首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ANRS-EP38-IMMIP study aimed to provide a detailed assessment of the immune status of perinatally infected youths living in France. We studied Gag-specific CD4 and CD8 T-cell proliferation and the association between the proliferation of these cells, demographic factors and HIV disease history. We included 93 youths aged between 15 and 24 years who had been perinatally infected with HIV. Sixty-nine had undergone valid CFSE-based T-cell proliferation assays. Gag-specific proliferation of CD4 and CD8 T cells was detected in 12 (16%) and 30 (38%) patients, respectively. The Gag-specific proliferation of CD4 and CD8 T cells was more frequently observed in black patients than in patients from other ethnic groups (CD4: 32% vs. 4%, P = 0.001; CD8: 55% vs. 26%, P = 0.02). Among aviremic patients, the duration of viral suppression was shorter in CD8 responders than in CD8 nonresponders (medians: 54 vs. 20 months, P = 0.04). Among viremic patients, CD8 responders had significantly lower plasma HIV RNA levels than CD8 nonresponders (2.7 vs. 3.7 log10 HIV-RNA copies/ml, P = 0.02). In multivariate analyses including sex and HIV-1 subtype as covariables, Gag-specific CD4 T-cell proliferation was associated only with ethnicity, whereas Gag-specific CD8 T-cell proliferation was associated with both ethnicity and the duration of viral suppression. Both CD4 and CD8 responders reached their nadir CD4 T-cell percentages at younger ages than their nonresponder counterparts (6 vs. 8 years, P = 0.04 for both CD4 and CD8 T-cell proliferation). However, these associations were not significant in multivariate analysis. In conclusion, after at least 15 years of HIV infection, Gag-specific T-cell proliferation was found to be more frequent in black youths than in patients of other ethnic groups, despite all the patients being born in the same country, with similar access to care.  相似文献   

2.

Objective

Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue.

Methods

164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses.

Results

There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001).

Conclusions

Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.  相似文献   

3.
4.

Background

Cytokines are the hallmark of immune response to different pathogens and often dictate the disease outcome. HIV infection and tuberculosis (TB) are more destructive when confronted together than either alone. Clinical data related to the immune status of HIV-TB patients before the initiation of any drug therapy is not well documented. This study aimed to collect the baseline information pertaining to the immune status of HIV-TB co-infected patients and correlate the same with CD4+T cell levels and viral loads at the time of diagnosis prior to any drug therapy.

Methodology/Principal Findings

We analyzed the cytokines, CD4+T cell levels and viral loads to determine the immune environment in HIV-TB co-infection. The study involved four categories namely, Healthy controls (n = 57), TB infected (n = 57), HIV infected (n = 59) and HIV-TB co-infected (n = 57) patients. The multi-partite comparison and correlation between cytokines, CD4+T-cell levels and viral loads prior to drug therapy, showed an altered TH1 and TH2 response, as indicated by the cytokine profiles and skewed IFN-γ/IL-10 ratio. Inadequate CD4+T cell counts in HIV-TB patients did not correlate with high viral loads and vice-versa. When compared to HIV category, 34% of HIV-TB patients had concurrent high plasma levels of IL-4 and TNF-α at the time of diagnosis. TB relapse was observed in 5 of these HIV-TB co-infected patients who also displayed high IFN-γ/IL-10 ratio.

Conclusion/Significance

With these studies, we infer (i) CD4+T-cell levels as baseline criteria to report the disease progression in terms of viral load in HIV-TB co-infected patients can be misleading and (ii) co-occurrence of high TNF-α and IL-4 levels along with a high ratio of IFN-γ/IL-10, prior to drug therapy, may increase the susceptibility of HIV-TB co-infected patients to hyper-inflammation and TB relapse.  相似文献   

