of HSV-2 gB in which only its transmembrane domain has been deleted. gB2 binding to the heparin surface was competitively inhibited by low concentrations of heparin (50% effective dose [ED50] = 0.08 microg/ml). Heparan sulfate and dermatan sulfate glycosaminoglycans have each been suggested as cell surface receptors for HSV. Our biosensor analyses showed that both heparan sulfate and dermatan sulfate inhibited gB2 binding (ED50 = 1 to 5 microg/ml), indicating that gB2 interacts with both heparin-like and dermatan sulfate glycosaminoglycans. Chondroitin sulfate A, in contrast, inhibited gB2 binding to heparin only at high levels (ED50 = 65 microg/ml). The affinity and specificity of gB2 binding to glycosaminoglycans demonstrated in these studies support its role in the initial binding of HSV-2 to cells bearing heparan sulfate or dermatan sulfate glycosaminoglycans.  相似文献   

12.
To investigate the interaction of herpes simplex virus type 1 (HSV-1) with the cell surface, we studied the formation of complexes by HSV-1 virion proteins with biotinylated cell membrane components. HSV-1 virion proteins reactive with surface components of HEp-2 and other cells were identified as gC, gB, and gD. Results from competition experiments suggested that binding of gC, gB, and gD occurred in a noncooperative way. The observed complex formation could be specifically blocked by monospecific rabbit antisera against gB and gD. The interaction of gD with the cell surface was also inhibited by monoclonal antibody IV3.4., whereas other gD-specific monoclonal antibodies, despite their high neutralizing activity, were not able to inhibit this interaction. Taken together, these data provide direct evidence that at least three of the seven known HSV-1 glycoproteins are able to form complexes with cellular surface structures.  相似文献   

13.
Herpes simplex virus type 2 (HSV-2) glycoprotein B (gB-2) gene segments were expressed as recombinant proteins in Escherichia coli. gB-2 recombinant proteins were reacted with human serum immunoglobulin G (IgG) antibodies in Western immunoblot assays. Initially, samples were tested for the presence of HSV-1-specific antibodies and HSV-2-specific antibodies by using HSV-infected cell lysates as antigen targets in Western blot assays. Serum samples that contained HSV-2-specific IgG (n = 58), HSV-1-specific IgG (n = 33), or no detectable HSV antibodies (n = 31) were tested for reactivities with the gB-2 recombinant proteins. In 58 of 58 samples that contained HSV-2-specific IgG, antibodies were present that reacted strongly with a gB-2 amino-proximal segment between amino acids (aa) 18 and 75. Three of 33 serum samples that contained HSV-1- and not HSV-2-specific IgG (as defined by the HSV lysate Western blot assay) reacted with this segment. Both HSV-2 antibodies and HSV-1 antibodies reacted strongly with a carboxy-terminal gB-2 segment between aa 819 and 904; a second minor cross-reactive region was mapped to a gB-2 segment between aa 564 and 626. The gB-2 segment from aa 18 to 75 may constitute a useful reagent for the virus type-specific serodiagnosis of HSV-2 infections. Further studies will be required to determine the relative sensitivities and specificities of the assay for gB-2 aa 18 to 75, HSV gG assays, and HSV lysate Western blot assays for detecting virus type-specific antibody responses in acute and chronic HSV-2 infections.  相似文献   

