首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the level of oxidative damage to proteins in CD1 outbred mice γ irradiated with a dose of 3 Gy have been studied. The changes were estimated from the amount of carbonyl groups (CG) in the proteins. It was found that two hours after exposure to γ radiation, the amount of CG in the cytoplasmic and nuclear fractions of the liver, heart, brain, and spleen sharply increased. Two months after irradiation, the level of CG in the cytoplasmic and nuclear subcellular fractions of the liver and brain decreased to the level of CG in the control animals, which were not exposed to radiation. In the subcellular fractions of the heart and spleen, the increase in the degree of damage was more significant and a high level of damage was observed even two months after irradiation. An enhancement of the antigenic properties of proteins from the liver, heart, and spleen in the postirradiation period was found. Spleen proteins were most immunogenic. A comparison of the antigenic properties of proteins isolated from the tissues 60 days after irradiation revealed a correlation between the level of oxidative damage and the immunogenicity of the total protein fraction.  相似文献   

2.
3.
We analyzed the lung mRNA expression profiles of a murine model of COPD developed using a lung-specific IL-18-transgenic mouse. In this transgenic mouse, the expression of 608 genes was found to vary more than 2-fold in comparison with control WT mice, and was clustered into 4 groups. The expression of 140 genes was constitutively increased at all ages, 215 genes increased gradually with aging, 171 genes decreased gradually with aging, and 82 genes decreased temporarily at 9 weeks of age. Interestingly, the levels of mRNA for the chitinase-related genes chitinase 3-like 1 (Chi3l1), Chi3l3, and acidic mammalian chitinase (AMCase) were significantly higher in the lungs of transgenic mice than in control mice. The level of Chi3l1 protein increased significantly with aging in the lungs and sera of IL-18 transgenic, but not WT mice. Previous studies have suggested Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. However, IL-13 gene deletion did not reduce the level of Chi3l1 protein in the lungs of IL-18 transgenic mice. Based on our murine model gene expression data, we analyzed the protein level of YKL-40, the human homolog of Chi3l1, in sera of smokers and COPD patients. Sixteen COPD patients had undergone high resolution computed tomography (HRCT) examination. Emphysema was assessed by using a density mask with a cutoff of -950 Hounsfield units to calculate the low-attenuation area percentage (LAA%). We observed significantly higher serum levels in samples from 28 smokers and 45 COPD patients compared to 30 non-smokers. In COPD patients, there was a significant negative correlation between serum level of YKL-40 and %FEV(1). Moreover, there was a significant positive correlation between the serum levels of YKL-40 and LAA% in COPD patients. Thus our results suggest that chitinase-related genes may play an important role in establishing pulmonary inflammation and emphysematous changes in smokers and COPD patients.  相似文献   

4.
To understand the process of cardiac aging, it is of crucial importance to gain insight into the age‐related changes in gene expression in the senescent failing heart. Age‐related cardiac remodeling is known to be accompanied by changes in extracellular matrix (ECM) gene and protein levels. Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of ECM proteins. However, their role in age‐related cardiac remodeling and heart failure is unknown. In this study, we investigated the aging‐associated microRNA cluster 17–92, which targets the ECM proteins connective tissue growth factor (CTGF) and thrombospondin‐1 (TSP‐1). We employed aged mice with a failure‐resistant (C57Bl6) and failure‐prone (C57Bl6 × 129Sv) genetic background and extrapolated our findings to human age‐associated heart failure. In aging‐associated heart failure, we linked an aging‐induced increase in the ECM proteins CTGF and TSP‐1 to a decreased expression of their targeting microRNAs 18a, 19a, and 19b, all members of the miR‐17–92 cluster. Failure‐resistant mice showed an opposite expression pattern for both the ECM proteins and the microRNAs. We showed that these expression changes are specific for cardiomyocytes and are absent in cardiac fibroblasts. In cardiomyocytes, modulation of miR‐18/19 changes the levels of ECM proteins CTGF and TSP‐1 and collagens type 1 and 3. Together, our data support a role for cardiomyocyte‐derived miR‐18/19 during cardiac aging, in the fine‐tuning of cardiac ECM protein levels. During aging, decreased miR‐18/19 and increased CTGF and TSP‐1 levels identify the failure‐prone heart.  相似文献   

