首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of species numbers and density of Collembola to manipulation of plant species richness (1, 2, 4, 8, 32 species) and number of plant functional groups (grasses, legumes and non-legume herbs) was studied in an experimental grassland at the Swiss BIODEPTH site (Lupsingen, Switzerland) in October 1997. Plant species richness or number of plant functional groups did not affect total diversity of Collembola, however, the number of Collembola species increased in the presence of legumes and the grass Trisetum flavescens . The abundance of Protaphorura armata increased but that of Hypogastruridae/Neanuridae significantly decreased with increasing number of plant functional groups. Other groups including the herbivorous Symphypleona did not respond to plant species richness and plant functional groups. Possibly, Hypogastruridae/Neanuridae species are weak competitors declining in density if the density of other Collembola groups increase. In general, the effect of the number of plant functional groups on the densities of collembolan taxa was stronger than that of plant species richness. Changes in Collembola density and diversity in part was likely caused by increased soil microbial and fine root biomass in treatments with higher plant functional group diversity. The presence of legumes resulted in an increase in the densities of total Collembola, Symphypleona/Neelipleona and Isotomidae indicating that they benefited from the high litter quality and the increased microbial biomass in the rhizosphere of legumes. The results suggest that microbivorous soil invertebrates are controlled by food quality rather than quantity. Furthermore, they indicate that presence of certain plant species and functional groups may be more important for collembolan community structure than the diversity of plant species and functional groups per se.  相似文献   

2.
Stable provisioning of ecosystem functions and services is crucial for human well‐being in a changing world. Two essential ecological components driving vital ecosystem functions in terrestrial ecosystems are plant diversity and soil microorganisms. In this study, we tracked soil microbial basal respiration and biomass over a time period of 12 years in a grassland biodiversity experiment (the Jena Experiment) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability of soil microbial properties (basal respiration and biomass) in bulk‐soil. Spatial and temporal stability were calculated as the inverse coefficient of variation (CV?1) of soil microbial respiration and biomass measured from soil samples taken over space and time, respectively. We found that 1) plant species richness consistently increased soil microbial properties after a time lag of four years since the establishment of the experimental plots, 2) plant species richness had minor effects on the spatial stability of soil microbial properties, whereas 3) the functional composition of plant communities significantly affected spatial stability of soil microbial properties, with legumes and tall herbs reducing both the spatial stability of microbial respiration and biomass, while grasses increased the latter, and 4) the effect of plant diversity on temporal stability of soil microbial properties turned from being negative to neutral, suggesting that the recovery of soil microbial communities from former arable land‐use takes more than a decade. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially‐driven ecosystem processes, such as decomposition and element cycling, in temperate semi‐natural grassland.  相似文献   

3.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

4.
Effects of plant community diversity on ecosystem processes have recently received major attention. In contrast, effects of species richness and functional richness on individual plant performance, and their magnitude relative to effects of community composition, have been largely neglected. Therefore, we examined height, aboveground biomass, and inflorescence production of individual plants of all species present in 82 large plots of the Jena Experiment, a large grassland biodiversity experiment in Germany. These plots differed in species richness (1–60), functional richness (1–4), and community composition. On average, in more species-rich communities, plant individuals grew taller, but weighed less, were less likely to flower, and had fewer inflorescences. In plots containing legumes, non-legumes were higher and weighed more than in plots without legumes. In plots containing grasses, non-grasses were less likely to flower than in plots without grasses. This indicates that legumes positively and grasses negatively affected the performance of other species. Species richness and functional richness effects differed systematically between functional groups. The magnitude of the increase in plant height with increasing species richness was greatest in grasses and was progressively smaller in legumes, small herbs, and tall herbs. Individual aboveground biomass responses to increasing species richness also differed among functional groups and were positive for legumes, less pronouncedly positive for grasses, negative for small herbs, and more pronouncedly negative for tall herbs. Moreover, these effects of species richness differed strongly between species within these functional groups. We conclude that individual plant performance largely depends on the diversity of the surrounding community, and that the direction and magnitude of the effects of species richness and functional richness differs largely between species. Our study suggests that diversity of the surrounding community needs to be taken into account when interpreting drivers of the performance of individual plants.  相似文献   

