首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung Im Ommatidium des Komplexauges von Ocypode cursor wurde entgegen einer früheren Untersuchung eine achte Retinulazelle gefunden. Sie unterscheidet sich nach Form und Lage von den sieben regulären Retinulazellen. Ihr Kontakt zum Rhabdom und der Besitz eines Axons (bisher bei Decapoden unbekannt) widerlegen die für andere Decapoden geäußerte Ansicht, daß diese Zelle rudimentär sei. Ihre besondere Ausbildung legt den Gedanken nahe, daß sie funktionell spezialisiert ist.Am distalen Ende der Retinula liegt eine im Schnitt quer zur Ommatidienachse kreuzförmige pigmentfreie Zone (Abb. 3, 4). Ein Arm, in jedem Ommatidium der gleiche, enthält einen kugeligen Kern. Es ist anzunehmen, daß diese pigmentfreie Zone den Zellkörper der achten Retinulazelle darstellt. Diese Zelle steht in räumlichem Kontakt zum Rhabdom. Der Raum zwischen den vier Armen der Zelle 8 wird von den distalen, stark pigmentierten Enden der sieben regulären Sinneszellen gefüllt. Die in der Regel größere Zelle 7 liegt hinten, Zellen 1 und 2 oben, Zellen 3 und 4 vorn, Zellen 5 und 6 unten. Die Kerne dieser Zellen sind länglich ellipsoid. Der kernhaltige Arm der Zelle 8 verjüngt sich nach proximal zu einem Axon (Abb. 6), das an der Peripherie des Rings der sieben regulären Retinulazellen an der Naht zwischen den Zellen 6 und 7 zur Basalmembran zieht (Abb. 7). Unmittelbar über der Basalmembran divergieren die Retinulazellen: Zelle 1 zieht nach hinten oben, Zellen 2 und 3 nach vorn oben, Zellen 4 und 5 nach vorn unten, Zellen 6 bis 8 nach hinten unten (Abb. 9). In dieser asymmetrischen Gruppierung durchstoßen die Axone der Retinulazellen die vier lanzettlichen Öffnungen, die zur Basis der in der darüber und darunter liegenden Reihe nächst benachbarten Ommatidien ziehen (Abb. 10). Auf diese Weise ergibt sich ein regelmäßiger Wechsel von Öffnungen in der Basalmembran mit drei und fünf Querschnitten von Axonen (Abb. 11).
Summary In the ommatidium of the apposition eye of Ocypode cursor eight retinula cells are found, where the eighth accessory cell has a characteristic shape and position distinct from the other seven retinula cells. For other decapods this cell has been assumed to be rudimentary. At least for Ocypode its contact with the rhabdome and the possession of an axon contradict this assumption. A functional specialization of this cell seems more probable.In sections perpendicular to the optical axis a cross-shaped pigmentless structure appears at the distal end of the retinula. One bar of this cross (in any particular ommatidium the same) contains a spherical nucleus (Figs. 3, 4). All four bars seem to be in contact with the central rhabdome. The similar appearance of all four bars and the presence of only one nucleus in this region favour the assumption that all four bars belong to one and the same cell. The space between the bars is filled by the densely pigmented distal ends of the seven regular retinula cells: the dorsal space by cells 1 and 2, the anterior by 3 and 4, the ventral by 5 and 6, and the posterior by cell 7. The nuclei of these cells are elongated. The nucleus-containing bar tapers proximally into an axon (Fig. 6) which extends towards the basilar membrane peripheral to the rosette of the seven regular sense cells, close to the border of cells 6 and 7 (Fig. 7). Immediately adjacent to the basement membrane the retinula cells (in this case, their axons) diverge peripherally: the direction of No. 1 becomes dorso-posterior, No. 2 and No. 3 dorso-anterior, No. 4 and 5 ventro-anterior, No. 6–8 ventro-posterior (Fig. 9). In this asymmetric distribution the axons of the retinular cells pass through the basement membrane by openings which extend between the bases of neighbouring ommatidia in the next higher or lower row of ommatidia (Fig. 10). Thus a sequence of openings follows with alternately three and five cross sections of axons (Fig. 11).


Herrn E. Freiberg danke ich für die Ausführung der Zeichnungen, Frl. I. Geiss und Drs. R. und S. Pickering für Hilfe bei der Anfertigung des Manuskriptes, Herrn Dr. K. Kirschfeld für dessen kritische Durchsicht.  相似文献   

2.
Zusammenfassung Die Entfärbung des Organismus nach beendigter Einführung der Farbe findet, wie aus den Protokollen zu ersehen ist, sehr ungleichmäßig statt; die einen Zellen geben die Farbe sehr rasch ab, in den anderen zieht sich der Entfärbungsprozeß sehr stark in die Länge. Was den Verlauf der Entfärbung der einzelnen Zellen anbetrifft, so findet in der Mehrzahl derselben der Schwund der Farbe vornehmlich durch die allmähliche Abgabe derselben in das umgebende Medium statt, die Farbe wird aus den Zellen durch den durch dieselben hindurchgehenden Flüssigkeitsstrom gleichsam ausgewaschen. Es leuchtet ein, daß der physikalische Zustand der Farbeinklusionen in diesem Falle eine große Rolle spielen muß; es ist deshalb verständlich, daß zuerst die Farbe zu schwinden beginnt, welche im gelösten Zustand im Inhalt der Farbevakuolen vorhanden ist, viel langsamer schwindet die in der Vakuole oder unmittelbar im Zytoplasma ausgeflockte Farbe.Der Mechanismus, welcher den Prozeß der Entfärbung der Zellen reguliert, ist nicht immer leicht verständlich. Man kann annehmen, daß zwei Hauptfaktoren auf diesen Prozeß einwirken: die topographische Nähe der gegebenen Zelle zum Blute, was sich auf den Zellen des retikuloendothelialen Systems deutlich kundtut, und die Stärke des durch die Zelle hindurchgehenden Flüssigkeitsstromes bei genügender Lösbarkeit der in der Zelle abgelagerten Farbe. Die Bedeutung des zweiten Faktors ist auf den Leberzellen und den Zellen der gewundenen Nierenkanälchen deutlich sichtbar, welche sich sehr rasch entfärben, obschon sie eine große Menge von Farbe enthielten. Im Gegensatz dazu entfärben sich die Zellen der Sammelröhrchen und der D. D. papillares der Nieren, die einen Typus der Zellen der Ausführungsgänge vorstellen, so langsam, daß in ihnen noch 160 Tage nach beendigter Einführung der Farbe der größte Teil der Farbeablagerungen zurückbleibt. Eine ebensolche, zwar schwächer ausgeprägte Erscheinung wird auch in den Zellen der Ausführungsgänge der Leber beobachtet.Es muß aber noch ein Faktor zugelassen werden: die inneren Eigenschaften der speichernden Zellen. Auf Kosten dieses Faktors gehören die schwer verständlichen Tatsachen, wie die Verlangsamung der Fibrozytenentfärbung, im Vergleich mit den Histiozyten, trotz der äußerst großen räumlichen Nähe derselben zueinander. Ich halte es nicht für nötig, auf die Kontroversen in bezug auf diese Frage zwischen den verschiedenen Verfassern einzugehen, da die diesbezüglichen Meinungen größtenteils einen spekulativen Charakter aufweisen; die beständigen Verweisungen auf die Aktivität der Histiozyten bringen ebenfalls zur Aufklärung des Wesens der Frage gar nichts bei. Auf Kosten der individuellen Eigenschaften der Zellen muß man auch die Veränderungen der Färbung der Farbeablagerungen stellen, in einigen Zellen des R.-E-App. (Kupffersche Zellen, retikuläre Zellen der Milz und des Lymphknotens), welche aus blauen zu gelblich-braunen oder sogar schwarzen werden. Da diese Vakuolen und Körner von brauner Färbung keine Reaktion auf Eisen ergeben, so muß man sie für ein Produkt der intrazellulären Spaltung der aufgenommenen Farbe erklären. Bis zu einem gewissen Grade hängt diese Erscheinung vielleicht auch von irgendwelchen Beimengungen zum Trypanblau ab (nach Schulemann [Tabulae biologicae] kommt die Verunreinigung der Farben durch Nebenprodukte sehr häufig vor); damit steht die Tatsache in voller Übereinstimmung, daß in der Einführungsstelle der Farbe nach 40 Tagen beinahe sämtliche Histiozyten von schwarz-braunen Körnern angefüllt sind, während in den Histiozyten der von der Einführungsstelle der Farbe weit abstehenden Gebiete die Farbeeinschlüsse vom Anfang bis zum Ende ihre rein blaue Färbung beibehalten.Was die Schnelligkeit der Entfärbung verschiedener Zellensysteme anbetrifft, so erweist es sich, daß dieser Prozeß einer gewissen Gesetzmäßigkeit unterworfen ist, welche sich beim Vergleich der Schnelligkeit der Ablagerung der Farbe mit der Schnelligkeit ihres Schwindens aus ein und denselben Zellarten besonders deutlich kundtut. Als eine mehr oder weniger allgemeine Regel kann man feststellen, daß die Schnelligkeit der Entfärbung der Schnelligkeit der Färbung dieser oder jener Zelle oder eines Zellensystems gerade proportional ist. Als eine Illustration zu dieser Regel kann man nennen: einerseits die Zellen des R.-E.-Systems und die Leberzellen sowie die Zellen des Hauptstückes der Niere: rasche Speicherung und rasche, besonders in Anbetracht der Menge der sich in ihnen ablagernden Farbe, Entfärbung; andererseits aber die Fibrozyten und die Zellen der Ausführungsgänge der Niere und der Leber, in welchen die Farbe mit großer Verspätung erscheint, aber auch lange aufgehalten wird.Somit erfordert die genaue Aufklärung der Entfärbungsgesetze der in den Organismus eingeführten Stoffe eine genaue Kenntnis der Gesetze ihrer Verteilung und Ablagerung. Diese letzteren werden aber, wie aus den Versuchen Schulemanns gut genug bekannt ist, vor allem durch die physikalisch-chemischen Eigenschaften des in den Organismus eingeführten Stoffes bedingt.  相似文献   