14.
Glycoprotein C from herpes simplex virus type 1 (gC-1 from HSV-1) acts as a receptor for the C3b fragment of the third component of complement on HSV-1-infected cell surfaces. Direct binding assays with purified gC-1 and C3b demonstrate that other viral and cellular proteins are not required for this interaction. Although C3b receptor activity is not expressed on HSV-2-infected cell surfaces, purified gC-2 specifically binds C3b in direct binding assays, suggesting that gC-1 and gC-2 are functionally similar. Here, we used a transient transfection system to further characterize the role of gC-1 and gC-2 as C3b receptors and to localize the site(s) on gC involved in C3b binding. The genes for gC-1 and gC-2 were each cloned into a eucaryotic expression vector containing the Rous sarcoma virus long terminal repeat as the promoter and transfected into NIH 3T3 cells. The expressed proteins were similar in molecular size, extent of carbohydrate processing, and antigenic properties to gC-1 and gC-2 purified from infected cells. Using a double-label immunofluorescence assay, we found that both gC-1 and gC-2 were expressed on the surfaces of transfected cells and bound C3b. These results suggest that other proteins expressed during HSV-2 infection prevent receptor activity. We constructed three in-frame deletion mutants of gC-2 to identify domains on the protein important for C3b receptor activity. These mutants lacked amino acids 26 to 73, 219 to 244, or 318 to 346. The mutant protein lacking residues 26 to 73 was reactive with two monoclonal antibodies recognizing distinct epitopes, showed a wild-type pattern of carbohydrate processing, and bound C3b on the transfected cell surface. These results suggest that residues 26 to 73 are not involved in C3b binding. The other two mutant proteins were present on the cell surface, but did not bind C3b. In addition, these mutant proteins showed altered patterns of carbohydrate processing, formed aggregates, and were no longer recognized by the monoclonal antibodies. These properties indicate that removal of residues 219 to 244 or 318 to 346 disrupted the native conformation of gC-2, possibly owing to an alteration in the spacing between critical cysteine residues.  相似文献   

15.
Oligomeric structure of glycoproteins in herpes simplex virus type 1.   总被引:10,自引:10,他引:0       下载免费PDF全文
A number of herpes simplex virus (HSV) glycoproteins are found in oligomeric states: glycoprotein E (gE)-gI and gH-gL form heterodimers, and both gB and gC have been detected as homodimers. We have further explored the organization of glycoproteins in the virion envelope by using both purified virions to quantitate glycoprotein amounts and proportions and chemical cross-linkers to detect oligomers. We purified gB, gC, gD, and gH from cells infected with HSV type 1 and used these as immunological standards. Glycoproteins present in sucrose gradient-purified preparations of two strains of HSV type 1, KOS and NS, were detected with antibodies to each of the purified proteins. From these data, glycoprotein molar ratios of 1:2:11:16 and 1:1:14:9 were calculated for gB/gC/gD/gH in KOS and NS, respectively. gL was also detected in virions, although we lacked a purified gL standard for quantitation. We then asked whether complexes of these glycoproteins could be identified, and if they existed as homo- or hetero-oligomers. Purified KOS was incubated at 4 degrees C with bis (sulfosuccinimidyl) suberate (BS3), an 11.4 A (1A = 0.1 mm) noncleavable, water-soluble cross-linker. Virus extracts were examined by Western blotting (immunoblotting), or immunoprecipitation followed by Western blotting, to assay for homo- and hetero-oligomers. Homodimers of gB, gC, and gD were detected, and hetero-oligomers containing gB cross-linked to gC, gC to gD, and gD to gB were also identified. gH and gL were detected as a hetero-oligomeric pair and could be cross-linked to gD or gC but not to gB. We conclude that these glycoproteins are capable of forming associations with one another. These studies suggest that glycoproteins are closely associated in virions and have the potential to function as oligomeric complexes.  相似文献   

16.
Virion glycoproteins gB, gD, and gH/gL play essential roles for herpes simplex virus (HSV) entry. The function of gD is to interact with a cognate receptor, and soluble forms of gD block HSV entry by tying up cell surface receptors. Both gB and the nonessential gC interact with cell surface heparan sulfate proteoglycan (HSPG), promoting viral attachment. However, cells deficient in proteoglycan synthesis can still be infected by HSV. This suggests another function for gB. We found that a soluble truncated form of gB bound saturably to the surface of Vero, A431, HeLa, and BSC-1 cells, L-cells, and a mouse melanoma cell line expressing the gD receptor nectin-1. The HSPG analog heparin completely blocked attachment of the gC ectodomain to Vero cells. In contrast, heparin only partially blocked attachment of soluble gB, leaving 20% of the input gB still bound even at high concentrations of inhibitor. Moreover, heparin treatment removed soluble gC but not gB from the cell surface. These data suggest that a portion of gB binds to cells independently of HSPG. In addition, gB bound to two HSPG-deficient cell lines derived from L-cells. Gro2C cells are deficient in HSPG, and Sog9 cells are deficient in HSPG, as well as chondroitin sulfate proteoglycan (CSPG). To identify particular gB epitopes responsible for HSPG-independent binding, we used a panel of monoclonal antibodies (MAbs) to gB to block gB binding. Only those gB MAbs that neutralized virus blocked binding of soluble gB to the cells. HSV entry into Gro2C and Sog9 cells was reduced but still detectable relative to the parental L-cells, as previously reported. Importantly, entry into Gro2C cells was blocked by purified forms of either the gD or gB ectodomain. On a molar basis, the extent of inhibition by gB was similar to that seen with gD. Together, these results suggest that soluble gB binds specifically to the surface of different cell types independently of HSPG and CSPG and that by doing so, the protein inhibits entry. The results provide evidence for the existence of a cellular entry receptor for gB.  相似文献   