5.
Idiopathic aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. Immune abnormalities such as decreased lymphocyte counts, inverted CD4/CD8 T-cell ratio and increased IFN-γ-producing T cells have been found in AA. CD30, a surface protein belonging to the tumor necrosis factor receptor family and releasing from cell surface as a soluble form (sCD30) after activation, marks a subset of activated T cells secreting IFN-γ when exposed to allogeneic antigens. Our study found elevated BM plasma levels of sCD30 in patients with SAA, which were closely correlated with disease severity, including absolute lymphocyte count (ALC) and absolute netrophil count (ANC). We also noted that sCD30 levels were positively correlated with plasma IFN-γ levels and CD4/CD8 T-cell ratio in patients with SAA. In order to explain these phenomena, we stimulated T cells with alloantigen in vitro and found that CD30+ T cells were the major source of IFN-γ, and induced CD30+ T cells from patients with SAA produced significantly more IFN-γ than that from healthy individuals. In addition, increased proportion of CD8+ T cells in AA showed enhanced allogeneic response by the fact that they expressed more CD30 during allogeneic stimulation. sCD30 levels decreased in patients responded to immunosuppressive therapy. In conclusion, elevated BM plasma levels of sCD30 reflected the enhanced CD30+ T cell-mediated immune response in SAA. CD30 as a molecular marker that transiently expresses on IFN-γ-producing T cells, may participate in mediating bone marrow failure in AA, which also can facilitate our understanding of AA pathogenesis to identify new therapeutic targets.  相似文献   

6.
7.
Human adenovirus infection is life threatening after allogeneic haematopoietic stem cell transplantation (HSCT). Immunotherapy with donor-derived adenovirus-specific T cells is promising; however, 20% of all donors lack adenovirus-specific T cells. To overcome this, we transfected α/β T cells with mRNA encoding a T-cell receptor (TCR) specific for the HLA-A*0101-restricted peptide LTDLGQNLLY from the adenovirus hexon protein. Furthermore, since allo-reactive endogenous TCR of donor T lymphocytes would induce graft-versus-host disease (GvHD) in a mismatched patient, we transferred the TCR into γ/δ T cells, which are not allo-reactive. TCR-transfected γ/δ T cells secreted low quantities of cytokines after antigen-specific stimulation, which were increased dramatically after co-transfection of CD8α-encoding mRNA. In direct comparison with TCR-transfected α/β T cells, TCR-CD8α-co-transfected γ/δ T cells produced more tumor necrosis factor (TNF), and lysed peptide-loaded target cells as efficiently. Most importantly, TCR-transfected α/β T cells and TCR-CD8α-co-transfected γ/δ T cells efficiently lysed adenovirus-infected target cells. We show here, for the first time, that not only α/β T cells but also γ/δ T cells can be equipped with an adenovirus specificity by TCR-RNA electroporation. Thus, our strategy offers a new means for the immunotherapy of adenovirus infection after allogeneic HSCT.  相似文献   