3.
Zusammenfassung Bei Calliphora erythrocephala wurden die Belichtungspotentiale nach schrittweiser, operativer Entfernung der optischen Ganglien untersucht. Es wurde eine Reihe von Belichtungspotentialen erhalten, deren positive Anteile mehr und mehr zurücktreten, je mehr von den optischen Ganglien entfernt ist.Das Belichtungspotential der, isolierten Retina ist monophasisch und rein negativ (Abb. 13). Es gleicht in seiner Form den Kurven, die sich beim intakten Auge aus der Höhe der Aus-Effekte in Abhängigkeit von der Reizdauer ergeben, und den monophasischen Potentialen, wie sie bei Insekten mit geringem zeitlichem Auflösungsvermögen des Auges (Dytiscus, Tachycines) und bei Limulus gefunden wurden.Das diphasische Belichtungspotential von Calliphora und der Imago von Aeschna kommt durch das Zusammenwirken einer negativen, retinalen und einer oder mehrerer positiver, aus den optischen Ganglien stammender Komponenten zustande.Das negative Potential der Retina ist das Generator- und Steuerpotential für die positiven ganglionären Potentiale.Die positiven Komponenten entstehen im wesentlichen im Ganglion opticum I, und zwar mit großer Wahrscheinlichkeit die schnellen Phasen in den Lokalzellen der inneren Körnerschicht, die langsamen in den Ganglienzellen der äußeren Körnerschicht.Den positiven, ganglionären Potentialen wird eine restitutive Wirkung auf die infolge des Lichtreizes depolarisierten Sinneszellen der Retina zugeschrieben.Bei Aeschna cyanea nähert sich während der larvalen Entwicklung die Lamina ganglionaris (= Ganglion opticum I) der Retina (Abb. 19). Parallel mit dieser Annäherung geht das zunächst monophasische Belichtungspotential der jungen Larve in ein diphasisches über, das am vollkommensten bei der Imago ausgebildet ist. Zugleich nimmt die Trägheit des Auges ab (Verschmelzungsfrequenz bei der jungen Larve 40, bei der Imago 170 Lichtreize/sec).Für die Primärvorgänge im Auge der Insekten lassen sich folgende Annahmen durch die Versuchsergebnisse begründen : Der Initialvorgang ist die Lichtabsorption in einem Sehstoff. Dieser zerfällt bei Belichtung nicht. Die Empfindlichkeit der Sehzellen (ihr Adaptationszustand) hängt nicht — wie bei den Wirbeltieren — von der vorhandenen Menge an Sehsubstanzen ab, sondern von dem Abstand des Erregungsniveaus der Retinazellen vom Ruhewert. Die Höhe des Erregungsniveaus ist durch die Höhe des negativen Potentials der Retinazellen meßbar. Bei gleicher Reizintensität stellt sich nach einer gewissen Reizdauer stets die gleiche Höhe des Erregungsniveaus ein. Dieser Adaptationsvorgang kann durch restitutive (repolarisierende) Potentiale erheblich beschleunigt werden. Sie entstehen wahrscheinlich in der Lamina ganglionaris und breiten sich elektrotonisch retinawärts aus. Diese elektrotonischen Potentiale haben an den Sinneszellen selbst nur dann eine ausreichende Größe, wenn der Abstand zwischen Retina und Lamina ganglionaris klein ist.Die Untersuchungen wurden mit Unterstützung der Notgemeinschaft der deutschen Wissenschaft durchgeführt. Wir danken ferner Herrn Prof. Dr. R. W. Pohl, der in der Werkstatt des I. Physikalischen Institutes der Universität Göttingen Apparate für den Versuchsaufbau herstellen ließ.  相似文献   

4.
Zusammenfassung Da Lebendbeobachtungen über den Ersatz einzelner Zellen im Epithelgewebe noch nicht vorliegen und das Schicksal verletzter absterbender Zellen in diesen Geweben bisher nicht direkt verfolgt worden ist, werden mit Hilfe des Mikromanipulators durch Anstich einzelne Zellen abgetötet und das Verhalten der Umgebung beobachtet. Als Objekt der Untersuchung dienten das Epithel der Haut von Feuersalamander- undHyla-Larven und Flimmerepithel an den Kiemenlamellen des Axolotl. An den verletzten Zellen lassen sich Erscheinungen beobachten, die mit den von T.Péterfi gesehenen thixotropen Veränderungen verschiedenster Zellarten Ähnlichkeit aufweisen und als kolloidale Entmischungserscheinungen des Cytoplasmas anzusehen sind. Das Cytoplasma der angestochenen Zellen wird trüb, optisch inhomogen und zeigt starke Viskosität, während der Zellkern einen flüssigen, leicht beweglichen Inhalt aufweist und sich nach Verletzung scharf gegen die übrige Zelle abgrenzt. Im Beginne sind die Vorgänge reversibel und die verletzten Zellen können sich erholen. — Der Ersatz der durch Anstich getöteten Zelle erfolgt in der Weise, daß sie zunächst in ganz kurzer Beobachtungszeit von den Nachbarzellen zusammengepreßt wird. Diese schieben sich darauf nach dem Orte vor, welchen die absterbende Zelle einnimmt und drängen sie so weit heraus, bis sie ganz aus dem Gewebsverband entfernt ist. Der erste Vorgang des Zusammenpressens wird als Wirkung des plötzlich freiwerdenden Binnendruckes des Gewebes aufgefaßt, während der endgültige Verschluß der Lücke durch Formveränderungen und Vorrücken der Nachbarzellen erfolgt und der von A.Oppel beschriebenen aktiven Epithelbewegung zuzuschreiben ist.Am Flimmerepithel der Kiemen des Axolotl spielen sich Zellausstoßung und Zellersatz ähnlich ab, nur geht der ganze Vorgang meist innerhalb weniger Minuten vor sich, so daß man nur die Zellbewegung der Umgebung und weniger die Wirkung der plötzlichen Druckschwankung im Gewebe durch das Anstechen der Zelle beobachten kann.Man muß auf Grund der Versuche daher wohl annehmen, daß ein lebendes Epithel in normalem Zustande einen bestimmten Binnendruck in seiner Zelldecke aufweist, welcher der Summe der von jeder Zelle ausgeübten Einzeldrucke entspricht. Entsteht durch Ausfall einer Zelle ein Druckgefälle, so äußert es sich in dem Auftreten von teils aktiven, teils passiven Bewegungen derselben. Sie schieben sich solange gleitend aneinander vorbei, bis eine neue Ruhelage erreicht und eine vorhandene Gewebslücke geschlossen ist. Wird eine Zelle geschädigt und sind die auftretenden Kolloidveränderungen reversibel, so ist sie bei einsetzender Erholung in der Lage, den Seitendruck der Umgebung wieder zu kompensieren; ist die Schädigung vom Zelltod gefolgt, so wird ihr Platz durch Vorrücken der Nachbarzellen eingenommen und sie selber nach außen entfernt. Das Vorhandensein einer toten Zelle wirkt also ebenso wie eine Lücke im Epithelbelag. Die aktive Zellausstoßung ist demnach das Mittel, durch welches die funktionelle und morphologische Gleichartigkeit der Zusammensetzung eines Gewebes gewährleistet wird. Es ist wahrscheinlich, daß auch andere Epithelien als die untersuchten z. B. beim Warmblüter sich ebenso verhalten, da hier die Ergänzung großer Flächen in der gleichen Weise erfolgt wie bei den Amphibien.  相似文献   

