首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang Y  Li L  Moore BT  Peng XH  Fang X  Lappe JM  Recker RR  Xiao P 《PloS one》2012,7(4):e34641

Background

Osteoporosis mainly occurs in postmenopausal women, which is characterized by low bone mineral density (BMD) due to unbalanced bone resorption by osteoclasts and formation by osteoblasts. Circulating monocytes play important roles in osteoclastogenesis by acting as osteoclast precursors and secreting osteoclastogenic factors, such as IL-1, IL-6 and TNF-α. MicroRNAs (miRNAs) have been implicated as important biomarkers in various diseases. The present study aimed to find significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis.

Methodology/Principal Findings

We used ABI TaqMan® miRNA array followed by qRT-PCR validation in circulating monocytes to identify miRNA biomarkers in 10 high and 10 low BMD postmenopausal Caucasian women. MiR-133a was upregulated (P=0.007) in the low compared with the high BMD groups in the array analyses, which was also validated by qRT-PCR (P=0.044). We performed bioinformatic target gene analysis and found three potential osteoclast-related target genes, CXCL11, CXCR3 and SLC39A1. In addition, we performed Pearson correlation analyses between the expression levels of miR-133a and the three potential target genes in the 20 postmenopausal women. We did find negative correlations between miR-133a and all the three genes though not significant.

Conclusions/Significance

This is the first in vivo miRNA expression analysis in human circulating monocytes to identify novel miRNA biomarkers underlying postmenopausal osteoporosis. Our results suggest that miR-133a in circulating monocytes is a potential biomarker for postmenopausal osteoporosis.  相似文献   

2.

Introduction

Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts.

Methods

miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3.

Results

miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition.

Conclusions

miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA.  相似文献   

3.
4.

Aim

microRNAs (miRNAs) are involved in various neoplastic diseases, including prostate cancer (PCs). The aim of this study was to investigate the miRNA profile in PC tissue, to assess their association with clinicopathologic data, and to evaluate the potential of miRNAs as diagnostic and prognostic markers.

Materials and Methods

From a cohort of 535 patients submitted to radical prostatectomy (RP), a sample of 30 patients (14 patients with rapid biochemical failure (BF) and 16 patients without BF) with Gleason score 7 were analyzed. A total of 1435 miRNAs were quantified by microarray hybridization, and selected miRNAs with the highest Standard deviation (n = 50) were validated by real-time quantitative PCR (qRT-PCR). In situ hybridization (ISH) was used to evaluate the expression of miR-21.

Results

miR-21 was the only miR that was significantly up-regulated in the BF group (p = 0.045) miR-21 was up-regulated in patients with BF compared with non-BF group (p = 0.05). In univariate analyses, high stromal expression of miR-21 had predictive impact on biochemical failure-free survival (BFFS) and clinical failure-free survival (CFFS) (p = 0.006 and p = 0.04, respectively). In the multivariate analysis, high stromal expression of miR-21 expression was found to be an independent prognostic factor for BFFS in patients with Gleason score 6 (HR 2.41, CI 95% 1.06–5.49, p = 0.037).

Conclusion

High stromal expression of miR-21 was associated with poor biochemical recurrence-free survival after RP. For patients with Gleason score 6, miR-21 may help predict the risk of future disease progression and thereby help select patients for potential adjuvant treatment or a more stringent follow-up.  相似文献   

5.

Introduction

Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting.

Methods

Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n = 54) and controls (n = 56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n = 10 Luminal A-like; n = 10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n = 44 Luminal A; n = 46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated.

Results

Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis (miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652). The biomarker potential of 4 miRNAs (miR-29a, miR-181a, miR-223 and miR-652) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p = 0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs (miR-29a, miR-181a and miR-652) could reliably differentiate between cancers and controls with an AUC of 0.80.

Conclusion

This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype-specific breast tumor detection.  相似文献   

6.

Background

Prediction of clinical outcome after acute myocardial infarction (AMI) is challenging and would benefit from new biomarkers. We investigated the prognostic value of 4 circulating microRNAs (miRNAs) after AMI.

