首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Mycoplasma pneumoniae is a wall-less human respiratory tract pathogen that colonizes mucosal epithelium via a polar terminal organelle having a central electron-dense core and adhesin-related proteins clustered at a terminal button. A mutant lacking J-domain co-chaperone TopJ is non-cytadherent and non-motile, despite having a core and normal levels of the major cytadherence-associated proteins. J-domain co-chaperones work with DnaK to catalyse polypeptide binding and subsequent protein folding. Here we compared features of the topJ mutant with other cytadherence mutants to elucidate the contribution of TopJ to cytadherence function. The topJ mutant was similar ultrastructurally to a non-cytadherent mutant lacking terminal organelle proteins B/C, including aberrant core positioning and cell morphology in thin sections, but exhibited a hybrid satellite growth pattern with features of mutants both having and lacking a core. Time-lapse images of mycoplasmas expressing a YFP fusion with terminal organelle protein P41 suggested that terminal organelle formation/positioning was delayed or poorly co-ordinated with cell growth in the absence of TopJ. TopJ required a core for localization, perhaps involving HMW1. P1 trypsin accessibility on other non-cytadherent mutants was significantly enhanced over wild type but unexpectedly was reduced with topJ mutant cells, suggesting impaired processing, translocation and/or folding of this adhesin.  相似文献   

2.
The terminal organelle of the cell wall-less pathogenic bacterium Mycoplasma pneumoniae is a complex structure involved in adherence, gliding motility and cell division. This membrane-bound extension of the mycoplasma cell possesses a characteristic electron-dense core. A number of proteins having direct or indirect roles in M. pneumoniae cytadherence have been previously localized to the terminal organelle. However, the cytadherence-accessory protein HMW2, which is required for the stabilization of several terminal organelle components, has been refractory to antibody-based approaches to subcellular localization. In the current study, we constructed a sandwich fusion of HMW2 and enhanced green fluorescent protein (EGFP) and expressed this fusion in wild-type M. pneumoniae and the hmw2- mutant I-2. The fusion protein was produced in both backgrounds at wild-type levels and supported stabilization of proteins HMW1, HMW3 and P65, and haemadsorption function in mutant I-2. Furthermore, the fusion protein was fluorescent and localized specifically to the terminal organelle. However, the EGFP moiety appeared to interfere partially with processes related to cell division, as transformant cells exhibited an increased incidence of bifurcated attachment organelles. These data together with structural predictions suggest that HMW2 is the defining component of the electron-dense core of the terminal organelle.  相似文献   

3.
Mycoplasma pneumoniae attachment to host cells requires biogenesis of a functional attachment organelle, including proper localization of the adhesion protein P1 to this structure. Mutations in the hmw2 gene result in the inability to cytadhere, failure to localize P1 to the attachment organelle, altered cell morphology and accelerated turnover of the cytadherence-associated proteins HMW1, HMW3 and P65. The hmw2 gene encodes HMW2 (190 kDa) and P28 (28 kDa), the latter apparently the product of internal translation initiation near the 3' end of the hmw2 coding region. Transformation of hmw2 mutant I-2 with recombinant wild-type hmw2 restores a wild-type phenotype. In the current study, a severely truncated hmw2 gene with an in frame internal deletion of 80% of the HMW2 coding region that leaves the P28-encoding region intact restored cytadherence to mutant I-2. Transformants produced the expected 38 kDa HMW2 derivative (HMW2Deltamid) at levels comparable to that of HMW2 in wild-type cells; like HMW2, HMW2Deltamid exhibited marked Triton X-100 insolubility. HMW3, P65 and P28 were fully restored, but not HMW1. These transformants were morphologically similar to wild-type M. pneumoniae but failed to localize P1 to the attachment organelle. Finally, a C-terminally truncated HMW2 derivative was partly Triton X-100 soluble and incapable of restoring HMW1, HMW3 and P65 to wild-type levels. These data are consistent with a model in which the C-terminal domain of HMW2 imparts normal localization to the protein, and this localization itself is required for productive interactions with downstream cytadherence-associated proteins. Furthermore, these results emphasize the association of HMW1 with P1 clustering.  相似文献   