5.
Zusammenfassung Das Tömösvárysche Organ von Scutigerella immaculata wurde elektronenmikroskopisch untersucht. Es liegt in einer Epidermisinvagination direkt hinter der Basis der Antenne. Die Grube des Organs ist mit Kutikula ausgekleidet und steht durch eine rundliche Öffnung mit der Außenwelt in Verbindung. Zwei Drittel des Grubenraumes sind angefüllt mit einem Gitterwerk kutikulärer Stäbe, die distale Fortsätze von Sinneszellen enthalten. Unterhalb der Grube liegen mehrere Sinneszellen. Jede Sinneszelle formt proximal und distal einen schmäleren Fortsatz. Jeder distale Fortsatz läuft in zwei Zilienstrukturen aus, die unter Verzweigung in das Gitterwerk eintreten und sich auch dort weiter verzweigen. Die Sinneszellen werden von drüsigen Hüllzellen umfaßt. An ihnen können trichogene und tormogene Zellen unterschieden werden. Das Sekret der Hüllzellen umgibt die distalen Fortsätze der Sinneszellen von den Zilienstrukturen an bis in das Gitterwerk hinein. Die Kutikula des Gitterwerkes ist sehr dünn und von winzigen Poren durchsetzt.Nach einem Vergleich mit Sinnesorganen von Insekten muß vermutet werden, daß es sich beim Tömösváryschen Organ um ein Geruchssinnesorgan handelt, das vielleicht auch als Hygrorezeptor fungiert.
Sense organs of symphyla (Myriapoda)II. Ultrastructure of the temporal organ of Scutigerella immaculata Newport
Summary The temporal organ of Scutigerella immaculata is situated in a pit just behind of the antenna. The pit represents an epidermal invagination. It is coated by cuticle and corresponds to the outside by a circular opening. More than half of the pit is filled up with a complicated network of branching and anastomosing cuticular protuberances. The cuticle of the protuberances is very thin and perforated by tiny pores. There are about ten sense cells situated under the pit, each of which forms a distal as well as a proximal process. Each distal process shows two ciliary structures. After branching they enter the cuticular protuberances and branch inside of it, as well. The sense cells are surrounded by glandular sheath cells, in which trichogen and tormogen cells can be distinguished. The secretion product of the sheath cells surrounds the distal parts of the sense cells inside of the cuticular protuberances. By comparison to sense organs of insects it must be presumed that the temporal organ represents an olfactory organ which may also function as hygroreceptor.
Ich danke Herrn Rau (Zentralinstitut für Elektronenmikroskopie der Technischen Universität Berlin) für die Durchführung der Arbeiten am Raster-Elektronenmikroskop und Frau Friedemann für die Anfertigung der Zeichnung.  相似文献   

6.
Zusammenfassung Unsere Schlüsse zusammenfassend, können wir nunmehr als bewiesen ansehen, daß 1. die Ganglienzellen des intramuralen Darmgeflechts, gleichgültig ob es sich um denAuerbachschen oderMeissnerschen Plexus handelt, keine bindegewebige Kapsel haben, wenigstens beim Darm des Menschen und derjenigen Säugetiere, die wir untersucht haben. 2. die in großer Zahl befindlichen, ihrer Form nach sehr verschiedenen, nicht weniger auch nach dem Vorhandensein oder Fehlen von Ausläufern, Zellen, die zwischen den Nervenelementen liegen, nach ihrem Bau und ihrem färberischen Verhalten als zu Gliaelementen gehörig angesehen werden müssen, 3. man zu diesen Elementen auch das zwischen den Zellen gelegene Faserngewebe rechnen kann. Jedenfalls kann man es als bewiesen ansehen, daß diese Elemente, sowohl die Zellen wie auch die Fasern, in keiner Beziehung zum Bindegewebe zu setzen sind. 4. Man kann die Rolle dieser geformten und faserigen Elemente in Anologie mit der Rolle dieser Zellen in den spinalen Nervenwurzeln und im n. opticus und olfactorius setzen. Anscheinend dienen sie als Schutz- und Isolierapparat der Ganglienzelle. 5. Schließlich wollen wir betonen, daß der Bau des sympathischen Systems, zum mindesten bezüglich der Kapsel nicht überall der gleiche ist, und daß die Ganglienzellen des Grenzstranges sich in dem Sinne von den Ganglienzellen des intramuralen Darmgeflechts unterscheiden.Zum Schluß halte ich es für eine angenehme Pflicht, Herrn Prof. W.von Möllendorff meinen herzlichsten Dank für seine ständige Aufmerksamkeit, wertvolle Anleitung und die freundliche Aufnahme in seinem Institut auszusprechen.  相似文献   

7.
Zusammenfassung Der Gefriervorgang in den Zellen hängt in erster Linie ab von der Gefriergeschwindigkeit, der Frosthärte des Objektes und von der Konzentration eines Frostschutzmittels (Glyzerin) im Zytoplasma. Für die meisten Untersuchungen wurde Preßhefe als Testobjekt verwendet. Der Einfluß der Gefriergeschwindigkeit äußert sich auf drei verschiedene Weisen; das Zellwasser kristallisiert entweder extra oder intrazellulär oder es wird amorph verfestigt (Vitrifikation). Die Bestimmung von Gefrierpunkt, Unterkühlbarkeit und Rekristallisationspunkt ermöglicht eine Erklärung dieser drei Wirkungsweisen und führt zu einem physikalischen Verständnis des Phänomens der Frosthärte. Physikalische Untersuchungen zeigen, wie das Frostschutzmittel eine Erhöhung der Frosthärte bewirkt; physiologische Experimente veranschaulichen einige Nebenwirkungen des Glyzerins.Die Verwirklichung des Gefrierens lebender Zellen hängt in erster Linie von der Wahl geeigneter Gefriergeschwindigkeiten und Frostschutzmitteln ab. Die Endtemperatur des Gefriervorganges muß, je nach der Frosthärte des Objektes, d. h. je nach dem tiefsten in den Zellen auftretenden Rekristallisationspunkt, unter –50 bis –70° C liegen.Das Anwendungsgebiet des Gefrierens lebender Zellen ist sowohl auf biologischem wie auch auf medizinischem Gebiete sehr groß, sei es als reine Gefrierkonservierung oder in der Gefrier-Trocknung oder -Substitution. Mit Hilfe der Gefier-Ätzung können hochauflösende, elektronenmikroskopische Bilder der gefrorenen Objekte hergestellt werden, die vollkommen artefaktfrei sind, insbesondere frei von den durch die üblichen Präparationsmethoden eingeführten Veränderungen.Einige Beispiele illustrieren die Anwendung des Gefrierens lebender Zellen in der Elektronenmikroskopie. Die Methode der Gefrier-Ätzung ist besonders geeignet für die Darstellung der auf den Zytomembranen lokalisierten Partikel; z. B. Fibrillen synthetisierende Partikel in der Plasmamembran, Ribosomen auf einer Vakuolenmembran, Elementarpartikel auf den Cristae mitochondriales und Quantasomen auf den Granalamellen eines Chloroplasten. Die vielfältige Anwendbarkeit der Gefrier-Ätzung wird aufgezeigt an Hand von Mikroorganismen (Hefe), pflanzlichen (Wurzelspitze) und tierischen Zellen (Dünndarmepithel).Diese Arbeit wurde durch einen Kredit des Schweizerischen Nationalfonds unterstützt. Den Vorstehern des Institutes für Allgemeine Botanik der Eidgenössischen Technischen Hochschule, Herrn Prof. Dr. A. Frey-Wyssling und des Laboratoriums für Elektronenmikroskopie, Herrn Prof. Dr. K. Mühlethaler, sei für die großzügige Förderung dieser Arbeit bestens gedankt. Herrn Dr. D. Branton und Herrn und Frau Prof. Dr. H. Ruska (Medizinische Akademie, Düsseldorf) danke ich für ihre Mitarbeit und für die Überlassung der Abb. 17, 20 und 21.  相似文献   