8.
9.
Regulation by the NK and T cell surface receptor CD244 in mice and humans depends both on engagement at the cell surface by CD48 and intracellular interactions with SAP and EAT-2. Relevance to human disease by manipulating CD244 in mouse models is complicated by rodent CD2 also binding CD48. We distinguish between contributions of mouse CD244 and CD2 on engagement of CD48 in a mouse T cell hybridoma. CD2 and CD244 both contribute positively to the immune response as mutation of proline-rich motifs or tyrosine motifs in the tails of CD2 and CD244, respectively, result in a decrease in antigen-specific interleukin-2 production. Inhibitory effects of mouse CD244 are accounted for by competition with CD2 at the cell surface for CD48. In humans CD2 and CD244 are engaged separately at the cell surface but biochemical data suggest a potential conserved intracellular link between the two receptors through FYN kinase. We identify a novel signaling mechanism for CD244 through its potential to recruit phospholipase C-γ1 via the conserved phosphorylated tyrosine motif in the tail of the adaptor protein EAT-2, which we show is important for function.The CD2 family of cell surface receptors is differentially expressed on immune cells (1, 2) and is involved in regulating both innate and adaptive immunity (3). These receptors have related extracellular immunoglobulin superfamily domains and interact either homophilically or heterophilically within the CD2 family (1, 2). The CD2 family contains a subgroup of receptors termed the SLAM family that have a conserved tyrosine signaling motif in their cytoplasmic region TXYXX(I/V) referred to as an immunoreceptor tyrosine-based switch motif (ITSM).2 The SLAM family of receptors include CD244 (2B4), NTB-A (Ly-108), CD319 (CRACC, CS-1), CD150 (SLAM), CD84, and CD229 (Ly-9). Defects in signaling and aberrant expression of these receptors have been implicated in several immunodeficiency and autoimmune disorders in humans and mice (48). Within the SLAM family, CD244 is unusual in that it shares its ligand CD48 with the receptor CD2 in rodents, whereas in humans CD2 has evolved to interact with CD58 (9). The affinity of CD244 for CD48 in rodents is 6–9-fold higher than the still functionally relevant CD2/CD48 interaction (10). CD244 and CD2 have different cytoplasmic regions comprised of tyrosine motifs or proline-rich motifs, respectively.CD244 is predominantly found on NK cells and cytotoxic T cells and primarily characterized as an activating receptor (1115). CD2 is found on the same cells as CD244 but is also expressed on all T cells, both activated and resting, and has an activating or costimulatory function upon engagement of ligand (9). The tyrosine motifs found in the cytoplasmic tail of CD244 have been shown to bind the SH2 domains of cytoplasmic adaptor proteins SAP and EAT-2 and FYN kinase (1618) and are important to its function (5, 1921). In contrast to SH2 interactions of CD244, several SH3 domain-mediated interactions have been reported for the cytoplasmic region of CD2 including CD2AP/CMS, CIN85, FYN, and LCK (2226).The activating function of CD244 was called into question when a study using cells from a CD244 knock-out mouse showed that CD244 had an inhibitory effect as loss of CD244 resulted in enhanced NK killing of target cells (27). This suggested that previous results in mice where positive effects were seen may have been due to blocking CD244 ligand engagement as opposed to cross-linking with antibodies against CD244 (27). This has led to proposals that there are differences in function between mouse and human CD244 as there is more evidence to suggest that human CD244 is a positive regulator enhancing cytotoxicity and cytokine production (13, 15, 28). However, other more recent studies have shown the mouse CD244/CD48 interaction to be important for cytokine production and effector functions such as cytotoxicity against tumor targets in CD244-deficient mice (29). Long and short forms of CD244 have been cloned from mice with the short form being described as activating and the long form inhibitory (27, 30). Only the long form of CD244 is present in humans and is regarded as activating (14).Positive signaling by CD244 has been attributed to the recruitment of SAP (18), which is a signaling adaptor molecule comprised of a single SH2 domain encoded by the SH2D1A gene and has the ability to recruit the kinase FYN by binding its SH3 domain (31, 32). Loss of the SAP/FYN interaction can lead to X-linked lymphoproliferative disease in humans (17). The molecular basis of in vitro inhibitory effects observed with CD244 in mice on ligation with mAb or ligand remains elusive (33). Protein tyrosine and inositol phosphatases have been reported to associate with CD244 (18, 19, 34) but our studies using surface plasmon resonance found them to be very weak and unlikely to bind competitively compared with the SAP family of adaptors or FYN (16). The SAP-related adaptor EAT-2 has been reported to have an active inhibitory effect that is dependent on tyrosine motifs in the tail of EAT-2 (35) but its mechanism is not understood. The only interaction reported for the tail of EAT-2 is with FYN kinase and studies overexpressing EAT-2 in a T cell hybridoma resulted in increased IL-2 production upon antigen stimulation (16).The conservation between mouse and human CD244 cytoplasmic regions and associated adaptors suggests that both function in a similar way. We have explored the main difference between mouse and human CD244, which is the extracellular interaction through CD48 ligation in the mouse. This has revealed that inhibitory effects of CD244 ligation in mice can be due to competition between CD244 and CD2 for CD48. We have also found that the adaptor protein EAT-2 binds PLCγ1 providing a molecular basis for the important role CD244 plays in regulating cellular cytotoxicity (13, 36). We demonstrate that there is a potentially shared signaling mechanism through the FYN kinase that links CD2 and CD244 intracellularly even though in humans CD2 and CD244 no longer share a cell surface ligand.  相似文献   

10.
The T-cell receptor (TCR) plays a central role in the immune system, and > 90% of human T cells present a receptor that consists of the alpha TCR subunit (TCRA) and the beta subunit (TCRB). Here we report an analysis of 63 variable genes (BV), spanning 553 kb of TCRB that yielded 279 single-nucleotide polymorphisms (SNPs). Samples were drawn from 10 individuals and represent four populations-African American, Chinese, Mexican, and Northern European. We found nine variants that produce nonfunctional BV segments, removing those genes from the TCRB genomic repertoire. There was significant heterogeneity among population samples in SNP frequency (including the BV-inactivating sites), indicating the need for multiple-population samples for adequate variant discovery. In addition, we observed considerable linkage disequilibrium (LD) (r(2) > 0.1) over distances of approximately 30 kb in TCRB, and, in general, the distribution of r(2) as a function of physical distance was in close agreement with neutral coalescent simulations. LD in TCRB showed considerable spatial variation across the locus, being concentrated in "blocks" of LD; however, coalescent simulations of the locus illustrated that the heterogeneity of LD we observed in TCRB did not differ markedly from that expected from neutral processes. Finally, examination of the extended genotypes for each subject demonstrated homozygous stretches of >100 kb in the locus of several individuals. These results provide the basis for optimization of locuswide SNP typing in TCRB for studies of genotype-phenotype association.  相似文献   

