首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
2.

Objective

To establish the functions of miR-21 and the roles of two feedback regulation loops, miR-21-Spry1-ERK/NF-κB and miR-21-Pdcd4-JNK/c-Jun, in arsenite-transformed human embryo lung fibroblast (HELF) cells.

Methods

For arsenite-transformed HELF cells, apoptosis, clonogenicity, and capacity for migration were determined by Hoechst staining, assessment of their capacity for anchorage-independent growth, and wound-healing, respectively, after blockage, with inhibitors or with siRNAs, of signal pathways for JNK/c-Jun or ERK/NF-κB. Decreases of miR-21 levels were determined with anti-miR-21, and the up-regulation of Pdcd4 and Spry1 was assessed in transfected cells; these cells were molecularly characterized by RT-PCR, qRT-PCR, Western blots, and immunofluorescence assays.

Results

MiR-21 was highly expressed in arsenite-transformed HELF cells and normal HELF cells acutely treated with arsenite, an effect that was concomitant with activation of JNK/c-Jun and ERK/NF-κB and down-regulation of Pdcd4 and Spry1 protein levels. However, there were no significant changes in mRNA levels for Pdcd4 and Spry1, which suggested that miR-21 regulates the expressions of Pdcd4 and Spry1 through translational repression. In arsenite-transformed HELF cells, blockages of JNK/c-Jun or ERK/NF-κB with inhibitors or with siRNAs prevented the increases of miR-21and the decreases of the protein levels but not the mRNA levels of Pdcd4 and Spry1. Down-regulation of miR-21 and up-regulations of Pdcd44 or Spry1 blocked the arsenite-induced activations of JNK/c-Jun or ERK/NF-κB, indicating that knockdown of miR-21 inhibits feedback of ERK activation and JNK activation via increases of Pdcd4 and Spry1 protein levels, respectively. Moreover, in arsenite-transformed HELF cells, inhibition of miR-21 promoted cell apoptosis, inhibited clonogenicity, and reduced migration.

Conclusion

The results indicate that miR-21 is both a target and a regulator of ERK/NF-κB and JNK/c-Jun and the feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1, respectively, are involved in arsenite-induced malignant transformation of HELF cells.  相似文献   

3.
We isolated the phenolic glucoside salicortin from a Populus euramericana bark extract, and examined its ability to suppress inflammatory responses as well as the molecular mechanisms underlying these abilities, using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Salicortin inhibited iNOS expression and the subsequent production of NO in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Salicortin significantly suppressed LPS-induced signal cascades of NF-κB activation, such as IKK activation, IκBα phosphorylation and p65 phosphorylation in RAW 264.7 cells. In addition, salicortin inhibited the LPS-induced activation of JNK, but not ERK or p38 MAPK. Furthermore, salicortin significantly inhibited production of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 in the LPS-stimulated RAW 264.7 cells. These findings suggest that salicortin may show its anti-inflammatory activity by suppressing the LPS-induced expression of pro-inflammatory mediators through inhibition of NF-κB and JNK MAPK signaling cascades in macrophages. [BMB Reports 2014; 47(6): 318-323]  相似文献   

4.
5.
6.
The role of inflammatory cytokine interleukin-20 (IL-20) has not yet been studied in cancer biology. Here, we demonstrated up-regulation of both IL-20 and IL-20R1 in muscle-invasive bladder cancer patients. The expressions of IL-20 and IL-20R1 were observed in bladder cancer 5637 and T-24 cells. We found that IL-20 significantly increased the expression of matrix metalloproteinase (MMP)-9 via binding activity of NF-κB and AP-1 in bladder cancer cells and stimulated the activation of ERK1/2, JNK, p38 MAPK, and JAK-STAT signaling. Among the pathways examined, only ERK1/2 inhibitor U0126 significantly inhibited IL-20-induced migration and invasion. Moreover, siRNA knockdown of IL-20R1 suppressed migration, invasion, ERK1/2 activation, and NF-κB-mediated MMP-9 expression induced by IL-20. Unexpectedly, the cell cycle inhibitor p21WAF1 was induced by IL-20 treatment without altering cell cycle progression. Blockade of p21WAF1 function by siRNA reversed migration, invasion, activation of ERK signaling, MMP-9 expression, and activation of NF-κB in IL-20-treated cells. In addition, IL-20 induced the activation of IκB kinase, the degradation and phosphorylation of IκBα, and NF-κB p65 nuclear translocation, which was regulated by ERK1/2. IL-20 stimulated the recruitment of p65 to the MMP-9 promoter region. Finally, the IL-20-induced migration and invasion of cells was confirmed by IL-20 gene transfection and by addition of anti-IL-20 antibody. This is the first report that p21WAF1 is involved in ERK1/2-mediated MMP-9 expression via increased binding activity of NF-κB, which resulted in the induction of migration in IL-20/IL-20R1 dyad-induced bladder cancer cells. These unexpected results might provide a critical new target for the treatment of bladder cancer.  相似文献   