8.
Fritz Laschat 《Zoomorphology》1943,40(1-3):314-347
VII. Zusammenfassung der Ergebnisse Bei den mit Hilfe einer Eiablageuhr genau zeitbestimmten Eiern beträgt die Dauer der Embryonalentwicklung des Keimes bei einer Temperatur von 27 ± 0,5° C und bei 85–90% r. F. 12 Tage.Am Ende des 5. Tages wird die Augenanlage zum ersten Male während der Umrollung äußerlich sichtbar.Bis zum 6. Entwicklungstage besteht die Augenimaginalscheibe aus einem verdickten Epithel.Der Augenfleck wächst, auf das funktionstüchtige Auge bezogen, von hinten nach vorn. Am hinteren Begrenzungsbogen der Anlage findet kein Zuwachs statt. Er ist von Anfang an scharf abgesetzt und wird zum Hinterrande des larvalen und imaginalen Auges.Mit dem 7. Tage haben sich auf dem Wege der Gruppenbildung einzelne Elemente des werdenden Ommas vorgeordnet. Am B. Tage wird auch äußerlich am Hinterrande des Auges auf seiner Dorso-Ventral-Mittelachse das erste Omma sichtbar, um das die folgenden im halbkreisförmigen Bogen sich anordnen.An der 2 Tage vor dem Schlüpfen einsetzenden Bildung der Cornea sind nur die Kristallkegelzellen und die Nebenpigmentzellen beteiligt.Larvenhäutung und Augenwachstum stehen histologisch in einer engen Beziehung zueinander, und beide hängen von der Einnahme einer Vollmahlzeit ab.Postembryonal erfolgen Zuwachs des Auges und Bildung der Cornea grundsätzlich in gleicher Weise wie embryonal.Während der ganzen postembryonalen Entwicklung nehmen Zahl und Größe der Facetten stetig und harmonisch zu. Die Zahl steigt um das Neunfache.In der Vorderrandzone des Auges beträgt der Breitenzuwachs für jede der fünf Häutungen konstant drei Ommen im Querschnitt.Die Cornealinsen am Hinterrande und in der Mitte des Auges sind gleich groß. Die der Vorderrandommen in der Zuwachszone sind kleiner, sie gleichen sich bei der nächstfolgenden Häutung in ihrer Größe den übrigen Ommen an. Im Auge der Imago haben alle Ommen den gleichen Durchmesser.Neben den beiden Facettenaugen besitzt Rhodnius ein Paar seitlicher Ocellen. Ihre Anlagen werden zwar früh aus der Hypodermis herausdifferenziert, ihre Entwicklung ist aber bis zur Larve V gehemmt. Bei der Anlage der Ocellen bilden sich die Zellen der Hypodermis unter ähnlichen Wachstumserscheinungen um, wie sie in der Zuwachszone des embryonalen und postembryonalen Auges deutlich werden.Die Schicht der Sinneszellen und die der Corneagenzellen werden als zwei Zellager nacheinander durch Auswanderung von Hypodermiszellen angelegt.Abschließend werden Beziehungen zwischen der Entwicklung der Sehorgane und den allgemeinen Häutungsvorgängen besprochen.  相似文献   

9.
Zusammenfassung Unter Verwendung der Silbermethode nach Bielschowsky-Gros und der Einschlußfärbung mit Ehrlichschem, saurem Hämatoxylin wurde die Anordnung, Ausbreitung und Endigungsweise des vegetativen Nervensystems in der Wand der A. uterina des Menschen untersucht.Die A. uterina ist in der Adventitia und Periadventitia von dicken Bündeln in der Mehrzahl markloser, weniger markhaltiger Nervenfasern begleitet. Die in der Adventitia parallel zur Verlaufsrichtung der A. uterina ziehenden Stränge grobkalibriger markloser Nervenfasern verzweigen sich mehrfach und bilden Geflechte, die mit den auf der Muskularis aus feinen Nervenfasern zusammengesetzten Nervengeflechten in Verbindung stehen.Die A. uterina ist in ihrem ganzen Verlauf an der Muskularis von einem dichten Flechtwerk feinster markloser Nervenfasern überzogen, die von länglichen Schwannschen Kernen begleitet werden. Die feinkalibrigen Nervenfasern eines Nervengeflechtes setzen sich kontinuierlich in ein aus feinsten marklosen Nervenfasern bestehendes präterminales Netz fort, an das sich das nervöse Terminalretikulum, die Endigungsform des vegetativen Nervensystems, anschließt. Beide Formationen, das präterminale Netz und das Terminalretikulum lassen sich nicht immer deutlich voneinander abgrenzen und müssen als ein einheitliches Ganzes betrachtet werden.Das Terminalretikulum setzt sich aus weiten oder engen Maschen zusammen und stellt die plasmatische Verbindung von Nervengewebe und dem Plasma der Erfolgszellen, sowohl in der Tunica media, als auch in der Adventitia der A. uterina her. An den Verzweigungsstellen des prätermmalen Netzes, an den Übergängen präterminaler Nervenelemente in das nervöse Terminalretikulum und seltener im Bereich des Terminalretikulums sind die mit unterschiedlichen Kernen ausgestatteten interstitiellen Zellen zu beobachten.Da sich das Nervengewebe auf und zwischen den oberen Mediaschichten kontinuierlich erstreckt und durch das nervöse Terminalretikulum mit den glatten Muskelzellen der A. uterina in plasmatische Verbindung gerät, ist die Abhängigkeit einer jeden Muskelzelle der A. uterina vom vegetativen Nervensystem wahrscheinlich.In der Adventitia der A. uterina sind stellenweise Bindegewebszellen von Neurofibrillen durchzogen; auch ist die Verbindung von Schwannschem Leitgewebe mit dem Plasma von Bindegewebszellen zu beobachten. Eine eingehende Betrachtung ist den interstitiellen (intercalären) Zellen und den mit dem Nervengewebe in Verbindung stehenden Bindegewebszellen in der Adventitia der A. uterina und im menschlichen Magen gewidmet.Die neurovegetative Endformation (präterminales Netz und Terminalretikulum) wird mit ihren zelligen Elementen als ein in normalen und pathologischen Lebensabläufen veränderliches Gewebe betrachtet.  相似文献   