5.
Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups—legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity–productivity relationship.  相似文献   

6.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

7.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

8.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

9.
Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O) and 28 cm depth (with ²H) three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species) and functional group number and composition (legumes, grasses, tall herbs, small herbs). Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species.  相似文献   

10.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   

11.
研究了三江源地区不同建植期人工草地群落生物量、物种组成、多样性指数和土壤理化特征,并用多元逐步回归分析法探讨了土壤理化特征对群落生物量、多样性变化的响应.结果表明:研究区不同建植期人工草地植物群落的种类组成、植物功能群组成和群落数量特征存在显著差异;土壤含水量随着物种多样性指数的增加而增加,土壤容重随着物种多样性的增加而减小;土壤微生物生物量碳与土壤含水量、土壤有机质呈极显著正相关,与土壤容重呈极显著负相关;土壤有机碳含量明显呈"V"字型变化,且与土壤含水量的变化趋势相一致,随土壤容重的增加而减少;群落生物量与土壤养分和土壤含水量之间呈显著正相关,群落地上、地下生物量的增加有利于提高土壤养分含量.  相似文献   

12.
Species-rich plant communities use nitrogen (N) more efficiently in grassland ecosystems; however, the role of plant functional diversity in affecting community level plant N-use has received little attention. We examined plant N content, stock and N-use efficiency at community-level along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune and grassland) in Horqin Sand Land, northern China. We used the functional trait-based approach to examine how plant functional diversity, reflected by the most abundant species’ traits (community-weighted mean, CWM) and the dispersion of functional trait values (FDis), affected N-use efficiency in sandy grassland restoration. We further used the structure equation model (SEM) to evaluate the direct or indirect effects of plant species richness, biomass, functional diversity and soil properties on community-level plant N-use efficiency. We found that plant biomass and its N stock increased following sandy grassland restoration, and there were lower plant N content and higher N-use efficiency in semi-fixed dune, fixed dune and grassland as compared with mobile dune. N-use efficiency was positively associated with plant species richness, biomass, CWM plant height, CWM leaf C:N, FDis and soil gradient, but SEM results showed that species richness, CWM leaf C:N, plant biomass and FDis controlled by soil properties were the main factors exerting direct effects. CWM plant height also had a positive effect on N-use efficiency through its indirect effect on plant biomass. Soil gradient increased N-use efficiency through an indirect effect on vegetation rather than a direct effect. Final SEM models based on different plant functional diversity explained over 74% of variances in N-use efficiency. Effects of plant functional diversity on N-use efficiency supported both the mass ratio hypothesis and the complementarity hypothesis. Our results clearly highlight the important role of plant functional diversity in mediating the effects of vegetation and soil properties on community level plant N-use in sandy grassland ecosystems.  相似文献   