17.
A transient transfection-fusion assay was established to investigate membrane fusion mediated by pseudorabies virus (PrV) glycoproteins. Plasmids expressing PrV glycoproteins under control of the immediate-early 1 promoter-enhancer of human cytomegalovirus were transfected into rabbit kidney cells, and the extent of cell fusion was quantitated 27 to 42 h after transfection. Cotransfection of plasmids encoding PrV glycoproteins B (gB), gD, gH, and gL resulted in formation of polykaryocytes, as has been shown for homologous proteins of herpes simplex virus type 1 (HSV-1) (A. Turner, B. Bruun, T. Minson, and H. Browne, J. Virol. 72:873-875, 1998). However, in contrast to HSV-1, fusion was also observed when the gD-encoding plasmid was omitted, which indicates that PrV gB, gH, and gL are sufficient to mediate fusion. Fusogenic activity was enhanced when a carboxy-terminally truncated version of gB (gB-008) lacking the C-terminal 29 amino acids was used instead of wild-type gB. With gB-008, only gH was required in addition for fusion. A very rapid and extended fusion was observed after cotransfection of plasmids encoding gB-008 and gDH, a hybrid protein consisting of the N-terminal 271 amino acids of gD fused to the 590 C-terminal amino acids of gH. This protein has been shown to substitute for gH, gD, and gL function in the respective viral mutants (B. G. Klupp and T. C. Mettenleiter, J. Virol. 73:3014-3022, 1999). Cotransfection of plasmids encoding PrV gC, gE, gI, gK, and UL20 with gB-008 and gDH had no effect on fusion. However, inclusion of a gM-expressing plasmid strongly reduced the extent of fusion. An inhibitory effect was also observed after inclusion of plasmids encoding gM homologs of equine herpesvirus 1 or infectious laryngotracheitis virus but only in conjunction with expression of the gM complex partner, the gN homolog. Inhibition by PrV gM was not limited to PrV glycoprotein-mediated fusion but also affected fusion induced by the F protein of bovine respiratory syncytial virus, indicating a general mechanism of fusion inhibition by gM.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) envelope proteins are posttranslationally modified by the addition of sialic acids to the termini of the glycan side chains. Although gC, gD, and gH are sialylated, it is not known whether sialic acids on these envelope proteins are functionally important. Digestion of sucrose gradient purified virions for 4 h with neuraminidases that remove both alpha2,3 and alpha2,6 linked sialic acids reduced titers by 1,000-fold. Digestion with a alpha2,3-specific neuraminidase had no effect, suggesting that alpha2,6-linked sialic acids are required for infection. Lectins specific for either alpha2,3 or alpha2,6 linkages blocked attachment and infection to the same extent. In addition, the mobility of gH, gB, and gD in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels was altered by digestion with either alpha2,3 specific neuraminidase or nonspecific neuraminidases, indicating the presence of both linkages on these proteins. The infectivity of a gC-1-null virus, DeltagC2-3, was reduced to the same extent as wild-type virus after neuraminidase digestion, and attachment was not altered. Neuraminidase digestion of virions resulted in reduced VP16 translocation to the nucleus, suggesting that the block occurred between attachment and entry. These results show for the first time that sialic acids on HSV-1 virions play an important role in infection and suggest that targeting virion sialic acids may be a valid antiviral drug development strategy.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) mutants defective for envelope glycoprotein C (gC) and gB are highly impaired in the ability to attach to cell surface heparan sulfate (HS) moieties of proteoglycans, the initial virus receptor. Here we report studies aimed at defining the HS binding element of HSV-1 (strain KOS) gB and determining whether this structure is functionally independent of gB’s role in extracellular virus penetration or intercellular virus spread. A mutant form of gB deleted for a putative HS binding lysine-rich (pK) sequence (residues 68 to 76) was transiently expressed in Vero cells and shown to be processed normally, leading to exposure on the cell surface. Solubilized gBpK also had substantially lower affinity for heparin-acrylic beads than did wild-type gB, confirming that the HS binding domain had been inactivated. The gBpK gene was used to rescue a KOS gB null mutant virus to produce the replication-competent mutant KgBpK. Compared with wild-type virus, KgBpK showed reduced binding to mouse L cells (ca. 20%), while a gC null mutant virus in which the gC coding sequence was replaced by the lacZ gene (KCZ) was substantially more impaired (ca. 65%-reduced binding), indicating that the contribution of gC to HS binding was greater than that of gB. The effect of combining both mutations into a single virus (KgBpKgC) was additive (ca. 80%-reduced binding to HS) and displayed a binding activity similar to that observed for KOS virus attachment to sog9 cells, a glycosaminoglycan-deficient L-cell line. Cell-adsorbed individual and double HS mutant viruses exhibited a lower rate of virus entry following attachment, suggesting that HS binding plays a role in the process of virus penetration. Moreover, the KgBpK mutant virus produced small plaques on Vero cells in the presence of neutralizing antibody where plaque formation depended on cell-to-cell virus spread. These studies permitted the following conclusions: (i) the pK sequence is not essential for gB processing or function in virus infection, (ii) the lysine-rich sequence of gB is responsible for HS binding, and (iii) binding to HS is cooperatively linked to the process of efficient virus entry and lateral spread but is not absolutely required for virus infectivity.  相似文献   