10.
Zusammenfassung Die sehr zahlreichen Nervenfasern für die Thymus der Sauropsiden gehen hauptsächlich vom zervikalen sympathischen Strang, aber zum Teil auch vom Vagus und vielleicht von den ventralen Ästen der zervikalen Nerven aus und erreichen die Thymus, indem sie den Gefäßen entlang laufen.Die Faserbündelchen, in welchen man oft isolierte oder in Gruppen gesammelte sympathische Zellen antrifft, dringen in das Thymusparenchym ein und hier verästeln sie sich sehr stark. Ein kleiner Teil der Nervenfasern sind Vasomotoren, ein anderer ebenfalls kleiner Teil verschwindet innerhalb von Gruppen von epithelioiden Zellen, welche oft mit drüsenähnlichen Höhlungen versehen sind (einige von diesen epithelioiden Anhäufungen erinnern im Aussehen an dieHassall-Körperchen der Säugetiere); echte typische H. K. sind sehr selten in erwachsenen Tieren nachweisbar.Der größte Teil der Nervenfasern erreicht jedoch die myoiden Zellen und verbindet sich mit denselben. Bei Cheloniern und bei Hühnern ist der Nervenanteil, der den myoiden Elementen vorbehalten ist, wirklich übermäßig groß.Die myoiden Zellen sind bekanntlich ein oft sehr ansehnlicher Bestandteil der Thymus der Sauropsiden, wie bei anderen Wirbeltiergruppen. Sie sind regressiven und progressiven Veränderungen unterworfen: je nach den Jahreszeiten (Dustin), ebenso besonderen funktionellen Bedingungen wie Fasten, Winterschlaf (Hammar); sie zeigen beim Huhn eine Hyperplasie-Hypertrophie als Folge der Kastration und des Alters (Terni).In vorliegenden Untersuchungen sind nebenbei einige neue Tatsachen über die Morphologie der myoiden Zellen festgestellt worden, unter anderen folgende: a) ihre histologische Differenzierung während der Entwicklung tritt sehr spät ein; b) sie sind räumlich von dem retikulär-kollagenen Netze des Thymusläppchens unabhängig, und sie besitzen keine retikulosarkolemmale Membran; c) die strahlenförmige (konzentrische) oder regellose Anordnung der Querstreifung der Myofibrillen in den großen myoiden Elementen bildet sich als Resultat der Verschmelzung von vorher unabhängigen Zellen (weshalb die besprochenen Elemente echte Syncytien sind); d) im Protoplasma der myoiden Zellen finden sich Spuren von Glykogen; usw.Die Verbindungen zwischen Nervenfasern und myoiden Elementen und andere Einzelheiten der feineren Verteilung der Nervenelemente im Thymusläppchen wurden bei Cheloniern und Vögeln besonders eingehend untersucht. An der Oberfläche der myoiden Zellen bilden die Nervenfasern Windungen oder spatel-, knopf-, keulchen- oder füßchenförmige Verbreitungen, welche der myoiden Substanz anhängen (neuromyoide Verbindungen).Die Nervenfasern, welche sich durch diese Endigungsweise mit den myoiden Zellen verbinden, gehören sehr wahrscheinlich zu den postganglionären Neuronen, welche entweder im Thymus (intraparenchymale oder perivasale mikroskopische Ganglien) oder im zervikalen sympathischen Gefäßgeflecht oder im sympathischen Grenzstrang liegen.Über Wesen, Zweck und Ziel der Vagusfibern habe ich mir kein bestimmtes Urteil bilden können.Außerdem befinden sich im Thymusläppchen wenige Nervenzellen des gewöhnlichen sympathischen Typus und in größerer Zahl kleine isolierte Nervenzellen, die zweifellos mit den interstiziellen ZellenCajals zu identifizieren sind. Diese interstiziellen Neuronen befinden sich meistensin der Nähe der myoiden Zellen und liegen oft auf der Oberfläche derselben, indem sie sie mit ihren verästelten Fortsätzen umfassen. Manchmal verbindet sich ein langer und feiner Fortsatz der interstiziellen Neuronen mit einer entfernt gelegenen myoiden Zelle. Diese Nervenzellen müssen zum größten Teil alsautonome effektorische Neurone aufgefaßt werden, wegen ihrer innigen Verbindung mit der kontraktilen Substanz. Wenn eine Kontraktionsmöglichkeit der myoiden Zellen auch nicht in Abrede zu stellen ist, ist es nicht recht verständlich, was für eine nützliche Wirkung ihre Kontraktion haben könnte (darum gebrauchen wir den Ausdruck effektorisch und nicht motorisch).Man kann oft beobachten, daß an der Oberfläche einer und derselben myoiden Zelle sich sowohl Fäden von exogenen Nervenfasern, als auch verästelte Fortsätze einer kleinen interstiziellen paramyoiden Zelle ausbreiten.Obwohl in der Thymus (wie auch im Darm;Cajal) das Wesen der Fortsätze der interstiziellen Neuronen zweifelhaft ist, mangels sicherer differentialer Merkmale zwischen Neuriten und Dendriten, ist doch das Aussehen der mit den myoiden Zellen verbundenen Fasern ganz verschieden von demjenigen der Fortsätze der interstiziellen Zellen.In einigen wenigen Fällen ist es möglich, einen dünnen und langen Fortsatz (Neurit?) der interstiziellen Zelle zu verfolgen, welcher ein kleines Blutgefäß erreicht; es ist möglich, daß er längs desselben eine proximale Richtung verfolgt. Dieses Verhalten läßt die Vermutung zu, daß wenigstens einigen dieser Neuronen die Bedeutung vonrezeptorischen Neuronen zuzuschreiben sei.Die Deutung des reichen Zuflusses und der ansehnlichen Verteilung des nervösen Anteils im Thymusparenchym der Sauropsiden ist, vom Gesichtspunkt ihrer möglicherweise endokrinen Funktion, nicht leicht: Sei es, weil die Innervation anderer endokriner Drüsen histologisch nicht genau bekannt ist (mit Ausnahme der Paraganglien); sei es, weil es überhaupt zweifelhaft ist, ob die Thymus eine innere Sekretion besitzt.Es ist möglich, daß die Anwesenheit der neuromyoiden Synapsen in der Thymus (welche hier zum ersten Male hervorgehoben wird), wenn auch die myoiden Zellen nicht kontraktionsfähig sein sollten, trotzdem mit dem Kohlenhydratenstoffwechsel in Zusammenhang steht, ähnlich wie es für die neuromuskularen Synapsen des zerebrospinalen Systems angenommen wird (Roncato).Der beinahe übergroße Reichtum nervöser Verzweigungen und neuromyoider Verbindungen, besonders bei Cheloniern, legt die Vermutung nahe, daß in zyklischen degenerativen Vorgängen des Thymusparenchyms eine Zerstörung und nachfolgende übermäßige Regeneration von Nervenfasern stattfindet; andererseits läßt die Zunahme der Zahl und Verzweigung der Nervenfasern im Kapaun und alten Hahn (Terni) die begründete Vermutung zu, daß es sympathische Neuronen gibt, welche einer auch verspäteten progressiven histologischen Differenzierung ihrer Neuriten fähig sind (eine verspätete histologische Vervollkommnung des Zellenleibes und der Dendriten in sympathischen Neuronen ist schon in menschlichen Ganglien bekannt;Terni).Aus diesen Gründen lassen die voliegenden Beobachtungen über die Thymus der Sauropsiden den Gedanken aufkommen, daß die stark entwickelte autonome Innervation der Thymus in der Funktion dieses Organs eine bedeutende Rolle spielt: sei es als Sitz besonderer Reize, welche sich wahrscheinlich in den neuromyoiden Apparaten entladen, sei es, weil die Nervenfasern mit Vorrichtungen versehen sind, welche auf lokale oder allgemeine Reize mit besonderer Empfindlichkeit morphologisch reagieren.  相似文献   