Methods

We enrolled 150 patients after AMI. Blood samples were obtained at discharge for determination of N-terminal pro-brain natriuretic peptide (Nt-proBNP) and levels of miR-16, miR-27a, miR-101 and miR-150. Patients were assessed by echocardiography at 6 months follow-up and the wall motion index score (WMIS) was used as an indicator of left ventricular (LV) contractility. We assessed the added predictive value of miRNAs against a multi-parameter clinical model including Nt-proBNP.

Results

Patients with anterior AMI and elevated Nt-proBNP levels at discharge from the hospital were at high risk of subsequent impaired LV contractility (follow-up WMIS>1.2, n = 71). A combination of the 4 miRNAs (miR-16/27a/101/150) improved the prediction of LV contractility based on clinical variables (P = 0.005). Patients with low levels of miR-150 (odds ratio [95% confidence interval] 0.08 [0.01–0.48]) or miR-101 (0.19 [0.04–0.97]) and elevated levels of miR-16 (15.9 [2.63–95.91]) or miR-27a (4.18 [1.36–12.83]) were at high risk of impaired LV contractility. The 4 miRNA panel reclassified a significant proportion of patients with a net reclassification improvement of 66% (P = 0.00005) and an integrated discrimination improvement of 0.08 (P = 0.001).

Conclusion

Our results indicate that panels of miRNAs may aid in prognostication of outcome after AMI.  相似文献   

7.

Background

Sensitive and specific detection of liver cirrhosis is an urgent need for optimal individualized management of disease activity. Substantial studies have identified circulation miRNAs as biomarkers for diverse diseases including chronic liver diseases. In this study, we investigated the plasma miRNA signature to serve as a potential diagnostic biomarker for silent liver cirrhosis.

Methods

A genome-wide miRNA microarray was first performed in 80 plasma specimens. Six candidate miRNAs were selected and then trained in CHB-related cirrhosis and controls by qPCR. A classifier, miR-106b and miR-181b, was validated finally in two independent cohorts including CHB-related silent cirrhosis and controls, as well as non−CHB-related cirrhosis and controls as validation sets, respectively.

Results

A profile of 2 miRNAs (miR-106b and miR-181b) was identified as liver cirrhosis biomarkers irrespective of etiology. The classifier constructed by the two miRNAs provided a high diagnostic accuracy for cirrhosis (AUC = 0.882 for CHB-related cirrhosis in the training set, 0.774 for CHB-related silent cirrhosis in one validation set, and 0.915 for non−CHB-related cirrhosis in another validation set).

Conclusion

Our study demonstrated that the combined detection of miR-106b and miR-181b has a considerable clinical value to diagnose patients with liver cirrhosis, especially those at early stage.  相似文献   

8.

Aims

MicroRNAs (miRNAs) play important roles in the pathogenesis of cardiovascular diseases. Circulating miRNAs were recently identified as biomarkers for various physiological and pathological conditions. In this study, we aimed to identify the circulating miRNA fingerprint of vulnerable coronary artery disease (CAD) and explore its potential as a novel biomarker for this disease.

Methods and Results

The Taqman low-density miRNA array and coexpression network analyses were used to identify distinct miRNA expression profiles in the plasma of patients with typical unstable angina (UA) and angiographically documented CAD (UA group, n = 13) compared to individuals with non-cardiac chest pain (control group, n = 13). Significantly elevated expression levels of miR-106b/25 cluster, miR-17/92a cluster, miR-21/590-5p family, miR-126*, and miR-451 were observed in UA patients compared to controls. These findings were validated by real-time PCR in another 45 UA patients, 31 stable angina patients, and 37 controls. In addition, miR-106b, miR-25, miR-92a, miR-21, miR-590-5p, miR-126* and miR-451 were upregulated in microparticles (MPs) isolated from the plasma of UA patients (n = 5) compared to controls (n = 5). Using flow cytometry and immunolabeling, we further found that Annexin V+ MPs were increased in the plasma samples of UA patients compared to controls, and the majority of the increased MPs in plasma were shown to be Annexin V+ CD31+ MPs. The findings suggest that Annexin V+ CD31+ MPs may contribute to the elevated expression of the selected miRNAs in the circulation of patients with vulnerable CAD.