4.
Mycoplasma pneumoniae is a major cause of bronchitis and atypical pneumonia in humans. This cell wall-less bacterium has a complex terminal organelle that functions in cytadherence and gliding motility. The gliding mechanism is unknown but is coordinated with terminal-organelle development during cell division. Disruption of M. pneumoniae open reading frame MPN311 results in loss of protein P41 and downstream gene product P24. P41 localizes to the base of the terminal organelle and is required to anchor the terminal organelle to the cell body, but during cell division, MPN311 insertion mutants also fail to properly regulate nascent terminal-organelle development spatially or gliding activity temporally. We measured gliding velocity and frequency and used fluorescent protein fusions and time-lapse imaging to assess the roles of P41 and P24 individually in terminal-organelle development and gliding function. P41 was necessary for normal gliding velocity and proper spatial positioning of new terminal organelles, while P24 was required for gliding frequency and new terminal-organelle formation at wild-type rates. However, P41 was essential for P24 function, and in the absence of P41, P24 exhibited a dynamic localization pattern. Finally, protein P28 requires P41 for stability, but analysis of a P28(-) mutant established that the MPN311 mutant phenotype was not a function of loss of P28.  相似文献   

5.
Mycoplasma pneumoniae proteins HMW1-HMW3 collectively are essential for cytadherence, but the function or requirement for each has not been defined. Cytadherence mutant M6 lacks HMW1 because of a frameshift in hmw1 and produces a truncated adherence-associated protein P30 because of a deletion at the 3′ end of p30. Genetic manipulation of this mutant was used to evaluate the role of HMW1 in cytadherence. Mutant M6 was transformed with a recombinant transposon containing a wild-type p30 allele. Transformants synthesized both truncated and full-length P30, from the resident and recombinant alleles, respectively. However, these transformants remained hemadsorption negative, suggesting that HMW1 is required for cytadherence. Wild-type M. pneumoniae cells are generally elongated, tapering to form the attachment organelle at one end of the cell. The cytadhesin protein P1 is normally densely clustered on the mycoplasma surface at this differentiated terminal structure. However, both mutant M6 and M6 transformed with recombinant p30 had a striking ovoid morphology with no tapering at the tip structure, making the attachment organelle indistinguishable. Furthermore, protein P1 was randomly distributed on the mycoplasma surface rather than clustered at a polar location. In contrast, mutant M6 transformed with a recombinant transposon expressing the wild-type hmw1 allele exhibited a near-normal morphology and localized P1 to the attachment organelle. Significantly, M6 transformed with an hmw1 gene truncated slightly at the 3′ end failed to restore proper morphology or P1 localization to the attachment organelle, suggesting a functional importance to the C-terminal domain of HMW1.  相似文献   

6.
A method was developed for protein localization in Mycoplasma pneumoniae by immunofluorescence microscopy. The P1 adhesin protein was revealed to be located at least at one cell pole in all adhesive cells, as has been observed by immunoelectron microscopy. Cell images were classified according to P1 localization and assigned by DNA content. Cells with a single P1 focus at one cell pole had a lower DNA content than cells with two foci, at least one of which was positioned at a cell pole. Those with one focus at each cell pole had the highest DNA content, suggesting that the nascent attachment organelle is formed next to the old one and migrates to the opposite cell pole before cell division. Double staining revealed that the accessory proteins for cytadherence-HMW1, HMW3, P30, P90, P40, and P65-colocalized with the P1 adhesin in all cells. The localization of cytadherence proteins was also examined in cytadherence-deficient mutant cells with a branched morphology. In M5 mutant cells, which lack the P90 and P40 proteins, HMW1, HMW3, P1, and P30 were focused at the cell poles of short branches, and P65 showed no signal. In M7 mutant cells, which produce a truncated P30 protein, HMW1, HMW3, P1, P90, and P40 were focused, and P65 showed no signal. In M6 mutant cells, which express no HMW1 and a truncated P30 protein, the P1 adhesin was distributed throughout the entire cell body, and no signal was detected for the other proteins. These results suggest that the cytadherence proteins are sequentially assembled to the attachment organelle with HMW1 first, HMW3, P1, P30, P90, and P40 next, and P65 last.  相似文献   