11.
Zusammenfassung Die Untersuchungen beziehen sich auf das Grundzytoplasma der Spermatozyten und Spermatiden von Tachea nemoralis, Helix lutescens und Helix pomatia.Das Grundzytoplasma der Spermatozyten hat eine schon mikroskopisch nachweisbare Schichtung. Es besteht aus einem Ekto- und aus einem Entoplasma. Das erstere ist hyalin und einschlußfrei. Das letztere besteht aus einer lipoidarmen, zentralen, mitochondrienhaltigen und aus einer lipoidreichen, peripheren, zum Teil das Zentrosom unmittelbar umhüllenden, den Golgi-Apparat enthaltenden Phase. Der Golgi-Apparat und die Mitochondrien sind konzentrisch in bezug auf das Zentrosom angeordnet. Der erstere liegt näher dem Zentrosom als die letzteren.Die Zellen wurden durch verschiedene Mittel zur Bildung von Myelinfiguren veranlaßt. Die Myelinfiguren entstehen aus der Plasmamembran, aus der lipoidreichen Phase des Entoplasmas und aus der Hülle der Golgi-Apparatelemente. Dagegen konnten die Mitochondrien, das zwischen ihnen liegende Grundzytoplasma, die Binnenkörper der Golgi-Apparatelemente und das Ektoplasma niemals zur Bildung von Myelinfiguren veranlaßt werden. Die Lipoide sind also ungleichmäßig im Zytoplasma verteilt. Die strukturellen Veränderungen der lipoidreichen Phase, welche experimentell entweder durch Verflüssigung oder durch Verfestigung ihrer Substanz hervorgerufen werden können, werden näher beschrieben.Die lipoidreichen Schichten des Entoplasmas sind nach Vitalfärbung mit Chrysoidin schwach positiv doppelbrechend in bezug auf den Radius der Zelle. Die Oberfläche der lebenden ungefärbten Zelle ist dagegen schwach negativ doppelbrechend in bezug auf den Radius. Diese Doppelbrechung wird nicht auf die Plasmamembran, sondern auf das äußere Ektoplasma bezogen.Das Grundzytoplasma hat also submikroskopischen Schichtenbau. Die miteinander alternierenden Eiweißfolien und Lipoidlamellen sind jedoch teilweise gerüstartig miteinander verbunden, da die nachgewiesene Doppelbrechung nur schwach ist. Die Lipoidlamellen sind jedoch nicht gleichmäßig im Grundzytoplasma verteilt. Am zahlreichsten müssen sie in der lipoidreichen Phase des Entoplasmas und in der Plasmamembran sein. Gering ist dagegen ihre Anzahl im Ektoplasma, welches hauptsächlich aus Eiweißfolien aufgebaut sein muß. Die Lipoidlamellen und Eiweißfolien sind innen konzentrisch in bezug auf das Zentrosom und außen konzentrisch in bezug auf den Kern und das Zentrosom angeordnet. Diese submikroskopische Struktur muß sehr labil sein, da der Aggregatzustand des Grundzytoplasmas in der Mitte zwischen einem typischen Gel und einem typischen Sol steht.Während der Reifungsteilungen zerfallen die lipoidreichen Schichten in Fibrillen, welche in bezug auf ihre Länge schwach negativ doppelbrechend sind. Während der Mitose geht die submikroskopische Schichtenstruktur des Grundzytoplasmas teilweise, insbesondere im Inneren der Zelle, in eine submikroskopische Fibrillenstruktur über.Die submikroskopische Struktur des Golgi-Apparates wurde vom Verfasser schon früher beschrieben. Auch wurde die Doppelbrechung der Mitochondrien schon früher festgestellt. Die Moleküle der Glyzeride sind senkrecht zur Länge der sehr kurzen, stäbchenförmigen Mitochondrien orientiert.Die Literatur, welche sich auf die mikroskopisch faßbare Schichtung des Grundzytoplasmas in verschiedenen Zellen bezieht, wird besprochen. Die mikroskopische Struktur der Zellen ist nämlich der grobmorphologische Ausdruck einer feineren submikroskopischen Struktur. Auch kann aus der Schichtung der mikroskopischen Einschlüsse auf die Schichtung der Substanzen des Grundzytoplasmas geschlossen werden. Die auf diese Weise gewonnenen Vorstellungen über die submikroskopische Struktur des Grundzytoplasmas können polarisationsoptisch geprüft werden.Das Grundzytoplasma der Spermatozyten, Ovozyten und der somatischen Zellen besteht aus einem Ekto- und aus einem Entoplasma. Das letztere ist entweder homogen oder besteht aus einer lipoidarmen, mitochondrienhaltigen und aus einer lipoidreichen, mit dem Golgi-Apparat verbundenen Phase. Das Ektoplasma der Ovozyten, Spermatozyten, Amöbozyten, Leukozyten und Fibroblasten ist in der Regel hyalin und einschlußfrei. Dagegen ist es in einigen Fällen nachgewiesen, daß die Neurofibrillen, Nissl-Körper, Myofibrillen, Tonofibrillen, Epithelfibrillen und retikulären Bindegewebsfibrillen nur im Ektoplasma liegen. Deshalb ist die Vermutung naheliegend, daß die spezifischen mikroskopischen Komponenten der Nerven-, Muskel-, Epithel- und retikulären Bindegewebszellen Differenzierungsprodukte des Ektoplasmas sind. Dagegen scheinen die Sekretions-, Exkretions- und Reserveprodukte, ebenso wie der Golgi-Apparat und die Mitochondrien immer nur im Entoplasma zu liegen.Der Golgi-Apparat und die Mitochondrien sind entweder konzentrisch in bezug auf den Kern oder konzentrisch in bezug auf das Zentrosom angeordnet. Im letzteren Fall wird das Zentrosom entweder unmittelbar vom Golgi-Apparat umgeben, während die Mitochondrien nach außen von ihm liegen oder umgekehrt. In jungen Ovozyten können diese mikroskopischen Komponenten besonders dicht um das Zentrosom zusammengedrängt sein, ja das ganze Entoplasma kann einen fast kompakten, vom Ektoplasma durch eine Membran scharf abgegrenzten Körper bilden. In solchen Fällen haben wir es mit einem Dotterkern im weiteren Sinne zu tun. Seltener scheinen die mikroskopischen Komponenten regellos im homogenen Entoplasma zerstreut zu sein.Gewöhnlich besteht das Grundzytoplasma nur aus einer Ekto- und Entoplasmaschicht. Seltener alternieren zahlreichere Ekto- und Entoplasmaschichten miteinander. Auch kann das Entoplasma als ein Netzwerk von Strängen im Ektoplasma liegen. Die lipoidreiche und die mitochondrienhaltige Phase bilden gewöhnlich zwei verschiedene Schichten des Entoplasmas. Jedoch kann sich die lipoidreiche Phase auch als ein kompliziertes Lamellensystem, ein Faden- oder ein Netzwerk in der mitochondrienhaltigen Phase verteilen oder umgekehrt. Die lipoidreiche, mit dem Golgi-Apparat verbundene und die mitochondrienhaltige Phase können entweder konzentrisch in bezug auf den Kern oder wenigstens teilweise auch konzentrisch in bezug auf das Zentrosom angeordnet sein. Im letzteren Fall wird das Zentrosom entweder unmittelbar von der lipoidreichen Phase umhüllt, während die mitochondrienhaltige nach außen von ihr liegt oder umgekehrt. Auch scheint eine der beiden Phasen des Entoplasmas bisweilen einen kompakten Körper bilden zu können.Das Grundzytoplasma ungefähr isodiametrischer Zellen (Ovozyten, Spermatozyten, Amöbozyten, Fibroblasten, Nervenzellen) scheint also überall aus Eiweißfolien und Lipoidlamellen, welche entweder konzentrisch in bezug auf den Kern oder auch teilweise konzentrisch in bezug auf das Zentrosom angeordnet sind, aufgebaut zu sein. Die Lipoidlamellen sind in den einen Schichten des Grundzytoplasmas zahlreicher und in den anderen spärlicher. Die Eiweißfolien und Lipoidlamellen sind wohl zum Teil gerüstartig miteinander verbunden. Nur die Ausläufer dieser Zellen haben eine submikroskopische fibrilläre Struktur. Dagegen müssen wir annehmen, daß in sehr stark gestreckten Zellen (Muskelzellen, hohe Zylinderepithelzellen) das gesamte Grundzytoplasma eine mehr oder weniger deutlich ausgesprochene submikroskopische fibrilläre Struktur hat. An der Peripherie solcher Zellen kommt es vielleicht sogar zur Filmstruktur. In schwächer anisodiametrischen Zellen hat das Entoplasma, die Plasmamembran und vielleicht auch das äußerste Ektoplasma, wenn es frei von mikroskopischen Fibrillen ist wohl noch eine submikroskopische Folien- und Lamellenstruktur.  相似文献   

12.
Zusammenfassung Das Riechepithel von Ratten, Katzen und Hunden wurde nach Perfusionsfixierung mit Glutaraldehyd licht- und elektronenmikroskopisch untersucht. Von den bisher als Basalzellen bezeichneten Elementen ließen sich auf Grund der Feinstruktur besondere Blastemzellen abgrenzen, die ein Reservoir zur Regeneration von Sinneszellen darzustellen scheinen. Stütz- und Basalzellen enthalten ein zusammenhängendes Gerüst aus Tonofibrillen. Basale Zytoplasmaanteile dieser Zellen sind reich an Lysosomen. Im Epithel der untersuchten Tiere, aber seltener bei den erwachsenen Individuen, finden sich Differenzierungsstadien von Sinneszellen, die aus Blastemzellen hervorgehen. Im Blastem treten gelegentlich auch bei erwachsenen Tieren Mitosen auf. Morphologische Unterschiede der Sinneszellen sind nur zum Teil durch unreife Formen bedingt. Auf Grund der unterschiedlichen Größe der Riechzellen, ihrer Sinneskolben und ihrer Axone, der unterschiedlichen Anzahl der Neurotubuli im peripheren Sinnesfortsatz und in den Fila olfactoria dürfte es etwa 10–12 Sinneszelltypen in der Regio olfactoria geben. Die Feinstruktur des Epithels läßt vermuten, daß die Aufnahme von Geruchsreizen in dem olfactorischen Saum durch die Endspieße der Sinnesgeißeln erfolgt. Gegen die Nasenhöhle ist der Saum durch einen Schleimfilm abgegrenzt. Der Flüssigkeitsgehalt des olfactorischen Saumes scheint von den Mikrozotten der Stützzellen aufrechterhalten zu werden. Es wird angenommen, daß sich die Membranen der Endspieße an der Saumoberfläche mit den spezifischen Geruchsstoffen beladen und dann in der Tiefe des Saumes unter Einwirkung der Mikrozotten für neue Reizaufnahmen regeneriert werden.
Summary The olfactory epithelium of rat, cat, and dog was studied light- and electronmicroscopically after perfusion with glutaraldehyde. Special blastema cells among the basal cells are considered as precursors for regenerating sensory receptors. Supporting cells and basal cells possess a continuous framework of tonofibrils. The basal areas of these cells are rich inlysosomes. In young animals, and more rarely in adults, there are different stages linking blastema cells with differentiated sensory cells. The blastema even of adult animals may show occasional mitotic figures. Approximately 10–12 types of sensory receptor cells can be distinguished by their varying size, the appearance of their proximal and distal processes, and the different numbers of neurotubules which these contain. It is concluded, from the ultrastructural details observed, that the perception of olfactory stimuli occurs at the periphery of the sensory hairs. The mucous coating in this zone seems to be kept moist by the microvilli of the supporting cells. It is assumed that the membranes of the sensory hairs take up specific odorous substances and that they regenerate their capacity for renewed stimulation under the influence of the microvilli.


