首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of hepatic stellate cells (HSCs) results in cirrhosis and portal hypertension due to intrahepatic resistance. Activated HSCs increase their contraction after receptor agonist stimulation; however, the signaling pathways for the regulation of contraction are not fully understood. The aim of this study was to elucidate the change in contractile mechanisms of HSCs after cirrhotic activation. The expression pattern of contractile regulatory proteins was analyzed with quantitative RT-PCR and Western blotting. The phosphorylation levels of myosin light chain (MLC), 17-kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17), and MLC phosphatase targeting subunit 1 (MYPT1) after endothelin-1 (ET-1) stimulation in culture-activated HSCs were measured using phosphorylation-specific antibodies. In vivo-activated HSCs were isolated from rats subjected to bile duct ligation and repeated dimethylnitrosoamine injections. HSCs showed increased expression of not only α-smooth muscle actin, but also the contractile regulatory proteins MLC kinase (MLCK), Rho kinase 2 (ROCK2), and CPI-17 during HSC activation in vitro. In culture-activated HSCs, ET-1 increased phosphorylation of CPI-17 at Thr18, which was markedly inhibited by the PKC inhibitor Ro-31-8425. ET-1 induced phosphorylation of MYPT1 at Thr853, which was suppressed by the ROCK inhibitor Y-27632. ET-1 induced sustained phosphorylation of MLC at Thr18/Ser19, which was inhibited by both Ro-31-8425 and Y-27632. Consistent with the data obtained from the in vitro study, HSCs isolated from cirrhotic rats showed increased expression of α-smooth muscle actin, MLCK, CPI-17, and ROCK2 compared with HSCs from nontreated rats. Furthermore, MLC phosphorylation in in vivo-activated HSCs was increased, according to enhanced phosphorylation of CPI-17 and MYPT1 in the presence of ET-1. These results suggest that activated HSCs may participate in constriction of hepatic sinusoids in the cirrhotic liver through both Ca(2+)-dependent (MLCK pathway) and Ca(2+)-sensitization mechanism (CPI-17 and MYPT1 pathways).  相似文献   

2.
We examined the effects of Rho kinase on contraction and intracellular Ca2+ concentration ([Ca2+](i)) in guinea pig trachealis by measuring isometric force and the fura 2 signal [340- to 380-nm fluorescence ratio (F340/F380)]. A Rho kinase inhibitor, Y-27632 (1-1,000 microM), inhibited methacholine (MCh)-induced contraction, with a reduction in F340/F380 in a concentration-dependent manner. The values of EC(50) for contraction and F340/F380 induced by 1 microM MCh with Y-27632 were 27.3 +/- 5.1 and 524.1 +/- 31.0 microM, respectively. With 0.1 microM MCh, the values for these parameters were decreased to 1.0 +/- 0.1 and 98.2 +/- 6.2 microM, respectively. Tension-F340/F380 curves for MCh indicated that Y-27632 caused an ~50% inhibition of MCh-induced contraction, without a reduction in F340/F380. These effects of Y-27632 were not inhibited by a protein kinase C inhibitor, GF-109203X. Our results indicate that inhibition of Rho kinase attenuates both Ca2+ sensitization and [Ca2+](i).  相似文献   

3.
Evidence indicates that both the Rho/Rho kinase signaling pathway and reactive oxygen species (ROS) such as superoxide and H(2)O(2) are involved in the pathogenesis of hypertension. This study aimed to determine whether ROS-induced vascular contraction is mediated through activation of Rho/Rho kinase. Rat aortic rings (endothelium denuded) were isolated and placed in organ chambers for measurement of isometric force development. ROS were generated by a xanthine (X)-xanthine oxidase (XO) mixture. The antioxidants tempol (3 mM) and catalase (1,200 U/ml) or the XO inhibitor allopurinol (400 microM) significantly reduced X/XO-induced contraction. A Rho kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632), decreased the contraction in a concentration-dependent manner; however, the Ca(2+)-independent protein kinase C inhibitor rottlerin did not have an effect on X/XO-induced contraction. Phosphorylation of the myosin light chain phosphatase target subunit (MYPT1) was increased by ROS, and preincubation with Y-27632 blocked this increased phosphorylation. Western blotting for cytosolic and membrane-bound fractions of Rho showed that Rho was increased in the membrane fraction by ROS, suggesting activation of Rho. These observations demonstrate that ROS-induced Ca(2+) sensitization is through activation of Rho and a subsequent increase in Rho kinase activity but not Ca(2+)-independent PKC.  相似文献   