7.
Mycoplasma pneumoniae cytadherence is mediated by a specialized, polar attachment organelle. Certain spontaneously arising cytadherence mutants (designated class I) lack HMW2, fail to localize the adhesin protein P1 to the attachment organelle, and exhibit accelerated turnover of proteins HMW1, HMW3, and P65. Insertional inactivation of hmw2 by Tn4001 results in a phenotype nearly identical to that of the class I mutants, suggesting that the latter may result from a defect in hmw2. In this study, the recombinant wild-type hmw2 allele successfully complemented a class I mutant when introduced by transposon delivery. Synthesis of recombinant HMW2 at wild-type levels resulted in reacquisition of hemadsorption and normal levels of HMW1, HMW3, and P65. Low-level production of HMW2 in some transformants resulted in only an intermediate capacity to hemadsorb. Furthermore, full restoration of HMW1 and P65, but not that of HMW3, was directly proportional to the amount of recombinant HMW2 produced, reflecting the importance of proper stoichiometry for certain cytadherence-associated proteins. The recombinant class I hmw2 allele did not restore cytadherence, consistent with a defect in hmw2 in this mutant. A frameshift was discovered in different oligoadenine tracts in hmw2 from two independent class I mutants. Finally, protein P28 is thought to be the product of internal translation initiation in hmw2. A transposon excision-deletion mutant produced a truncated HMW2 but no P28, consistent with this conclusion. However, this deletion mutant was hemadsorption positive, indicating that P28 may not be required for cytadherence.  相似文献   

8.
Cytadherence proteins of Mycoplasma pneumoniae are localized at the attachment organelle, which is involved in adhesion, gliding motility, and cell division. The localization of these proteins in cytadherence-deficient mutants was examined by immunofluorescence microscopy. In the class I-2 mutant, which has a frameshift mutation in the hmw2 gene, fluorescent foci for HMW1 and HMW3 were found with reduced intensity, and P1 adhesin showed reduced focusing. However, foci for P90, P40, P30, and P65 were not observed in this mutant. In the class IV-22 mutant, which lacks expression of P1, P90, and P40, the other cytadherence proteins (HMW1, HMW3, P30, and P65) were focused. In a mutant lacking HMW1, signals for HMW3, P90, P40, P30, and P65 were not found, and P1 was distributed throughout the cell. These results suggest that HMW1 is essential for the localization of all other cytadherence proteins, while HMW2 is essential for the localization of P90, P40, P30, and P65. The electron-dense core in cytadherence mutants was observed by thin-section electron microscopy, suggesting that its formation depends on HMW1 and HMW2 and that P1 localization occurs independent of the formation of the electron-dense core. Doubly stained preparations visualized by immunofluorescence microscopy showed that the P1 adhesin, P90, and P40 colocalized to a subregion of the attachment organelle in the wild-type strain. HMW1 and HMW3 also colocalized to a different subregion of the attachment organelle, while P30 and P65 localized at more distal ends of cell poles than HMW1 and HMW3. These differences were more pronounced in cytadherence mutants. These results suggest that there are three distinct subcellular protein localization sites in the attachment organelle, which were represented by HMW1-HMW3, P1-P90-P40, and P30-P65.  相似文献   

9.
The Mycoplasma pneumoniae terminal organelle functions in adherence and gliding motility and is comprised of at least eleven substructures. We used electron cryotomography to correlate impaired gliding and adherence function with changes in architecture in diverse terminal organelle mutants. All eleven substructures were accounted for in the prkC, prpC and P200 mutants, and variably so for the HMW3 mutant. Conversely, no terminal organelle substructures were evident in HMW1 and HMW2 mutants. The P41 mutant exhibits a terminal organelle detachment phenotype and lacked the bowl element normally present at the terminal organelle base. Complementation restored this substructure, establishing P41 as either a component of the bowl element or required for its assembly or stability, and that this bowl element is essential to anchor the terminal organelle but not for leverage in gliding. Mutants II‐3, III‐4 and topJ exhibited a visibly lower density of protein knobs on the terminal organelle surface. Mutants II‐3 and III‐4 lack accessory proteins required for a functional adhesin complex, while the topJ mutant lacks a DnaJ‐like co‐chaperone essential for its assembly. Taken together, these observations expand our understanding of the roles of certain terminal organelle proteins in the architecture and function of this complex structure.  相似文献   

10.
The cytoskeletal proteins HMW1 and HMW2 are components of the terminal organelle of the cell wall-less bacterium Mycoplasma pneumoniae. HMW1 is required for a tapered, filamentous morphology but exhibits accelerated turnover in the absence of HMW2. Here, we report that a reciprocal dependency exists between HMW1 and HMW2, with HMW2 subject to accelerated turnover with the loss of HMW1. Furthermore, the instability of HMW2 correlated with its failure to localize to the attachment organelle. The C-terminal domain of HMW1 is essential for both function and its accelerated turnover in the absence of HMW2. We constructed HMW1 deletion derivatives lacking portions of this domain and examined each for stability and function. The C-terminal 41 residues were particularly important for proper localization and function in cell morphology and P1 localization, but the entire C-terminal domain was required to stabilize HMW2. The significance of these findings in the context of attachment organelle assembly is considered.  相似文献   