5.
Mitochondrial bioenergetic function is often reported to decline with age and the accumulation of oxidative damage is thought to contribute. However, there are considerable uncertainties about the amount and significance of mitochondrial oxidative damage in aging. We hypothesized that, as radical production in mitochondria is greater than the rest of the cell, protein oxidative damage should accumulate more in mitochondria than the cytoplasm, and that this relative accumulation should increase with age. To test these hypotheses we measured the accumulation of three markers of protein oxidative damage in liver, brain, and heart from young and old rats. Ortho- and meta-tyrosine levels in protein hydrolysates were measured by a gas chromatography/mass spectrometry assay, and protein carbonyl content was determined by ELISA. Using these assays we found no evidence for increased protein oxidative damage in mitochondria relative to the cytosol. Most increases found in protein oxidative damage on aging were modest for all three tissues and there was no consistent pattern of increased oxidative damage in mitochondrial proteins on aging. Mitochondrial oxidative phosphorylation complex activities were also assessed revealing 39-42% decreases in F0F1--ATP synthase activity in liver and heart on aging, but not in other oxidative phosphorylation complexes. These findings have implications for the contribution of mitochondrial oxidative damage and dysfunction to aging.  相似文献   

6.
We examined the effect of aging on the expression of ubiquitin RNA and the binding of the ubiquitin polypeptide to proteins following heat shock in Drosophila melanogaster. Heat-shocked adult flies transcribe two major RNA species-one of 4.4 kb and one of about 6 kb that hybridize to the polyubiquitin-encoding probe. Several less abundant RNAs were also observed but the 4.4-kb band was present as the major RNA species in both stressed and nonstressed flies of both ages. The 6-kb fragment was more abundant in heat shocked aged flies than in younger flies. The quantitative expression of the polyubiquitin gene increased in proportion to the duration of the heat stress. Moreover, the induction of the polyubiquitin RNA was markedly elevated during aging following heat shock. Hybridization of Northern blots with the monoubiquitin gene probe revealed a band of 0.9 kb that was not significantly affected by heat stress. We also investigated the relationship between the changes in polyubiquitin gene expression and the formation of ubiquitin-protein complexes in aging heat-shocked flies. Heat shock to old flies results in a significant increase in the level of proteins immunoprecipitated by anti-ubiquitin antibodies. In the case of proteins synthesized 2 h before heat shock, most of the ubiquitinated proteins were of high molecular weight. For those proteins synthesized during a 30-min heat shock and the 2 h following heat shock, two major immunoprecipitated bands were observed: an 80-kD and a 70-kD polypeptide. The ubiquitination of a 60 kD protein was also observed in nonstressed flies, but its for mation was drastically reduced following heat shock. For proteins synthesized during and after heat shock from both age groups, the major ubiquitinated polypeptide is 70 kD. In all age groups, more ubiquitin complexes were formed with proteins synthesized before heat shock, than with proteins synthesized either during or after heat shock. This suggests that cellular proteins synthesized at physiological temperatures are more sensitive to heat induced damage than those synthesized during stress. These data support the hypothesis that in aging flies, heat shock induces an unusually high concentration of abnormal proteins which are targeted for degradation by the ubiquitin-dependent proteolytic system. © 1993Wiley-Liss, Inc.  相似文献   

7.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

8.
CHANGES IN THE PROTEIN COMPOSITION OF MOUSE BRAIN MYELIN DURING DEVELOPMENT   总被引:24,自引:13,他引:11  
Abstract— Myelin was isolated from the brains of mice at various ages by a procedure involving a final purification on a continuous CsCl gradient. Myelin protein accumulated throughout development, increasing from 0.25 mg of protein/brain at 8 days of postnatal age to 3.5 mg of protein/brain at 300 days, although the rate of accumulation was greatest at about 21 days of age. Quantitative studies of the protein composition of these samples were carried out, utilizing discontinuous polyacrylamide gel electrophoresis in buffers containing sodium lauryl sulphate. Mouse brain myelin, contained (in order of increasing molecular weight) two basic proteins, an uncharacterized doublet, proteolipid protein, and a group of high molecular weight proteins. There were marked changes in the quantitative distribution of these proteins with increasing postnatal age. The basic protein fraction of total myelin protein increased from about 18 per cent at 8 days to 30 per cent at 300 days of age. Proteolipid protein increased even more dramatically, from 7 to 27 per cent in the same time interval. These chemical studies were correlated with ultrastructural investigations, both of the developing myelin sheath in situ and the isolated myelin obtained from mice of various ages. A hypothesis, relating the observed changes in protein composition of myelin during development to its mode of formation, is developed. Another subcellular fraction, separated from myelin, by virtue of its greater density in a CsCl gradient, was also studied. It was a vesicular, membranous fraction present at a level of 0.35 mg of protein/brain at all ages and was related to myelin in terms of protein composition.  相似文献   