Herrn Professor Dr. W. Bargmann zum 60. Geburtstag gewidmet.

Mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

13.
Zusammenfassung Die Verdauung ist bei Ixodes intracellular. Im Darm des nüchternen Weibchens gibt es drei Arten von Zellen, degenerierende Zellen, eigentliche Darmzellen and Driisenzellen. Nach dem Saugen findet sofort Hämolyse und Eindickung des aufgenommenen Blutes statt. Der Darminhalt bleibt füissig oder es bilden rich Hämoglobinkrystalle, je nach dem artspezifischen Verhalten des gesogenen Blutes. Die eigentlichen Darmzellen vermehren rich und wölben sich in das Darmlumen hinein. Die Nahrung wird wenig verändert in flüssigem Zustand in die Zellen aufgenommen, sammelt sich hier in Nahrungskugeln an und wird zu Exkreten abgebaut. Wenn alle Nahrung aus dem Darmlumen verschwunden ist, zerfallen die nur noch mit Exkreten erfüllten Zellen und bleiben beim absterbenden Weibchen im Darmlumen liegen. Bei den Jugendstadien werden sic nach der Häutung durch den Enddarm entleert. Eine Anzahl von Zellen macht diesen ProzeB nicht mit, sondern liefert das Darmepithel des nächsten Entwicklungsstadiums oder degeneriert beim Weibchen. Über die Natur der Exkrete konnte nichts ermittelt werden. Bei Ixodes plumbeus wird das Chromatin der Vogelblutkerne innerhalb der Darmzellen abgebaut. Die Wasserstoffionenkonzentration liegt während der ganzen Verdauung zwischen 7,2 und 7,6. Solange noch Nahrung im Darmlumen ist, läßt sick das Wirtseiweiß serologisch nachweisen. Bis auf Degenerationsstadien enthalten alle Darmzellen viel Fett. Symbionten werden bei Ixodes ricinus nicht beobachtet.  相似文献   

14.
Zusammenfassung Wir haben zwei Fragen aufgeworfen. Die erstere lautete: Wie verhalten sich Plastiden zur Essigsäure? Die zweite: Gibt es einen genetischen Zusammenhang zwischen Chondriosomen und Plastiden ?Es scheint mir, daß ich auf die erste Frage eine ganz bestimmte Antwort erhalten habe. Die Plastiden leiden in allen Stadien ihrer Entwicklung von der Essigsäure. Die alten Plastiden büßen ihre Fähigkeit ein, sich durch die zur Färbung der Plastiden gewöhnlich angewandten Farbstoffe zu färben; die jungen Anlagen der Plastiden sind überhaupt nicht nachzuweisen. Vielleicht bleibt auch ein unfärbbares Gefüge von ihnen übrig, es ist aber schwer wahrzunehmen, da es keine Differential-färbung annimmt. In einigen Fällen habe ich tatsächlich, wie es scheint, in den nach Carnoy fixierten Präparaten die Schatten von Chondriosomen und Mitochodnrien erkannt. Im wesentlichen ist das Verhalten der Chondriosomen und Plastiden gegenüber der Essigsäure offenbar identisch.Was die zweite Frage anbetrifft, so zeigt die große ihr gewidmete Literatur, wie schwer sie zu lösen ist. Eine direkte langdauernde Beobachtung am lebenden Objekt hat bis jetzt keine positiven Ergebnisse geliefert (Kassmann). Das Studium von fixierten Präparaten zwingt dazu, das Entwicklungsbild der Plastiden zu rekonstruieren, und zwar vermittelst Gegenüberstellung von cytoplasmatischen Gebilden in Zellen von verschiedenem Alter. Diese Gegenüberstellung kann nicht ganz frei von subjektiven Momenten sein. Die Lage wird auch noch dadurch erschwert, daß die zu untersuchenden Gebilde beim Gebrauch ein und desselben Fixators verschiedene Bilder zeigen. So hat Bowen z. B. der Benda-Methode den Vorzug gegeben, ich konnte jedoch mit diesem Verfahren keine guten Resultate erzielen und gewann meine besten Präparate bei Fixation nach Regaud. Alle diese Umstände lassen mich meine Resultate sehr vorsichtig werten, insofern dieselben sich auf die genetische Beziehung zwischen Chondriosomen und Plastiden beziehen.Ich will nicht leugnen, daß ich beim Beginn dieser Arbeit gewissermaßen mit dem Standpunkte sympathisierte, nach dem Chondriosomen und Plastiden keine homologen Gebilde darstellen; meine eigenen Beobachtungen führten mich jedoch zu dem entgegengesetzten Standpunkt. Nach meinen Beobachtungen sind die Chondriosomen als ein bestimmtes Stadium in der Entwicklung der Plastiden aufzufassen. Davon zeugen die von verschiedenen Autoren und auch von mir, wahrgenommenen Übergangsformen zwischen Chondriosomen und Plastiden. Wenn bei der Feststellung solcher Formen der subjektive Faktor auch nicht ausgeschieden werden kann, so gibt es doch indirekte Daten, welche die Beziehung von Chondriosomen und Plastiden bestätigen. Sogar erwachsene Plastiden verhalten sich, wie wir oben gesehen haben, den Essigsäure enthaltenden Fixatoren gegenüber gleich den Chondriosomen. Die Formen der Plastiden, die ich oben als infantil bezeichnete, ahmen genau die Formen einiger Chondriosomen nach. Es ist wohl kaum möglich, diese infantilen Plastiden als ein Deformationsprodukt aufzufassen, denn sie treten bei verschiedenen Fixationsverfahren auf. So kann man der Regaud-Flüssigkeit wohl kaum die Fähigkeit zusprechen, die Plastiden zu verlängern (Kiyohara, Bowen), denn wenn diese Flüssigkeit eine solche Eigenschaft gehabt hätte, so hätte sich ihr Einfluß vor allem an den jüngsten Plastiden geltend gemacht, das Beispiel der Elodea zeigt uns aber, daß dem nicht so ist.Der Umstand, daß in alten Zellen außer Plastiden Chondriosomen vorhanden sind, stellt für die Theorie, welche die Einheit des Plastidoms annimmt, keine Schwierigkeit dar. Es ist leicht denkbar, daß in der Zelle in einem gewissen Augenblick solche Verhältnisse zustandekommen, welche die weitere Umwandlung der Chondriosomen in Plastiden verhindern. Wir wissen, daß derartige Verhältnisse manchmal bei buntblättrigen Pflanzen vorhanden sind und daß die lädierten Zellen demzufolge mit Chondriosomen allein ausgestattet bleiben (Sou Jan Tsinen); wahrscheinlich treten derartige Verhältnisse im Evolutionsprozesse aller tierischen Zellen ein. Obgleich das Endstadium der Entwicklung von Chondriom-Plastiden bei den Tieren ausfällt, so spielen die Chondriosomen bei ihnen bekanntlich gelegentlich die Rolle von Stärkebildnern, die für die pflanzliche Zelle so charakteristisch ist.Somit erscheint die Einheit von Chondriosomen und Plastiden durch direkte und indirekte Beweise genügend begründet.  相似文献   

15.
Zusammenfassung In den Brockmannschen Körperchen maritimer Teleostier lassen sich zwei Zelltypen darstellen. Die helleren Elemente liegen im allgemeinen in der Peripherie des Brockmannschen Körperchens, d. h. nahe der Bindegewebskapsel. Sie scheinen sekretorisch hochaktiv zu sein, wie aus dem Auftreten von Riesenzellen und Amitosen geschlossen wird. Die dunkleren Zellen folgen in ihrem Verlauf mehr den Gefäßen und bevorzugen in bezug auf ihre Lage das Zentrum. Sie schließen sich dort zu trabekelähnlichen Gebilden zusammen.Vor allem in bzw. an Stelle der dunklen Zellen, nur höchst vereinzelt in hellen Zellen, ließen sich bei fünf Arten (Pleuronectes flesus, Sebastes marinus, Depranopsetta platessoides, Gadus morrhua, Cyclopterus lumpus) intensiv azidophile Kolloidtropfen nachweisen. Die Kolloidbildung scheint eine weitverbreitete Erscheinung in den Brockmannschen Körperchen von Teleostiern zu sein. Wahrscheinlich stellt das Kolloid einen Eiweißkörper dar. In den kolloidhaltigen Brockmannschen Körperchen findet man an eine Kernsekretion erinnernde Bilder.Zugunsten der Hypothese, es könnte sich bei dem Kolloid um die Stapelform eines. Hormons handeln, spricht die Beobachtung beträchtlicher Schwankungen der Häufigkeit des Vorkommens solcher Kolloidtropfen. Der Ablauf jahreszeitlicher Schwankungen des Kolloidgehaltes konnte bisher nicht beobachtet werden; sein Nachweis würde die Bearbeitung eines umfangreichen Untersuchungsgutes erfordern.  相似文献   