11.
Mycoplasma pneumoniae adsorbs to host respiratory epithelium primarily by its attachment organelle, the proper function of which depends upon mycoplasma adhesin and cytoskeletal proteins. Among the latter are the cytadherence-associated proteins HMW1 and HMW2, whose specific roles in this process are unknown. In the M. pneumoniae cytadherence mutant I-2, loss of HMW2 results in accelerated turnover of HMW1 and other cytadherence-accessory proteins, probably by proteolysis. However, both the mechanism of degradation and the means by which these proteins are rendered susceptible to it are not understood. In this study, we addressed whether HMW1 degradation is a function of its presence among specific subcellular fractions and established that HMW1 is a peripheral membrane protein that is antibody accessible on the outer surfaces of both wild-type and mutant I-2 M. pneumoniae but to a considerably lesser extent in the mutant. Quantitation of HMW1 in Triton X-100-fractionated extracts from cells pulse-labeled with [(35)S]methionine indicated that HMW1 is synthesized in a Triton X-100-soluble form that exists in equilibrium with an insoluble (cytoskeletal) form. Pulse-chase analysis demonstrated that over time, HMW1 becomes stabilized in the cytoskeletal fraction and associated with the cell surface in wild-type M. pneumoniae. The less efficient transition to the cytoskeleton and mycoplasma cell surface in mutant I-2 leads to accelerated degradation of HMW1. These data suggest a role for HMW2 in promoting export of HMW1 to the cell surface, where it is stable and fully functional.  相似文献   

12.
The cell wall-less prokaryote Mycoplasma pneumoniae is a major cause of community-acquired bronchitis and pneumonia in humans. Colonization is mediated largely by a differentiated terminal organelle, which is also the leading end in gliding motility. Cytadherence-associated proteins P30 and P65 appear to traffic concurrently to the distal end of developing terminal organelles. Here, truncation of P65 due to transposon insertion in the corresponding gene resulted in lower gliding velocity, reduced cytadherence, and decreased steady-state levels of several terminal organelle proteins, including P30. Utilizing fluorescent protein fusions, we followed terminal organelle development over time. New P30 foci appeared at nascent terminal organelles in P65 mutants, as in the wild type. However, with forward cell motility, P30 in the P65 mutants appeared to drag toward the trailing cell pole, where it was released, yielding a fluorescent trail to which truncated P65 colocalized. In contrast, P30 was only rarely observed at the trailing end of gliding wild-type cells. Complementation with the recombinant wild-type P65 allele by transposon delivery restored P65 levels and stabilized P30 localization to the terminal organelle.  相似文献   

13.
The proteins required for adherence of the pathogen Mycoplasma pneumoniae to host respiratory epithelial cells are localized to a polar structure, the attachment organelle. A number of these proteins have been characterized functionally by analysis of noncytadhering mutants, and many are components of the mycoplasma cytoskeleton. Mutations in some cytadherence-associated proteins have pleiotropic effects, including decreased stability of other proteins, loss of adherence and motility, and abnormal morphology. The function of protein HMW3, a component of the attachment organelle, has been difficult to discern due to lack of an appropriate mutant. In this paper, we report that loss of HMW3 resulted in decreased levels and more diffuse localization of cytoskeletal protein P65, subtle changes in morphology, inability to cluster the adhesin P1 consistently at the terminal organelle, reduced cytadherence, and, in some cells, an atypical electron-dense core in the attachment organelle. This phenotype suggests a role for HMW3 in the architecture and stability of the attachment organelle.  相似文献   