4.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

5.
Tonic physiological activity of RhoA/Rho kinase contributes to the maintenance of penile flaccidity through its involvement in the Ca(2+) sensitization of erectile tissue smooth muscle. The present study hypothesized that Rho kinase is also involved in the modulation of Ca(2+) entry induced by alpha(1)-adrenoceptor stimulation of penile arteries. Rat penile arteries were mounted in microvascular myographs for simultaneous measurements of intracellular Ca(2+) ([Ca(2+)](i)) and force. The Rho-kinase inhibitor Y-27632 markedly reduced norepinephrine-mediated electrically induced contractions and the increases in both [Ca(2+)](i) and tension elicited by the alpha(1)-adrenoceptor agonist phenylephrine (Phe). In contrast, the protein kinase C (PKC) inhibitor Ro-31-8220 reduced tension without altering the Phe-induced increase in [Ca(2+)](i). In the presence of nifedipine, Y-27632 still inhibited the non-L-type Ca(2+) signal and blunted Phe contraction. Y-27632 did not impair the capacitative Ca(2+) entry evoked by store depletion with cyclopiazonic acid but largely reduced the Ba(2+) influx stimulated by Phe in fura-2 AM-loaded arteries. The addition of Y-27632 to arteries depolarized with high KCl markedly reduced tension without changing [Ca(2+)](i). In alpha-toxin-permeabilized penile arteries stimulated with threshold Ca(2+) concentrations, Y-27632 inhibited the sensitization induced by either guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) or Phe in the presence of GTPgammaS. However, Y-27632 failed to alter contractions induced by a maximal concentration of free Ca(2+). These results suggest that Rho kinase, besides its contribution to the Ca(2+) sensitization of the contractile proteins, is also involved in the regulation of Ca(2+) entry through a nonselective cation channel activated by alpha(1)-adenoceptor stimulation in rat penile arteries.  相似文献   

6.
We reported previously that intermittent hypoxia with CO(2) to maintain eucapnia (IH-C) elevates plasma endothelin-1 (ET-1) and arterial pressure. In small mesenteric arteries (sMA; inner diameter = 150 microm), IH-C augments ET-1 constrictor sensitivity but diminishes ET-1-induced increases in intracellular Ca(2+) concentration, suggesting IH-C exposure increases both ET-1 levels and ET-1-stimulated Ca(2+) sensitization. Because Rho-associated kinase (ROK) can mediate Ca(2+) sensitization, we hypothesized that augmented vasoconstrictor sensitivity to ET-1 in arteries from IH-C-exposed rats is dependent on ROK activation. In thoracic aortic rings, ET-1 contraction was not different between groups, but ROK inhibition (Y-27632, 3 and 10 microM) attenuated ET-1 contraction more in IH-C than in sham arteries (50 +/- 11 and 78 +/- 7% vs. 41 +/- 12 and 48 +/- 9% inhibition, respectively). Therefore, ROK appears to contribute more to ET-1 contraction in IH-C than in sham aorta. In sMA, ROK inhibitors did not affect ET-1-mediated constriction in sham arteries and only modestly inhibited it in IH-C arteries. In ionomycin-permeabilized sMA with intracellular Ca(2+) concentration held at basal levels, Y-27632 did not affect ET-1-mediated constriction in either IH-C or sham sMA and ET-1 did not stimulate ROK translocation. In contrast, inhibition of myosin light-chain kinase (ML-9, 100 microM) prevented ET-1-mediated constriction in sMA from both groups. Therefore, IH-C exposure increases ET-1 vasoconstrictor sensitivity in sMA but not in aorta. Furthermore, ET-1 constriction is myosin light-chain kinase dependent and mediated by Ca(2+) sensitization that is independent of ROK activation in sMA but not aorta. Thus ET-1-mediated signaling in aorta and sMA is altered by IH-C but is dependent on different second messenger systems in small vs. large arteries.  相似文献   