16.
Zusammenfassung Die neurosekretorischen Zellen im Kaudalrückenmark von Channa argus Cantor werden von einem dichten Kapillarnetz versorgt. Die Blutkapillaren umschließen die Nervenzellen nicht nur perizellulär, sondern dringen auch als endozelluläre Kapillaren in das Zytoplasma ein. Sie können sich im Zytoplasma verzweigen und an die Kernmembran herantreten. Wir sehen in diesem Verhalten einen Ausdruck für den direkten und schnellen Stoffaustausch zwischen neurosekretorischer Zelle und Blut. Zwischen der Basophilie des in den Kerndellen gelegenen Zytoplasmas und der Kapillarisierung der Zellen dürfte ein Zusammenhang bestehen.  相似文献   

17.
Zusammenfassung Mit Hilfe neu entwickelter Methodik wurden erstmalig differenzierte Gewebezellen verschiedenster Herkunft dreidimensional vermessen und für jede einzelne Zelle das Kernvolumen, das Plasmavolumen und die sich aus diesen ergebende Kern-Plasma-Relation bestimmt.Für die Kerne konnte das bekannte Verdoppelungsgesetz von Jakobj erneut bestätigt werden, darüber hinaus auch das Vorkommen von Zwischenklassen bei der Leber des Frosches, beim Epithel des Plexus chorioideus, bei den Spermiocyten I. Ordnung und beim Amnionepithel des Menschen nachgewiesen werden. Beim Darmepithel der Maus, dem Pleuraepithel des Meerschweinchens und dem Endothel der vorderen Augenkammer des Rindes trat nur eine Kernklasse auf.Beim hungernden Frosch stellte sich gegenüber einem gut ernährten Frosch in den Leberzellen neben einer Verringerung des Plasmavolumens auch eine solche der Kernvolumina ein, und zwar in dem Maße, daß die Kern-Plasma-Relation konstant und die gleiche blieb.Das Auftreten einer konstanten Kern-Plasma-Relation wurde für die Leberzellen eines gut ernährten wie eines hungernden Frosches, für das Darmepithel der Maus, das Pleuraepithel vom Meerschweinchen, das Epithel des Plexus chorioideus und das Amnion, sowie für die Spermiocyten I. Ordnung vom Menschen nachgewiesen. Für das Endothel der vorderen Augenkammer des Rindes ergab sich eine inkonstante Relation. Der Grad der Konstanz wurde durch die Größe des Korrelationskoeffizienten aus Kern- und Plasmavolumina zum Ausdruck gebracht und somit zahlenmäßig erfaßt.Die bei Konstanz der Kern-Plasma-Relation notwendige Erwartung, daß bei Auftreten von Verdoppelungs- und Zwischenklassen der Kernvolumina sich auch solche der Plasmavolumina ergeben müssen, konnte messend bestätigt werden.Die Arbeit wurde als Dissertation (D 27) unter Leitung von Herrn Prof. Dr. R. v. Volkmann angefertigt. Das gesamte Messungs- und Berechnungsmaterial liegt im Anatomischen Institut der Universität Jena zur Einsichtnahme aus.  相似文献   

18.
Zusammenfassung Die Struktur der Endformation vegetativer Nervenfasern innerhalb der Dünndarmzotte der weißen Ratte wurde elektronenmikroskopisch untersucht. Auch die feinsten (kleiner als 1 ) Nervenfasern sind individuelle, zytoplasmatische Gebilde. Mehrere Axone, jedes von einem Axolemm begrenzt, sind in die Zytoplasmamembran der Schwannschen Zelle eingefaltet. Das Leitgewebe besteht ebenfalls aus einzelnen Zellen. Es ist kein Plasmodium. Im bindegewebigen Zottenstroma wird das aus Axonen und Schwannschen Zellen bestehende Bündel von einer Basalmembran gegen das Tnterstitium abgegrenzt. Das Bündel wird hier von zahlreichen, feinen kollagenen Fasern begleitet.An den Basen der Epithelzellen werden Synapsen solcher Bündel beobachtet. Die Zytoplasmamembran der Epithelzelle und das Axolemm werden zu synaptischen Membranen. Diese zeichnen sich durch starken Kontrast und Anlagerung osmiophiler Substanzen aus. Im terminalen Axoplasma sind synaptische Bläschen zwar häufig, aber nicht regelmäßig vorhanden. Basalmembran und Schwannsche Zellmembran fehlen hier. Oft erreicht ein ganzes Axonbündel das Epithel, so daß von einer multiterminalen Innervationsform gesprochen werden kann. Dabei finden sich Synapsen mehrerer Axone an der Membran einer einzelnen Zelle. Auch kann eines der Axone mit zwei oder mehreren Zellen synaptisch verbunden sein.  相似文献   

19.
Zusammenfassung Untersucht wurden die Speicheldrüsen der Ratte bei verschiedenen Kostarten und im Megaphenschlaf, des Siebenschläfers (Myoxus myoxus) und des Igels (Erinaceus europaeus) im Winterschlaf und Wachzustand.Die Speicheldrüsen der Ratte zeigen in Abhängigkeit von der Kostart verschiedene histologische Bilder.Bei Trockenkost leitet der allgemeine Wasserverlust des Gewebes ein Inaktivitätsstadium ein, das durch einen Schwund der Sekretgranula und eine Abnahme der Zytoplasmabasophilie gekennzeichnet ist. Der letzteren entspricht ein Schwund des Ergastoplasmas. Langdauernde Milchkost bewirkt eine Schwellung der Zelleiber, der Kerne, Nukleolen und Mitochondrien.Im Hungerzustand waren in den geschrumpften Endstückzellen Austritte RNS- und DNS-haltigen Materials aus den Zellkernen, sowie ein Schwund der diffus verteilten RNS und des Ergastoplasmas zu beobachten.Die Speicheldrüsen von Winterschläfern weisen eine deutliche Schrumpfung der Endstücke auf, welche von einem RNS- (Nukleolen-) und DNS-Schwund in den Kernen sowie von einem Schwund der diffusen zytoplasmatischen RNS und des Ergastoplasmas begleitet ist. Gleichzeitig fällt die Millon-Reaktion schwächer als bei wachen Tieren aus. Während des Winterschlafes ist in den Endstücken der Speicheldrüsen von Myoxus myoxus, Erinaceus europaeus und den Zellen der Ausführgänge von Myoxus myoxus auffallend viel Glykogen vorhanden. Gleichzeitig kommt es in den Endstückzellen zu einer Verschleimung. Die basale Streifung der Ausführgangsepithelien ist während des Winterschlafs dicht, beim wachen Tier aufgelockert und von Vakuolen durchsetzt. Die Anfärbbarkeit von Stoffen im lumennahen Pol der Ausführgangsepithelien mit Perjodsäure-Leukofuchsin und Aldehydfuchsin legt die Annahme nahe, daß hier ein aktiver sekretorischer Vorgang vorliegt. In diesem Zusammenhang wird die Frage der Rückresorption diskutiert.Bei der weißen Ratte kommt es im Megaphenschlaf zu einer Verschleimung der Endstückzellen, die von einer starken Glykogenablagerung und Zunahme der mit Perjodsäure-Leukofuchsin und Aldehydfuchsin färbbaren Stoffe in den Ausführgangsepithelien begleitet ist. In den Acini treten RNS- und DNS-haltige Substanzen in großer Zahl aus dem Zellkern aus.Das histologische Verhalten der Speicheldrüsen des Megaphentieres (Ratte) entspricht nicht dem Strukturbild der Drüsen des Winterschläfers (Siebenschläfer).Herrn Prof. K. Niessing danke ich für die Überlassung eines Arbeitsplatzes, Herrn Dr. A. Oksche für Unterstützung bei der histochemischen Methodik, Fräulein E. Hauberg für die Anfertigung der Photographien.Stipendiat der Alexander von Humboldt-Stiftung, Bonn.  相似文献   

20.
Zusammenfassung Mit Hilfe der elektiven Rongalitweißfärbung nach eigener Modifikation konnte gezeigt werden, daß die im Hüllplasma der Neurofibrillenbündel liegenden undifferenzierten, embryonalen Zellen Neuroblasten sind, aus welchen sich durch einen Differenzierungsvorgang die bipolaren Sinneszellen bilden; diese Art der Genese ist bei der Larve von Dytiscus sp. ausschließlich zu beobachten.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号