9.
To clarify the effect of aging on the mineral status of female mice, mineral concentrations in their tissues were determined. Five 2-mo-old, five 6-mo-old, and five 10-mo-old female B10BR mice were fed a commercial diet. Iron, zinc, copper, calcium, magnesium, sodium, and potassium concentrations in the blood, liver, kidney, heart, brain, lung, and spleen of the mice were determined using a flame atomic absorption spectrophotometer. Iron concentrations in the liver, kidney, heart, brain, and spleen increased with age. Significant differences were detected between mice 2 and 6 mo of age and between mice 2 and 10 mo of age. Zinc concentrations in the heart and lung decreased significantly with age. Zinc concentrations in the heart and lung of 10-mo-old mice were significantly lower than those of 2-mo-old mice. It is noteworthy that the copper concentration in the brain of 10-mo-old mice was markedly higher compared with that of younger mice. Calcium accumulation was apparent in the kidney of mice at 10 mo.  相似文献   

10.
Many heat shock proteins are chaperones that help refold or degrade misfolded proteins and battle apoptosis. Because of their capacity to protect against protein misfolding, they may help keep diseases of aging at bay. A few reports have examined heat shock proteins (eg. Hsp25, Hsp60, Hsp70, and heat shock cognate 70 or Hsc70) as a function of age in the striatum and nigra. In the present study, we examined the impact of aging on Hsp25, heme oxygenase 1 (HO1 or Hsp32), Hsp40, Hsp60, Hsc70, Hsc/Hsp70 interacting protein (Hip), 78 kDa glucose-regulated protein (GRP78), Hsp90, and ubiquitinated proteins in the nigra and striatum of the female rat by infrared immunoblotting. Female animals are not typically examined in aging studies, adding further to the novelty of our study. Striatal HO1 and Hsp40 were both higher in middle-aged females than in the oldest group. Hsp60 levels were also highest in middle age in the nigra, but were highest in the oldest animals in the striatum. Striatal levels of Hsc70 and the co-chaperone Hip were lower in the oldest group relative to the youngest animals. In contrast, Hsp25 rose with advancing age in both regions. Hsp25 was also colocalized with tyrosine hydroxylase in nigral neurons. Ubiquitinated proteins exhibited a trend to rise in the oldest animals in both regions, and K48 linkage-specific ubiquitin rose significantly from 4–6 to 16–19 months in the striatum. Our study reveals a complex array of age-related changes in heat shock proteins. Furthermore, the age-related rises in some proteins, such as Hsp25, may reflect endogenous adaptations to cellular stress.  相似文献   

11.
The amyloid precursor protein (APP) was assumed to be an important neuron-morphoregulatory protein and plays a central role in Alzheimer's disease (AD) pathology. In the study presented here, we analyzed the APP-transgenic mouse model APP23 using 2-dimensional gel electrophoresis technology in combination with DIGE and mass spectrometry. We investigated cortex and hippocampus of transgenic and wildtype mice at 1, 2, 7 and 15 months of age. Furthermore, cortices of 16 days old embryos were analyzed. When comparing the protein patterns of APP23 with wildtype mice, we detected a relatively large number of altered protein spots at all age stages and brain regions examined which largely preceded the occurrence of amyloid plaques. Interestingly, in hippocampus of adolescent, two-month old mice, a considerable peak in the number of protein changes was observed. Moreover, when protein patterns were compared longitudinally between age stages, we found that a large number of proteins were altered in wildtype mice. Those alterations were largely absent in hippocampus of APP23 mice at two months of age although not in other stages compared. Apparently, the large difference in the hippocampal protein patterns between two-month old APP23 and wildtype mice was caused by the absence of distinct developmental changes in the hippocampal proteome of APP23 mice. In summary, the absence of developmental proteome alterations as well as a down-regulation of proteins related to plasticity suggest the disturption of a normally occurring peak of hippocampal plasticity during adolescence in APP23 mice. Our findings are in line with the observation that AD is preceded by a clinically silent period of several years to decades. We also demonstrate that it is of utmost importance to analyze different brain regions and different age stages to obtain information about disease-causing mechanisms.  相似文献   