Conclusion

The circulating miRNA signature, consisting of the miR-106b/25 cluster, miR-17/92a cluster, miR-21/590-5p family, miR-126* and miR-451, may be used as a novel biomarker for vulnerable CAD.

Trial Registration

Chinese Clinical Trial Register, ChiCTR-OCH-12002349.  相似文献   

9.

Introduction

Emerging evidence suggests that microRNAs (miRNAs) are crucially involved in tumorigenesis and that paired expression profiles of miRNAs and mRNAs can be used to identify functional miRNA-target relationships with high precision. However, no studies have applied integrated analysis to miRNA and mRNA profiles in chordomas. The purpose of this study was to provide insights into the pathogenesis of chordomas by using this integrated analysis method.

Methods

Differentially expressed miRNAs and mRNAs of chordomas (n = 3) and notochord tissues (n = 3) were analyzed by using microarrays with hierarchical clustering analysis. Subsequently, the target genes of the differentially expressed miRNAs were predicted and overlapped with the differentially expressed mRNAs. Then, GO and pathway analyses were performed for the intersecting genes.

Results

The microarray analysis indicated that 33 miRNAs and 2,791 mRNAs were significantly dysregulated between the two groups. Among the 2,791 mRNAs, 911 overlapped with putative miRNA target genes. A pathway analysis showed that the MAPK pathway was consistently enriched in the chordoma tissue and that miR-149-3p, miR-663a, miR-1908, miR-2861 and miR-3185 likely play important roles in the regulation of MAPK pathways. Furthermore, the Notch signaling pathway and the loss of the calcification or ossification capacity of the notochord may also be involved in chordoma pathogenesis.

Conclusion

This study provides an integrated dataset of the miRNA and mRNA profiles in chordomas, and the results demonstrate that not only the MAPK pathway and its related miRNAs but also the Notch pathway may be involved in chordoma development. The occurrence of chordoma may be associated with dysfunctional calcification or ossification of the notochord.  相似文献   

10.

Background

The lack of noninvasive biomarkers of rejection remains a challenge in the accurate monitoring of deeply buried nerve allografts and precludes optimization of therapeutic intervention. This study aimed to establish the expression profile of circulating microRNAs (miRNAs) during nerve allotransplantation with or without immunosuppression.

Results

Balb/c mice were randomized into 3 experimental groups, that is, (1) untreated isograft (Balb/c → Balb/c), (2) untreated allograft (C57BL/6 → Balb/c), and (3) allograft (C57BL/6 → Balb/c) with FK506 immunosuppression. A 1-cm Balb/c or C57BL/6 donor sciatic nerve graft was transplanted into sciatic nerve gaps created in recipient mice. At 1, 3, 7, 10, and 14 d after nerve transplantation, nerve grafts, whole blood, and sera were obtained for miRNA expression analysis with an miRNA array and subsequent validation with quantitative real-time PCR (qRT-PCR). Three circulating miRNAs (miR-320, miR-762, and miR-423-5p) were identified in the whole blood and serum of the mice receiving an allograft with FK506 immunosuppression, within 2 weeks after nerve allotransplantation. However, these 3 circulating miRNAs were not expressed in the nerve grafts. The expression of all these 3 upregulated circulating miRNAs significantly decreased at 2, 4, and 6 d after discontinuation of FK506 immunosuppression. In the nerve graft, miR-125-3b and miR-672 were significantly upregulated in the mice that received an allograft with FK506 only at 7 d after nerve allotransplantation.