14.
Mycoplasma pneumoniae lacks a cell wall but has internal cytoskeleton-like structures that are assumed to support the attachment organelle and asymmetric cell shape of this bacterium. To explore the fine details of the attachment organelle and the cytoskeleton-like structures, a fluorescent-protein tagging technique was applied to visualize the protein components of these structures. The focus was on the four proteins--P65, HMW2, P41, and P24--that are encoded in the crl operon (for "cytadherence regulatory locus"), which is known to be essential for the adherence of M. pneumoniae to host cells. When the P65 and HMW2 proteins were fused to enhanced yellow fluorescent protein (EYFP), a variant of green fluorescent protein, the fused proteins became localized at the attachment organelle, enabling visualization of the organelles of living cells by fluorescence microscopy. The leading end of gliding M. pneumoniae cells, expressing the EYFP-P65 fusion, was observed as a focus of fluorescence. On the other hand, when the P41 and P24 proteins were labeled with EYFP, the fluorescence signals of these proteins were observed at the proximal end of the attachment organelle. Coexpression of the P65 protein labeled with enhanced cyan fluorescent protein clearly showed that the sites of localization of P41 and P24 did not overlap that of P65. The localization of P41 and P24 suggested that they are also cytoskeletal proteins that function in the formation of unknown structures at the proximal end of the attachment organelle. The fluorescent-protein fusion technique may serve as a powerful tool for identifying components of cytoskeleton-like structures and the attachment organelle. It can also be used to analyze their assembly.  相似文献   

15.
The surface protein P65 is a constituent of the Mycoplasma pneumoniae cytoskeleton and is present at reduced levels in mutants lacking the cytadherence accessory protein HMW2. Pulse-chase studies demonstrated that P65 is subject to accelerated turnover in the absence of HMW2. P65 was also less abundant in noncytadhering mutants lacking HMW1 or P30 but was present at wild-type levels in mutants lacking proteins A, B, C, and P1. P65 exhibited a polar localization like that in wild-type M. pneumoniae in all mutants having normal levels of HMW1 and HMW2. Partial or complete loss of these proteins, however, correlated with severe reduction in the P65 level and the inability to localize P65 properly.  相似文献   

16.
The cell-wall-less prokaryote Mycoplasma pneumoniae, long considered among the smallest and simplest cells capable of self-replication, has a distinct cellular polarity characterized by the presence of a differentiated terminal organelle which functions in adherence to human respiratory epithelium, gliding motility, and cell division. Characterization of hemadsorption (HA)-negative mutants has resulted in identification of several terminal organelle proteins, including P30, the loss of which results in developmental defects and decreased adherence to host cells, but their impact on M. pneumoniae gliding has not been investigated. Here we examined the contribution of P30 to gliding motility on the basis of satellite growth and cell gliding velocity and frequency. M. pneumoniae HA mutant II-3 lacking P30 was nonmotile, but HA mutant II-7 producing a truncated P30 was motile, albeit at a velocity 50-fold less than that of the wild type. HA-positive revertant II-3R producing an altered P30 was unexpectedly not fully wild type with respect to gliding. Complementation of mutant II-3 with recombinant wild-type and mutant alleles confirmed the correlation between gliding defect and loss or alteration in P30. Surprisingly, fusion of yellow fluorescent protein to the C terminus of P30 had little impact on cell gliding velocity and significantly enhanced HA. Finally, while quantitative examination of HA revealed clear distinctions among these mutant strains, gliding defects did not correlate strictly with the HA phenotype, and all strains attached to glass at wild-type levels. Taken together, these findings suggest a role for P30 in gliding motility that is distinct from its requirement in adherence.  相似文献   

17.
The cell wall-less prokaryote Mycoplasma pneumoniae approaches the minimal requirements for a cell yet produces a complex terminal organelle that mediates cytadherence and gliding motility. Here we explored the molecular nature of the M. pneumoniae gliding machinery, utilizing fluorescent protein fusions and digital microcinematography to characterize gliding-altered mutants having transposon insertions in MPN311, encoding the cytoskeletal protein P41. Disruption of MPN311 resulted in loss of P41 and P24, the downstream gene product. Gliding ceases in wild-type M. pneumoniae during terminal organelle development, which occurs at the cell poles adjacent to an existing structure. In contrast, terminal organelle development in MPN311 mutants did not necessarily coincide with gliding cessation, and new terminal organelles frequently formed at lateral sites. Furthermore, new terminal organelles exhibited gliding capacity quickly, unlike wild-type M. pneumoniae. P41 and P24 localize at the base of the terminal organelle; in their absence this structure detached from the cell body of motile and dividing cells but retained gliding capacity and thus constitutes the gliding apparatus. Recombinant wild-type P41 restored cell integrity, establishing a role for this protein in anchoring the terminal organelle to the cell body.  相似文献   