20.
Glycoproteins homologous to the type I membrane glycoprotein B (gB) of herpes simplex virus 1 (HSV-1) are the most highly conserved glycoproteins within the family Herpesviridae and are present in members of each herpesvirus subfamily. In the alphaherpesvirus pseudorabies virus (PrV), gB is required for entry into target cells and for direct viral cell-to-cell spread. These processes, though related, appear to be distinct, and thus it was interesting to analyze whether they require different functions of gB. To this end, we established cell lines stably expressing different carboxy-terminally truncated versions of PrV gB by deleting either (i) one predicted intracytoplasmic alpha-helical domain encompassing putative YQRL and dileucine internalization signals, (ii) two predicted intracytoplasmic alpha-helical domains, (iii) the complete intracytoplasmic domain, or (iv) the intracytoplasmic domain and the transmembrane anchor region. Confocal laser scanning microscopy showed that gB derivatives lacking at least the last 29 amino acids (aa) localize close to the plasma membrane, while the full-length protein accumulates in intracellular aggregations. Trans-complementation studies with a gB-deleted PrV (PrV-gB(-)) demonstrated that the 29-aa truncated form lacking the putative internalization signals and the C-terminal alpha-helical domain (gB-008) was efficiently incorporated into PrV-gB(-) virions and efficiently complemented infectivity and cell-to-cell spread. Moreover, gB-008 exhibited an enhanced fusogenic activity. In contrast, gB proteins lacking both alpha-helical domains (gB-007), the complete intracytoplasmic domain, or the intracytoplasmic domain and transmembrane anchor were only inefficiently or not at all incorporated into PrV-gB(-) virions and did not complement infectivity. However, gB-007 was able to mediate cell-to-cell spread of PrV-gB(-). Similar phenotypes were observed when virus recombinants expressing gB-008 or gB-007, respectively, instead of wild-type gB were isolated and analyzed. Thus, our data show that internalization of gB is not required for gB incorporation into virions nor for its function in either entry or cell-to-cell spread. Moreover, they indicate different requirements for gB in these membrane fusion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号