Conclusions

We identified the circulating miR-320, miR-762, and miR-423-5p as potential biomarkers for monitoring the immunosuppression status of the nerve allograft. However, further research is required to investigate the mechanism behind the dysregulation of these markers and to evaluate their prognostic value in nerve allotransplantation.  相似文献   

11.
JM Romao  W Jin  M He  T McAllister  le L Guan 《PloS one》2012,7(7):e40605

Background

MicroRNAs (miRNAs) are a class of molecular regulators found to participate in numerous biological processes, including adipogenesis in mammals. This study aimed to evaluate the differences of miRNA expression between bovine subcutaneous (backfat) and visceral fat depots (perirenal fat) and the dietary effect on miRNA expression in these fat tissues.

Methodology/Principal Findings

Fat tissues were collected from 16 Hereford×Aberdeen Angus cross bred steers (15.5 month old) fed a high-fat diet (5.85% fat, n = 8) or control diet (1.95% fat, n = 8). Total RNA from each animal was subjected to miRNA microarray analysis using a customized Agilent miRNA microarray containing 672 bovine miRNA probes. Expression of miRNAs was not equal between fat depots as well as diets: 207 miRNAs were detected in both fat depots, while 37 of these were found to be tissue specific; and 169 miRNAs were commonly expressed under two diets while 75 were diet specific. The number of miRNAs detected per animal fed the high fat diet was higher than those fed control diet (p = 0.037 in subcutaneous fat and p = 0.002 visceral fat). Further qRT-PCR analysis confirmed that the expression of some miRNAs was highly influenced by diet (miR-19a, -92a, -92b, -101, -103, -106, -142–5p, and 296) or fat depot (miR-196a and -2454).

Conclusions/Significance

Our results revealed that the miRNA may differ among adipose depots and level of fat in the diet, suggesting that miRNAs may play a role in the regulation of bovine adipogenesis.  相似文献   

12.

Background

Circulating miRNAs are emerging as promising blood-based biomarkers for colorectal and other human cancers; however, technical factors that confound the development of these assays remain poorly understood and present a clinical challenge. The aim of this study was to systematically evaluate the effects of factors that may interfere with the accurate measurement of circulating miRNAs for clinical purposes.

Methods

Blood samples from 53 subjects, including routinely drawn serum samples, matched plasma from 30 subjects, and matched serum samples drawn before and after bowel preparation for colonoscopy from 29 subjects were collected. Additionally, 38 serum specimens stored in the clinical laboratory for seven days were used to test the stability of miRNAs. Hemolysis controls with serial dilutions of hemoglobin were prepared. RNA was extracted from serum, plasma or hemolyzed controls with spiked-in cel-miR-39, and levels of miR-21, miR-29a, miR-125b and miR-16 were examined by real-time RT-PCR. Hemolysis was measured by spectrophotometry.

Results

The expression levels of miR-16 and the degree of hemolysis were significantly higher in plasma than in serum (P<0.0001). Measured miR-21, miR-29a, miR-125b and miR-16 expression increased with hemoglobin levels in hemolyzed controls. The degree of hemolysis in serum samples correlated significantly with the levels of miR-21 (P<0.0001), miR-29a (P = 0.0002), miR-125b (P<0.0001) and miR-16 (P<0.0001). All four miRNAs showed significantly lower levels in sera that had been stored at 4°C for seven days (P<0.0001). Levels of miR-21 (P<0.0001), miR-29a (P<0.0001) and miR-16 (P = 0.0003), and the degree of hemolysis (P = 0.0002) were significantly higher in sera drawn after vs. before bowel preparation.

Conclusions

The measured levels of miRNAs in serum and plasma from same patients varied in the presence of hemolysis, and since hemolysis and other factors affected miRNA expression, it is important to consider these confounders while developing miRNA-based diagnostic assays.  相似文献   

13.

Background

MicroRNAs (miRNA) are 20∼25 nucleotide non-coding RNAs that inhibit the translation of targeted mRNA, and they have been implicated in the development of human malignancies. High grade serous ovarian carcinomas, the most common and lethal subtype of ovarian cancer, can occur sporadically or in the setting of BRCA1/2 syndromes. Little is known regarding the miRNA expression profiles of high grade serous carcinoma in relation to BRCA1/2 status, and compared to normal tubal epithelium, the putative tissue of origin for high grade serous carcinomas.