13.
Aims Invasion resistance in experimental plant communities is known to increase with increasing diversity and further to depend on the presence of particular functional groups. To test whether these effects also hold true for the invader establishment phase beyond the seedling stage, we studied survival and performance of Centaurea jacea L. (brown knapweed) planted into experimental grassland communities of varying plant biodiversity over three consecutive years. Moreover, we analysed the role of insect herbivory and biomass of the recipient community for mediating diversity effects.Methods In 2005, seedlings of Centaurea were transplanted into experimental grassland communities (the Jena Experiment) covering a species richness (1–60) and functional group richness (1–4) gradient. Half of these transplants and the community surrounding them in each plot were sprayed with insecticide while the other half served as control. In 2006 and 2007 (during the second and third year after transplantation), we recorded survival, growth-related (e.g. transplant biomass, height) and reproduction-related traits (e.g. number of flower heads). Annual data on community aboveground biomass served as covariate to investigate mediating effects of aboveground competition with the recipient community.Important findings Species richness was the most important factor responsible for Centaurea limitation. Higher levels of diversity decreased survival and all performance traits in both years. These diversity effects were partly driven by community biomass, but not fully explained by that covariate, suggesting the importance also of further processes. The influence of functional group richness was strong in the second year after transplantation and weaker in the third year. Among the particular functional groups, only the presence of legumes showed strong negative effects on Centaurea survival and weak negative effects on growth and reproduction, the latter two being mediated by biomass. Insect herbivore reduction considerably benefited Centaurea in sprayed monocultures, where it grew significantly larger than in all other diversity levels and than in the control subplots. We conclude that effects of plant community properties on invading individuals change in the course of establishment, that plant species richness effects are also important during later stages of establishment, and that biomass (especially at high diversity) and herbivory (especially at low diversity) of the recipient community are important in mediating community effects on invaders.  相似文献   

14.

Background and aims

Soil aggregate stability depends on plant community properties, such as functional group composition, diversity and biomass production. However, little is known about the relative importance of these drivers and the role of soil organisms in mediating plant community effects.

Methods

We studied soil aggregate stability in an experimental grassland plant diversity gradient and considered several explanatory variables to mechanistically explain effects of plant diversity and plant functional group composition. Three soil aggregate stability measures (slaking, mechanical breakdown and microcracking) were considered in path analyses.

Results

Soil aggregate stability increased significantly from monocultures to plant species mixtures and in the presence of grasses, while it decreased in the presence of legumes, though effects differed somewhat between soil aggregate stability measures. Using path analysis plant community effects could be explained by variations in root biomass, soil microbial biomass, soil organic carbon concentrations (all positive relationships), and earthworm biomass (negative relationship with mechanical breakdown).

Conclusions

The present study identified important drivers of plant community effects on soil aggregate stability. The effects of root biomass, soil microbial biomass, and soil organic carbon concentrations were largely consistent across plant diversity levels suggesting that the mechanisms identified are of general relevance.  相似文献   

15.
Biodiversity experiments generally report a positive effect of plant biodiversity on aboveground biomass (overyielding), which typically increases with time. Various studies also found overyielding for belowground plant biomass, but this has never been measured over time. Also, potential underlying mechanisms have remained unclear. Differentiation in rooting patterns among plant species and plant functional groups has been proposed as a main driver of the observed biodiversity effect on belowground biomass, leading to more efficient belowground resource use with increasing diversity, but so far there is little evidence to support this. We analyzed standing root biomass and its distribution over the soil profile, along a 1–16 species richness gradient over eight years in the Jena Experiment in Germany, and compared belowground to aboveground overyielding. In our long‐term dataset, total root biomass increased with increasing species richness but this effect was only apparent after four years. The increasingly positive relationship between species richness and root biomass, explaining 12% of overall variation and up to 28% in the last year of our study, was mainly due to decreasing root biomass at low diversity over time. Functional group composition strongly affected total standing root biomass, explaining 44% of variation, with grasses and legumes having strong overall positive and negative effects, respectively. Functional group richness or interactions between functional group presences did not strongly contribute to overyielding. We found no support for the hypothesis that vertical root differentiation increases with species richness, with functional group richness or composition. Other explanations, such as stronger negative plant–soil feedbacks in low‐diverse plant communities on standing root biomass and vertical distribution should be considered.  相似文献   

16.
Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number – namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), the abundance of nitrifiers (bacterial and archaeal amoA gene number) and denitrifiers (nirK, nirS and nosZ gene number), and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species), though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification, whereas changes in microbial abundance play a major role for non-facultative activities such as nitrification.  相似文献   