7.
We studied the effect of lysophosphatidic acid (LPA) on collagen gel contraction by cultured rat hepatic stellate cells (HSCs) in association with the function of Rho-kinase, one of the target molecules of small GTPase Rho. Binding studies showed a single class-binding site of LPA on HSCs. LPA enhanced the contraction of a collagen lattice seeded with HSCs. LPA increased the number of HSCs with polygonal morphology that contained actin stress fibers, and enhanced the phosphorylation of myosin light chain and the assembly of focal adhesion kinase and RhoA around fibronectin-coated beads seeded on HSCs. The electric cell-substrate impedance sensor system showed that LPA enhanced adhesion of HSC to extracellular substrate. All the effects of LPA were suppressed by Y-27632, Rho-kinase inhibitor. These data support the notion that LPA is involved in modulating HSC morphology, its attachment to surrounding extracellular matrix and its contraction by a mechanism involving Rho-kinase.  相似文献   

8.
Platelets undergo shape change upon activation with agonists. During shape change, disc-shaped platelets turn into spiculated spheres with protruding filopodia. When agonist-induced cytosolic Ca(2+) increases were prevented using the cytosolic Ca(2+) chelator, 5, 5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5, 5'-dimethyl-BAPTA), platelets still underwent shape change, although the onset was delayed and the initial rate was dramatically decreased. In the absence of cytosolic Ca(2+), agonist-stimulated myosin light chain phosphorylation was significantly inhibited. The myosin light chain was maximally phosphorylated at 2 s in control platelets compared with 30 s in 5,5'-dimethyl-BAPTA-treated platelets. ADP, thrombin, or U46619-induced Ca(2+)-independent platelet shape change was significantly reduced by staurosporine, a nonselective kinase inhibitor, by the selective p160 Rho-associated coiled-coil-containing protein kinase inhibitor Y-27632, or by HA 1077. Both Y-27632 and HA 1077 reduced peak levels of ADP-induced platelet shape change and myosin light chain phosphorylation in control platelets. In 5,5'-dimethyl-BAPTA-treated platelets, Y-27632 and HA 1077 completely abolished both ADP-induced platelet shape change and myosin light chain phosphorylation. Our results indicate that Ca(2+)/calmodulin-stimulated myosin light chain kinase and p160 Rho-associated coiled-coil-containing protein kinase independently contribute to myosin light chain phosphorylation and platelet shape change, through Ca(2+)-sensitive and Ca(2+)-insensitive pathways, respectively.  相似文献   

9.
Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT(1) antagonist losartan but not AT(2) antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca(2+) channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p(44/42) mitogen-activating protein kinase (MAPK(44/42)) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT(1) and AT(2) receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT(1) receptors at the SMC and involves multiple intracellular pathways, influx of Ca(2+), and activation of PKC, Rho kinase, and MAPK(44/42).  相似文献   