11.
12.
13.
Adoptive transfer of virus-specific memory lymphocytes can be used to identify factors and mechanisms involved in the clearance of persistent virus infections. To analyze the role of B cells in clearing persistent infection with lymphocytic choriomeningitis virus (LCMV), we used B-cell-deficient μMT/μMT (B−/−) mice. B−/− mice controlled an acute LCMV infection with the same kinetics and efficiency as B-cell-competent (B+/+) mice via virus-specific, major histocompatibility complex (MHC) class I-restricted CD8+ cytotoxic T lymphocytes (CTL). CTL from B−/− and B+/+ mice were equivalent in affinity to known LCMV CTL epitopes and had similar CTL precursor frequencies (pCTL). Adoptive transfer of memory cells from B+/+ mice led to virus clearance from persistently infected B+/+ recipients even after in vitro depletion of B cells, indicating that B cells or immunoglobulins are not required in the transfer population. In contrast, transfer of memory splenocytes from B−/− mice failed to clear virus. Control of virus was restored neither by transferring higher numbers of pCTL nor by supplementing B−/− memory splenocytes with LCMV-immune B cells or immune sera. Instead, B−/− mice were found to have a profound CD4 helper defect. Furthermore, compared to cultured splenocytes from B+/+ mice, those from B−/− mice secreted less gamma interferon (IFN-γ) and interleukin 2, with differences most pronounced for CD8 T cells. While emphasizing the importance of CD4 T-cell help and IFN-γ in the control of persistent infections, the CD4 T-helper and CD8 T-cell defects in B−/− mice suggest that B cells contribute to the induction of competent T effector cells.Cytotoxic T lymphocytes (CTL) have in general been associated with the resolution of both acute and chronic viral infections. As first shown by studies of lymphocytic choriomeningitis virus (LCMV) in mice, its natural host, a critical component of immune responses to virus infection is the induction of virus-specific major histocompatibility complex (MHC) class I-restricted CTL (reviewed in reference 14). Evidence that these cells can curtail acute viral infections and clear virus and viral genetic material from sera, peripheral blood leukocytes, and infected tissues came from adoptive transfer of LCMV memory CTL into mice persistently infected with LCMV (1, 25, 33, 47, 53).Studies with humans have correlated the presence of CTL with the control of acute infection and clearance of virus and the absence of CTL activity with persistent viral infections. Hence, humans with genetic deficiencies in the humoral compartment of the immune system but with an intact T-cell compartment overcome most viral infections and display immunological memory when challenged or reinfected with the same virus. For example, agammaglobulinemic children recover from acute measles infection as well as do fully immunocompetent individuals and resist reinfection (23). In contrast, individuals with genetic or acquired defects in the T-cell compartment generally cannot control viral infections. Similarly, activity of CTL specific for hepatitis B virus (HBV) is associated with control of acute HBV infection; in the absence of CTL, HBV persists (39). Additionally, anti-HIV CTL dramatically decrease the load of human immunodeficiency virus (HIV) in infected patients, whereas loss of CTL function is accompanied by regress from a relatively healthy clinical stage to AIDS or rapid development of disease after HIV infection (9, 32). Finally, diminished or missing CTL responses to human cytomegalovirus (HCMV) facilitate HCMV disease in individuals undergoing bone marrow transplantation (40). Adoptive transfer of HCMV MHC-restricted CTL into such patients prevented CMV viremia or CMV disease (55). Thus, understanding the requirements for initiation and maintenance of CTL activity is essential.Earlier, we and others documented the requirement for CD4 T-cell help (5, 16, 29, 48) and gamma interferon (IFN-γ) (48) in maintaining sufficient CTL activity in vivo and resolution of a chronic LCMV infection. Here, we evaluate the role of B lymphocytes in this process. Under the appropriate signals, B lymphocytes can differentiate into plasma cells to function as antibody-secreting cells. Trapping of antibody-antigen complexes as well as processing of antigen and peptide presentation within the MHC complex allows B cells to also function as antigen-presenting cells (APC) to T cells (22). Furthermore, B cells release numerous growth factors and cytokines that regulate immune responses (44).To ascertain the role of B lymphocytes in the clearance of both acute and persistent LCMV infections, we used μMT/μMT B-cell-deficient (B−/−) mice which lack functional B cells and antibody. Earlier studies showed that CD8 T cells from these mice were capable of controlling an acute LCMV infection and that there was no defect in generating CTL precursors (3). Our results confirm and expand these findings. We demonstrate that while adoptive transfer of memory cells from B+/+ mice easily clears infectious virus and viral material in an MHC-matched persistently infected recipient, transfer of similar cells from B−/− mice does not. However, failure to terminate the persistent infection does not result from absence of B cells in the transfer population. Apparently, B−/− mice have a fundamental defect in CD4 helper function as well as a quantitative deficiency in IFN-γ and interleukin 2 (IL-2) preferentially produced by CD8 T cells after LCMV infection. These results emphasize the essential role for CD4 T-lymphocyte help and IFN-γ in achieving CTL activity necessary for clearing a persistent LCMV infection and point to an expanded role for B cells in the development and maintenance of CD4 and CD8 T-cell functions.  相似文献   