17.
The trait‐based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community‐weighted mean, CWM) and the dispersion of functional trait values (FDis). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (< 0.05). Soil fungal richness was positively associated with plant richness, biomass, CWM plant height, and soil gradient aggregated from the principal component analysis, but SEM results showed that plant richness and CWM plant height determined by soil properties were the main factors exerting direct effects. Soil gradient increased fungal richness through indirect effect on vegetation rather than direct effect. The negative indirect effect of FDis on soil fungal richness was through its effect on plant biomass. Our final SEM model based on plant functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.  相似文献   

18.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   

19.
To investigate how plant diversity loss affects nitrogen accumulation in above‐ground plant biomass and how consistent patterns are across sites of different climatic and soil conditions, we varied the number of plant species and functional groups (grasses, herbs and legumes) in experimental grassland communities across seven European experimental sites (Switzerland, Germany, Ireland, United Kingdom (Silwood Park), Portugal, Sweden and Greece). Nitrogen pools were significantly affected by both plant diversity and community composition. Two years after sowing, nitrogen pools in Germany and Switzerland strongly increased in the presence of legumes. Legume effects on nitrogen pools were less pronounced at the Swedish, Irish and Portuguese site. In Greece and UK there were no legume effects. Nitrogen concentration in total above‐ground biomass was quite invariable at 1.66±0.03% across all sites and diversity treatments. Thus, the presence of legumes had a positive effect on nitrogen pools by significantly increasing above‐ground biomass, i.e. by increases in vegetation quantity rather than quality. At the German site with the strongest legume effect on nitrogen pools and biomass, nitrogen that was fixed symbiotically by legumes was transferred to the other plant functional groups (grasses and herbs) but varied depending on the particular legume species fixing N and the non‐legume species taking it up. Nitrogen‐fixation by legumes therefore appeared to be one of the major functional traits of species that influenced nitrogen accumulation and biomass production, although effects varied among sites and legume species. This study demonstrates that the consequences of species loss on the nitrogen budget of plant communities may be more severe if legume species are lost. However, our data indicate that legume species differ in their N2 fixation. Therefore, loss of an efficient N2‐fixer (Trifolium in our study) may have a greater influence on the ecosystem function than loss of a less efficient species (Lotus in our study). Furthermore, there is indication that P availability in the soil facilitates the legume effect on biomass production and biomass nitrogen accumulation.  相似文献   

20.
Synthesis The interplay between bottom‐up and top‐down effects is certainly a general manifestation of any changes in both species abundances and diversity. Summary variables, such as species numbers, diversity indices or lumped species abundances provide too limited information about highly complex ecosystems. In contrast, species by species analyses of ecological communities comprising hundreds of species are inevitably only snapshot‐like and lack generality in explaining processes within communities. Our synthesis, based on species matrices of functional groups of all trophic levels, simplifies community complexity to a manageable degree while retaining full species‐specific information. Taking into account plant species richness, plant biomass, soil properties and relevant spatial scales, we decompose variance of abundance in consumer functional groups to determine the direction and the magnitude of community controlling processes. After decades of intensive research, the relative importance of top–down and bottom–up control for structuring ecological communities is still a particularly disputed issue among ecologists. In our study, we determine the relative role of bottom–up and top–down forces in structuring the composition of 13 arthropod functional groups (FG) comprising different trophic consumer levels. Based on species‐specific plant biomass and arthropod abundance data from 50 plots of a grassland biodiversity experiment, we quantified the proportions of bottom–up and top–down forces on consumer FG composition while taking into account direct and indirect effects of plant diversity, functional diversity, community biomass, soil properties and spatial arrangement of these plots. Variance partitioning using partial redundancy analysis explained 21–44% of total variation in arthropod functional group composition. Plant‐mediated bottom–up forces accounted for the major part of the explainable variation within the composition of all FGs. Predator‐mediated top–down forces, however, were much weaker, yet influenced the majority of consumer FGs. Plant functional group composition, notably legume composition, had the most important impact on virtually all consumer FGs. Compared to plant species richness and plant functional group richness, plant community biomass explained a much higher proportion of variation in consumer community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号