Methodology/Principal Findings

Global miRNA expression profiling was performed on a series of 33 high grade serous carcinomas, characterized with respect to BRCA1/2 status (mutation, epigenetic silencing with loss of expression or normal), and with clinical follow-up, together with 2 low grade serous carcinomas, 2 serous borderline tumors, and 3 normal fallopian tube samples, using miRNA microarrays (328 human miRNA). Unsupervised hierarchical clustering based on miRNA expression profiles showed no clear separation between the groups of carcinomas with different BRCA1/2 status. There were relatively few miRNAs that were differentially expressed between the genotypic subgroups. Comparison of 33 high grade serous carcinomas to 3 normal fallopian tube samples identified several dysregulated miRNAs (false discovery rate <5%), including miR-422b and miR-34c. Quantitative RT-PCR analysis performed on selected miRNAs confirmed the pattern of differential expression shown by microarray analysis. Prognostically, lower level miR-422b and miR-34c in high grade serous carcinomas were both associated with decreased disease-specific survival by Kaplan-Meier analysis (p<0.05).

Conclusions/Significance

High grade serous ovarian carcinomas with and without BRCA1/2 abnormalities demonstrate very similar miRNA expression profiles. High grade serous carcinomas as a group exhibit significant miRNA dysregulation in comparison to tubal epithelium and the levels of miR-34c and miR-422b appear to be prognostically important.  相似文献   

14.
15.
16.

Introduction

Circulating microRNAs (miRNAs) exhibit remarkable stability and may serve as biomarkers in several clinical cancer settings. The aim of this study was to investigate changes in the levels of specific circulating miRNA following breast cancer surgery and evaluate whether these alterations were also observed in an independent data set.

Methods

Global miRNA analysis was performed on prospectively collected serum samples from 24 post-menopausal women with estrogen receptor-positive early-stage breast cancer before surgery and 3 weeks after tumor resection using global LNA-based quantitative real-time PCR (qPCR).

Results

Numbers of specific miRNAs detected in the samples ranged from 142 to 161, with 107 miRNAs detectable in all samples. After correction for multiple comparisons, 3 circulating miRNAs (miR-338-3p, miR-223 and miR-148a) exhibited significantly lower, and 1 miRNA (miR-107) higher levels in post-operative vs. pre-operative samples (p<0.05). No miRNAs were consistently undetectable in the post-operative samples compared to the pre-operative samples. Subsequently, our findings were compared to a dataset from a comparable patient population analyzed using similar study design and the same qPCR profiling platform, resulting in limited agreement.

Conclusions

A panel of 4 circulating miRNAs exhibited significantly altered levels following radical resection of primary ER+ breast cancers in post-menopausal women. These specific miRNAs may be involved in tumorigenesis and could potentially be used to monitor whether all cancer cells have been removed at surgery and/or, subsequently, whether the patients develop recurrence.  相似文献   

17.

Introduction

Pancreatic cancer (PCA) is an aggressive tumor that associates with high mortality rates. Majority of PCA patients are diagnosed usually at late tumor stages when the therapeutic options are limited. MicroRNAs (miRNA) are involved in tumor development and are commonly dysregulated in PCA. As a proof-of-principle study, we aimed to evaluate the potential of fecal miRNAs as biomarkers for pancreatic cancer.

Materials and Methods

Total RNA was extracted from feces using Qiagen''s miRNA Mini Kit. For miRNA expression analyses we selected a subset of 7 miRNAs that are frequently dysregulated in PCA (miR-21, -143, -155, -196a, -210, -216a, -375). Subsequently, expression levels of these miRNAs were determined in fecal samples from controls (n = 15), chronic pancreatitis (n = 15) and PCA patients (n = 15) using quantitative TaqMan-PCR assays.