7.
8.
Activation of pattern recognition receptors and proper regulation of downstream signaling are crucial for host innate immune response. Upon infection, the NF-κB and interferon regulatory factors (IRF) are often simultaneously activated to defeat invading pathogens. Mechanisms concerning differential activation of NF-κB and IRF are not well understood. Here we report that a MAVS variant inhibits interferon (IFN) induction, while enabling NF-κB activation. Employing herpesviral proteins that selectively activate NF-κB signaling, we discovered that a MAVS variant of ~50 kDa, thus designated MAVS50, was produced from internal translation initiation. MAVS50 preferentially interacts with TRAF2 and TRAF6, and activates NF-κB. By contrast, MAVS50 inhibits the IRF activation and suppresses IFN induction. Biochemical analysis showed that MAVS50, exposing a degenerate TRAF-binding motif within its N-terminus, effectively competed with full-length MAVS for recruiting TRAF2 and TRAF6. Ablation of the TRAF-binding motif of MAVS50 impaired its inhibitory effect on IRF activation and IFN induction. These results collectively identify a new means by which signaling events is differentially regulated via exposing key internally embedded interaction motifs, implying a more ubiquitous regulatory role of truncated proteins arose from internal translation and other related mechanisms.  相似文献   

9.
10.
11.
12.
Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11) only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS) in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells.  相似文献   

13.
14.
15.
16.
The human hyaluronan (HA) receptor for endocytosis (HARE; the 190-kDa C terminus of Stab2) is a major clearance receptor for multiple circulating ligands including HA, heparin (Hep), acetylated LDL (AcLDL), dermatan sulfate (DS), apoptotic debris, and chondroitin sulfate types A, C, D, and E. We previously found that HARE contains an N-glycan in the HA binding Link domain (at Asn2280), and cells expressing membrane-bound HARE(N2280A) bind and endocytose HA normally (Harris, E. N., Parry, S., Sutton-Smith, M., Pandey, M. S., Panico, M., Morris, H. R., Haslam, S. M., Dell, A., and Weigel, P. H. (2010) Glycobiology 20, 991–1001). Also, NF-κB-mediated signaling is activated by HARE-mediated endocytosis of HA, Hep, AcLDL, or DS but not by chondroitin sulfates (Pandey, M. S., and Weigel, P. H. (2014) J. Biol. Chem. 289, 1756–1767). Here we investigated the role of Link N-glycans in ligand uptake and NF-κB and ERK1/2 signaling. HA·HARE-mediated ERK1/2 activation was HA size- dependent, as found for NF-κB activation. HARE(N2280A) cells internalized HA, Hep, AcLDL, and DS normally. No ERK1/2 activation occurred during HA endocytosis by HARE(N2280A) cells, but activation did occur with Hep. Dual-luciferase recorder assays showed that NF-κB-mediated gene expression occurred normally in HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but did not occur with HA. Activation of NF-κB by endogenous degradation of IκB-α was observed for HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but not HA. We conclude that a Link domain complex N-glycan is required specifically for HARE·HA-mediated activation of ERK1/2 and NF-κB-mediated gene expression and that this initial activation mechanism is different from and independent of the initial mechanisms for HARE-mediated signaling in response to Hep, AcLDL, or DS uptake.  相似文献   

17.
18.
Asymmetrical secretion of vascular endothelial growth factor (VEGF) by retinal pigment epithelial (RPE) cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD). We studied the effect of tumor necrosis factor-α (TNF-α) on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively) in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号