14.
Human T-cell leukemia virus type 1 (HTLV-1) is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL). HTLV-1 bZIP factor (HBZ) is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg) mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs) and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL.  相似文献   

15.
We previously reported that a CD3×CD19 bispecific antibody (bsAb) can induce efficient killing of tumour cells by preactivated T cells isolated from patients with B cell malignancy. For future intravenous application we investigated whether resting T cells from peripheral blood can be stimulated to proliferate and become cytotoxic with the CD3×CD19 bsAb alone. Indeed peripheral blood mononuclear cells, isolated from healthy donors or patients with B cell malignancy, started to proliferate within 1 day in response to CD3×CD19 bsAb. Within the same time spaancytotoxic activity against CD19-positive tumour cells was already detectable. Maintenance of cytotoxic activity was seen during 3 days of culture but optimal lysis of the target cells then required fresh CD3×CD19 bsAb in the cytotoxicity assay. Essentially the same results for proliferation and cytotoxicity were found when separated CD4-positive and CD8-positive T cells were activated by the bsAb in the presence of autologous monocytes. These results may be relevant for the in vivo application of the bsAb when used as immunotherapy in patients with B cell malignancy.This work was supported by grant IKMN 90-10 from the Dutch Cancer Society. M.C. was supported by a grant from the UK Medical Research Couneil  相似文献   

16.
CD44 is a cell surface protein and it is widely used as a cancer stem cell marker in various cancer types including gastric cancer. We conducted proteomic analysis in CD44(+) and CD44(?) gastric cancer cells to understand characteristics of CD44(+) and CD44(?) cells. In the present study, we sorted cells from the gastric cancer cell line MKN45 according to CD44 expression to separate out CD44(+) and CD44(?) cells. And we conducted RT-PCR to identify mRNA expression of cancer stem cell markers in CD44(+) and CD44(?) cells. Cancer stem cell markers showed upregulated expression in CD44(+) cells. Next, we performed two-dimensional electrophoresis analysis to determine the differential expression pattern of proteins in each group; control, CD44(+), and CD44(?) MKN45 cells. We found a total of 113 spots that varied in expression between CD44(+) and CD44(?) cells, and subjected 20 of those protein spots to MALDI-MS. We selected the three proteins (HSPA8; heat shock cognate 71 kDa protein isoform 1, ezrin, α-enolase) upregulated in CD44(+) cells than CD44(?) cells and one protein (prohibitin) showed increased expression in CD44(?) cells. We validated the protein expression levels of four selected proteins by Western blot. We suggest that our study could be a helpful background to study CD44(+) cancer stem-like cells and differences between CD44(+) and CD44(?) cells in gastric cancer.  相似文献   