12.
Deleterious mitochondrial DNA mutations accumulate in aging human tissues.   总被引:9,自引:0,他引:9  
This paper reviews the current state of knowledge of the contribution of mitochondrial DNA (mtDNA) mutations to the phenotype of aging. Its major focus is on the discovery of deletions of mtDNA which previously were thought to occur only in individuals with neuromuscular disease. One particular deletion (mtDNA4977) accumulates with age primarily in non-dividing cells such as muscle and brain of normal individuals. The level of the deletion rises with age by more than 1000 fold in heart and brain and to a lesser extent in other tissues. In the brain, different regions have substantially different levels of the deletion. High levels of accumulation of the deletion in tissues are correlated with high oxygen consumption. We speculate that oxidative damage to mtDNA may be 'catastrophic'; mutations affecting mitochondrially encoded polypeptides involved in electron transport could increase free radical generation leading to more mtDNA damage.  相似文献   

13.
Pharmacokinetics of nicotine in adult and infant mice   总被引:1,自引:0,他引:1  
Experiments were done to compare the time-courses of the nicotine concentration in the blood, heart, and brain of infant and adult mice after small and large single doses of radioactive nicotine tartrate. In some experiments the nicotine receptors were blocked with mecamylamine or hexamethonium, and their effects on nicotine levels were measured. The nicotine-induced tremor was allowed visually, and its effects on the heart rate were measured by ECG. In adult mice the peak levels of brain nicotine occurred at 10 min, whereas in infant mice the brain nicotine levels were still rising at 20 min. In the latter the blood and heart nicotine levels were higher than the respective brain levels, and the nicotine level in the brain stem exceeded the hemisphere level. The results were reversed in adult mice. A remarkable accumulation of nicotine in the infant heart was measured. Pretreatment with mecamylamine lowered brain nicotine levels in adult mice, and in infant mice the nicotine levels in blood and heart were lowered as well. This pretreatment abolished the nicotine tremor and its effects on the heart rate similarly in both age groups. This suggests that the difference in nicotine levels after mecamylamine in infant and adult mice may not depend solely on possible differences in circulatory changes but can represent differences in "receptor population" as well. Hexamethonium did not abolish the central depressant effect of nicotine on the heart rate nor did it lower the brain nicotine levels. This supports the view that there is some correlation of the central effects of nicotine and its brain levels.  相似文献   

14.
15.
The protein composition of free mitochondria purified from cerebral cortex and striatum during aging was analyzed by gel electrophoresis. Mitochondria were isolated from cerebral cortex and striatum of 4-, 12-, and 24-month-old rat brain. The percent amount of mitochondrial proteins after gel-electrophoretic separation was determined densitometrically. A significant decrease in the amount of two polypeptides (with molecular weights of 20 and 16 kDa, respectively) in both brain regions during aging was found. The decrease was higher in the striatum indicating a greater vulnerability of this brain area to the aging process. The age-dependent modifications of mitochondrial proteins observed may play an important role in several mitochondrial functions, such as energy transduction and transport processes as well as in structural changes occurring with age, causing altered membrane permeability and fluidity.  相似文献   

16.
17.
A general glutathione (GSH) deficiency occurs in many tissues of the aging mouse. However, there is no information on GSH in the aging brain even though it has been involved in a number of neurobiologic reactions. To this end, C57BL/6 mice, 3-31 months old, representing the growth, maturation, and aging periods of the life-span were studied. Brain cortex, hippocampus, and stem samples were dissected, processed, and analyzed specifically for reduced and oxidized glutathione (GSH, GSSG) and cyst(e)ine using high performance liquid chromatography with dual electrochemical detection. The GSH content of each brain region varied in the order brain cortex greater than brain hippocampus greater than brainstem. However, the GSH profiles of all regions were the same through the life-span, namely, high values during growth dropping to a maturation plateau and then decreasing 30% during aging. In contrast to GSH, the order of cysteine levels was brain cortex less than brain hippocampus less than brainstem and no life-span changes occurred in any region. In addition, the brain GSSG and cystine contents of all regions were very low and did not change during the life-span. Thus, the GSH loss was not accountable by oxidation to GSSG or degradation to cyst(e)ine. Altogether these results demonstrated a GSH deficiency in brain tissues of aging mice like that found previously in other tissues. These findings suggest an increased susceptibility of the aging brain to oxidative damage.  相似文献   