Results

All selected miRNAs were detectable in fecal samples with high reproducibility. Four of seven miRNAs (miR-216a, -196a, -143 und -155) were detected at lower concentrations in feces of PCA patients when compared to controls (p<0.05). Analysis of fecal miRNA expression in controls and patients with chronic pancreatitis and PCA revealed that the expression of miR-216a, -196a, -143 und -155 were highest in controls and lowest in PCA. The expression of the remaining three miRNAs (miR-21, -210 and -375) remained unchanged among controls and the patients with either chronic pancreatitis or PCA.

Conclusion

Our data provide novel evidence for the differential expression of miRNAs in feces of patients with PCA. If successfully validated in large-scale prospective studies, the fecal miRNA biomarkers may offer novel tools for PCA screening research.  相似文献   

18.

Background

Recent reports suggest that immigrants from Middle Eastern countries are a high-risk group for type 2 diabetes (T2D) compared with Swedes, and that the pathogenesis of T2D may be ethnicity-specific. Deregulation of microRNA (miRNA) expression has been demonstrated to be associated with T2D but ethnic differences in miRNA have not been investigated. The aim of this study was to explore the ethnic specific expression (Swedish and Iraqi) of a panel of 14 previously identified miRNAs in patients without T2D (including those with prediabetes) and T2D.

Methods

A total of 152 individuals were included in the study (84 Iraqis and 68 Swedes). Nineteen Iraqis and 14 Swedes were diagnosed with T2D. Expression of the 14 selected miRNAs (miR-15a, miR-20, miR-21, miR-24, miR-29b, miR-126, miR-144, miR-150, miR-197, miR-223, miR-191, miR-320a, miR-486-5p, and miR-28-3p) in plasma samples was measured by real-time PCR.

Results

In the whole study population, the expression of miR-24 and miR-29b was significantly different between T2D patients and controls after adjustment for age, sex, waist circumference, family history of T2D, and a sedentary lifestyle. Interestingly, when stratifying the study population according to country of birth, we found that higher expression of miR-144 was significantly associated with T2D in Swedes (OR = 2.43, p = 0.035), but not in Iraqis (OR = 0.54, p = 0.169). The interaction test was significant (p = 0.017).

Conclusion

This study suggests that the association between plasma miR-144 expression and T2D differs between Swedes and Iraqis.  相似文献   

19.

Introduction

A prerequisite to accurate interpretation of RQ-PCR data is robust data normalization. A commonly used method is to compare the cycle threshold (CT) of target miRNAs with those of a stably expressed endogenous (EC) miRNA(s) from the same sample. Despite the large number of studies reporting miRNA expression patterns, comparatively few appropriate ECs have been reported thus far. The purpose of this study was to identify stably expressed miRNAs with which to normalize RQ-PCR data derived from human blood specimens.

Methods

MiRNA profiling of approximately 380 miRNAs was performed on RNA derived from blood specimens from 10 women with breast cancer and 10 matched controls. Analysis of mean expression values across the dataset (GME) identified stably expressed candidates. Additional candidates were selected from the literature and analyzed by the geNorm algorithm. Further validation of three candidate ECs by RQ-PCR was performed in a larger cohort (n = 40 cancer, n = 20 control) was performed, including analysis by geNorm and NormFinder algorithms.

Results

Microarray screening identified 10 candidate ECs with expression patterns closest to the global mean. Geometric averaging of candidate ECs from the literature using geNorm identified miR-425 as the most stably expressed miRNA. MiR-425 and miR-16 were the best combination, achieving the lowest V-value of 0.185. Further validation by RQ-PCR confirmed that miR-16 and miR-425 were the most stably expressed ECs overall. Their combined use to normalize expression data enabled the detection of altered target miRNA expression that reliably differentiated between cancers and controls in human blood specimens.

Conclusion

This study identified that the combined use of 2 miRNAs, (miR-16 and miR-425) to normalize RQ-PCR data generated more reliable results than using either miRNA alone, or use of U6. Further investigation into suitable ECs for use in miRNA RQ-PCR studies is warranted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号