18.
The wall-less prokaryote Mycoplasma pneumoniae, a common cause of chronic respiratory tract infections in humans, is considered to be among the smallest and simplest known cells capable of self-replication, yet it has a complex architecture with a novel cytoskeleton and a differentiated terminal organelle that function in adherence, cell division, and gliding motility. Recent findings have begun to elucidate the hierarchy of protein interactions required for terminal organelle assembly, but the engineering of its gliding machinery is largely unknown. In the current study, we assessed gliding in cytadherence mutants lacking terminal organelle proteins B, C, P1, and HMW1. Furthermore, we screened over 3,500 M. pneumoniae transposon mutants individually to identify genes associated with gliding but dispensable for cytadherence. Forty-seven transformants having motility defects were characterized further, with transposon insertions mapping to 32 different open reading frames widely distributed throughout the M. pneumoniae genome; 30 of these were dispensable for cytadherence. We confirmed the clonality of selected transformants by Southern blot hybridization and PCR analysis and characterized satellite growth and gliding by microcinematography. For some mutants, satellite growth was absent or developed more slowly than that of the wild type. Others produced lawn-like growth largely devoid of typical microcolonies, while still others had a dull, asymmetrical leading edge or a filamentous appearance of colony spreading. All mutants exhibited substantially reduced gliding velocities and/or frequencies. These findings significantly expand our understanding of the complexity of M. pneumoniae gliding and the identity of possible elements of the gliding machinery, providing a foundation for a detailed analysis of the engineering and regulation of motility in this unusual prokaryote.  相似文献   

19.
The subcellular location of the phase-variable cytadherence-accessory protein HMW3 in Mycoplasma pneumoniae has been examined by biochemical and immunoelectron microscopic techniques. Analysis by Western blot (immunoblot) with HMW3-specific antiserum established the presence of this protein within the M. pneumoniae Triton X-100-insoluble fraction or triton shell. Immunogold labeling of Triton-extracted mycoplasmas with affinity-purified antibodies localized HMW3 to the terminal knob on the rodlike extensions of the triton shell, a location that would correspond to the adherence organelle in whole mycoplasmas. Treatment of triton shells with KI resulted in the selective removal of the adherence-accessory proteins HMW1 to HMW4. Analysis of these triton shells by transmission electron microscopy revealed dramatic ultrastructural changes in the filamentous network and core structure. Immunogold labeling of KI-extracted shells reflected the removal of HMW3 from the disrupted tip structure. An examination of ultrathin sections of wild-type cells by transmission electron microscopy following labeling with HMW3-specific antibodies provided further evidence for the nonrandom distribution of HMW3 and its localization to the terminal portion of filamentous cell extensions. Most colloidal gold molecules were associated with the cell interior, but limited peripheral labeling of the terminal region was also observed. Postfixation antibody labeling of whole cells suggested limited exposure of HMW3 on the mycoplasma surface at the tip structure. However, prefixation antibody labeling failed to indicate surface exposure, raising some uncertainty regarding the relationship of HMW3 with the mycoplasma membrane.  相似文献   

20.
Colonization of conducting airways of humans by the prokaryote Mycoplasma pneumoniae is mediated by a differentiated terminal organelle important in cytadherence, gliding motility and cell division. TopJ is a predicted J‐domain co‐chaperone also having domains unique to mycoplasma terminal organelle proteins and is essential for terminal organelle function, as well as stabilization of protein P24, which is required for normal initiation of terminal organelle formation. J‐domains activate the ATPase of DnaK chaperones, facilitating peptide binding and proper protein folding. We performed mutational analysis of the predicted J‐domain, central acidic and proline‐rich (APR) domain, and C‐terminal domain of TopJ and assessed the phenotypic consequences when introduced into an M. pneumoniae topJ mutant. A TopJ derivative with amino acid substitutions in the canonical J‐domain histidine–proline–aspartic acid motif restored P24 levels but not normal motility, morphology or cytadherence, consistent with a J‐domain co‐chaperone function. In contrast, TopJ derivatives having APR or C‐terminal domain deletions were less stable and failed to restore P24, but resulted in normal morphology, intermediate gliding motility and cytadherence levels exceeding that of wild‐type cells. Results from immunofluorescence microscopy suggest that both the APR and C‐terminal domains, but not the histidine–proline–aspartic acid motif, are critical for TopJ localization to the terminal organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号