18.
Age-related differences in the multichemical proton magnetic resonance spectroscopy (1H-MRS) profile of the human brain have been reported for several age groups, and most consistently for ages from neonates to 16-year-olds. Our recent 1H-MRS study demonstrated a significant age-related increase of total chemical concentration (relative to creatine) in the prefrontal and sensorimotor cortices within young adulthood (19-31-year-olds). In the present study we test the hypothesis that the level of brain chemicals in the same cortices, which show increased chemical levels during normal development, are reduced with normal aging after young adulthood. The multichemical 1H-MRS profile of the brain was compared between 19 young and 16 middle-aged normal subjects across multiple brain regions for all chemicals of 1H-MRS spectra. Chemical concentrations were measured relative to creatine. Over all age groups the total relative chemical concentration was highest in the prefrontal cortex. Middle-aged subjects demonstrated a significant decrease of total relative chemical concentration in the dorsolateral prefrontal (F = 54.8, p < 10(-7), ANOVA), orbital frontal (F = 3.7, p < 0.05) and sensorimotor (F = 15.1, p < 0.0001) cortices, as compared with younger age. Other brain regions showed no age-dependent differences. The results indicate that normal aging alters multichemical 1H-MRS profile of the human brain and that these changes are region-specific, with the largest changes occuring in the dorsolateral prefrontal cortex. These findings provide evidence that the processes of neuronal maturation of the human brain, and neurotransmitters and other chemical changes as the marker of these neuronal changes are almost finished by young adulthood and then reduced during normal aging toward middle age period of life. The present data also support the notion of heterochronic regressive changes of the aging human brain, where the multichemical brain regional profile seems to inversely recapitulate cortical chemical maturation within normal development.  相似文献   

19.
Nonaka N  Banks WA  Mizushima H  Shioda S  Morley JE 《Peptides》2002,23(12):2197-2202
The blood–brain barrier (BBB) controls the exchange of peptides and regulatory proteins between the central nervous system (CNS) and the blood. Transport across the BBB of such regulatory substances is altered in animal models of Alzheimer’s disease. These alterations could lead to cognitive impairments or diminish their therapeutic potential. Here, we measured the transport rate of radioactively labeled pituitary adenylate cyclase-activating polypeptide (PACAP) from blood into whole brain and into 11 brain regions in three groups of mice: young (2 months old) ICR, young (2 months old) SAMP8, and aged (12 months old) SAMP8 mice. The SAMP8 is a strain which develops impaired learning and memory with aging that correlates with an age-related increase in brain levels of amyloid β protein (AβP). PACAP is a powerful neurotrophin that may have a therapeutic role in neurodegenerative diseases. We found that I-PACAP crossed the BBB fastest at the hypothalamus and the hippocampus in all three groups. Slower transport rates into the whole brain, the olfactory bulb, the hypothalamus, and the hippocampus for aged SAMP8 mice was likely related to differences both from strain and expression of AβP with aging.  相似文献   

20.
Skeletal muscle aging is accompanied by loss of muscle mass and strength. Examining changes in myonuclear proteins with age would provide insight into molecular processes which regulate these profound changes in muscle physiology. However, muscle tissue is highly adapted for contraction and thus comprised largely of contractile proteins making the nuclear proteins difficult to identify from whole muscle samples. By developing a method to purify myonuclei from whole skeletal muscle, we were able to collect myonuclei for analysis by flow cytometry, biochemistry, and mass spectrometry. Nuclear purification dramatically increased the number and intensity of nuclear proteins detected by mass spectrometry compared to whole tissue. We exploited this increased proteomic depth to investigate age‐related changes to the myonuclear proteome. Nuclear levels of 54 of 779 identified proteins (7%) changed significantly with age; these proteins were primarily involved in chromatin maintenance and RNA processing. To determine whether the changes we detected were specific to myonuclei or were common to nuclei of excitatory tissues, we compared aging in myonuclei to aging in brain nuclei. Although several of the same processes were affected by aging in both brain and muscle nuclei, the specific proteins involved in these alterations differed between the two tissues. Isolating myonuclei allowed a deeper view into the myonuclear proteome than previously possible facilitating identification of novel age‐related changes in skeletal muscle. Our technique will enable future studies into a heretofore underrepresented compartment of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号