17.
18.
We investigated the influence of acute and chronic endurance exercise on levels of intracellular nitric oxide (NO), superoxide (O?·?), and expression of genes regulating the balance between these free radicals in CD34? and CD34? peripheral blood mononuclear cells (PBMCs; isolated by immunomagnetic cell separation). Blood samples were obtained from age- and body mass index (BMI)-matched endurance-trained (n = 10) and sedentary (n = 10) men before and after 30 min of exercise at 75% maximal oxygen uptake (·VO(?max)). Baseline levels of intracellular NO (measured by DAF-FM diacetate) and O?·? (measured by dihydroethidium) were 26% (P < 0.05) and 10% (P < 0.05) higher, respectively, in CD34? PBMCs from the sedentary group compared with the endurance-trained group. CD34? PBMCs from the sedentary group at baseline had twofold greater inducible nitric oxide synthase (iNOS) mRNA and 50% lower endothelial NOS (eNOS) mRNA levels compared with the trained group (P < 0.05). The baseline group difference in O?·? was eliminated by acute exercise. Experiments with apocynin indicated that the training-related difference in O?·? levels was explained by increased NADPH oxidase activity in the sedentary state. mRNA levels of additional angiogenic and antioxidant genes were consistent with a more angiogenic profile in CD34? cells of trained subjects. CD34? PBMCs, examined for exploratory purposes, also displayed a more angiogenic mRNA profile in trained subjects, with vascular endothelial growth factor (VEGF) and eNOS being more highly expressed in trained subjects. Overall, our data suggest an association between the sedentary state and increased nitro-oxidative stress in CD34? cells.  相似文献   

19.
Regulatory T cells (Tregs) are central for maintaining immune balance and their dysfunction drives the expansion of critical immunologic disorders. During the past decade, microRNAs (miRNAs) have emerged as potent regulators of gene expression among which immune-related genes and their immunomodulatory properties have been associated with different immune-based diseases. The miRNA signature of human peripheral blood (PB) CD8+CD25 +CD127 low Tregs has not been described yet. We thus identified, using TaqMan low-density array (TLDA) technique followed by individual quantitative real-time polymerase chain reaction (qRT-PCR) confirmation, 14 miRNAs, among which 12 were downregulated whereas two were upregulated in CD8 +CD25 +CD127 low Tregs in comparison to CD8 +CD25 T cells. In the next step, microRNA Data Integration Portal (mirDIP) was used to identify potential miRNA target sites in the 3′-untranslated region (3′-UTR) of key Treg cell-immunomodulatory genes with a special focus on interleukin 10 (IL-10) and transforming growth factor β (TGF-β). Having identified potential miR target sites in the 3′-UTR of IL-10 (miR-27b-3p and miR-340-5p) and TGF-β (miR-330-3p), we showed through transfection and transduction assays that the overexpression of two underexpressed miRNAs, miR-27b-3p and miR-340-5p, downregulated IL-10 expression upon targeting its 3′-UTR. Similarly, overexpression of miR-330-3p negatively regulated TGF-β expression. These results highlighted an important impact of the CD8 + Treg mirnome on the expression of genes with significant implication on immunosuppression. These observations could help in better understanding the mechanism(s) orchestrating Treg immunosuppressive function toward unraveling new targets for treating autoimmune pathologies and cancer.  相似文献   

20.
CD3 is an essential component of the CD3-TCR complex. In this report, we describe the cloning, characterization, and expression analysis of the CD3 and CD3/ chain genes from fugu, Takifugu rubripes. Two distinct CD3 homologue cDNAs, designated as CD3-1 and CD3-2, and a CD3/ homologue cDNA were isolated from the fugu thymus. The deduced amino acid sequences of these cDNAs exhibit conserved essential CD3 chain motifs and overall structures. RT-PCR analysis demonstrated that the CD3 and CD3/ genes were expressed in lymphoid organs (e.g. thymus, head kidney, trunk kidney and spleen), mucosal tissues (gill, skin, and intestine), and peripheral blood leucocytes (PBL). The CD3 and TCR genes were expressed only in the surface IgM population, which were separated from PBL using an anti-fugu IgM monoclonal antibody. In addition, in situ hybridization confirmed that CD3-expressing cells were distributed randomly in the head kidney, trunk kidney, and spleen, but in the thymus were restricted to the lymphoid outer zone and epithelioid inner zone only. Collectively, these results suggest that CD3 molecules are useful markers for the identification of T cells in teleost fish. The present study thus provides a critical step in identifying T cells in this model organism.Nucleotide sequence data reported in this paper are available in the DBJ/EMBL/GenBank databases and have been assigned the accession numbers AB166798 (CD3-1), AB166799 (CD3-2), and AB166800 (CD3/).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号