10.
Several recent studies have implicated the RhoA-Rho kinase pathway in arterial myogenic behavior. The goal of this study was to determine the effects of Rho kinase inhibition (Y-27632) on cerebral artery calcium and diameter responses as a function of transmural pressure. Excised segments of rat posterior cerebral arteries (100-200 microm) were cannulated and pressurized in an arteriograph at 37 degrees C. Increasing pressure from 10 to 60 mmHg triggered an elevation of cytosolic calcium concentration ([Ca(2+)](i)) from 113 +/- 9 to 199 +/- 12 nM and development of myogenic tone. Further elevation of pressure to 120 mmHg induced only a minor additional increase in [Ca(2+)](i) and constriction. Y-27632 (0.3-10 microM) inhibited myogenic tone in a concentration-dependent manner at 60 and 120 mmHg with comparable efficacy; conversely, sensitivity was decreased at 120 vs. 60 mmHg (50% inhibitory concentration: 2.5 +/- 0.3 vs. 1.4 +/- 0.1 microM; P < 0.05). Dilation was accompanied by further increases in [Ca(2+)](i) and an enhancement of Ca(2+) oscillatory activity. Y-27632 also effectively dilated the vessels permeabilized with alpha-toxin in a concentration-dependent manner. However, dilator effects of Y-27632 at low concentrations were larger at 60 vs. 100 mmHg. In summary, the results support a significant role for RhoA-Rho kinase pathway in cerebral artery mechanotransduction of pressure into sustained vasoconstriction (myogenic tone and reactivity) via mechanisms that augment smooth muscle calcium sensitivity. Potential downstream events may involve inhibition of myosin phosphatase and/or stimulation of actin polymerization, both of which are associated with increased smooth muscle force production.  相似文献   

11.
Once platelets are activated, the first event to occur is a rapid change in shape, associated with Ca2+/calmodulin-dependent myosin light chain (MLC) phosphorylation and with Rho kinase activation. The purpose of this study was to investigate which is the biochemical pathway that leads to platelet shape change in response to convulxin, a selective GpVI activator, and to verify whether MLC phosphorylation is essential for this process. The inhibition of the Ca2+-dependent pathway by means of the Ca2+ chelator BAPTA, the Ca2+/calmodulin inhibitor W-7 or the cAMP enhancing drug iloprost reduced about 50% of platelet shape change in response to convulxin. The treatment with either the Rho kinase inhibitors Y27632 or HA 1077 had no effect on platelet shape change induced by convulxin. When both Ca2+/calmodulin-dependent and Rho kinase-dependent pathways were concomitantly inhibited by the combined use of Y27632 plus BAPTA, W-7 or iloprost, platelet shape change was completely abolished. Our findings suggest that convulxin-induced platelet shape change occurs via both pathways, the Ca2+/calmodulin-dependent, which appears to be more important, and the Rho kinase-dependent one. The pattern of MLC phosphorylation was not modified by Rho kinase inhibitors. Conversely, the inhibition of the Ca2+-dependent pathway caused a strong reduction of MLC phosphorylation in BAPTA-treated platelets, and a total inhibition in W-7 or iloprost-treated platelets. Our results demonstrate that following Rho kinase-dependent pathway platelet shape change can occur without the involvement of MLC phosphorylation.  相似文献   

12.
The mechanism mediating epoxyeicosatrienoic acid (EET)-induced contraction of intralobar pulmonary arteries (PA) is currently unknown. EET-induced contraction of PA has been reported to require intact endothelium and activation of the thromboxane/endoperoxide (TP) receptor. Because TP receptor occupation with the thromboxane mimetic U-46619 contracts pulmonary artery via Rho-kinase activation, we examined the hypothesis that 5,6-EET-induced contraction of intralobar rabbit pulmonary arteries is mediated by a Rho-kinase-dependent signaling pathway. In isolated rings of second-order intralobar PA (1-2 mm OD) at basal tension, 5,6-EET (0.3-10 microM) induced increases in active tension that were inhibited by Y-27632 (1 microM) and HA-1077 (10 microM), selective inhibitors of Rho-kinase activity. In PA in which smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)) was increased with KCl (25 mM) to produce a submaximal contraction, 5,6-EET (1 microM) induced a contraction that was 7.0 +/- 1.6 times greater than without KCl. 5,6-EET (10 microM) also contracted beta-escin permeabilized PA in which [Ca(2+)](i) was clamped at a concentration resulting in a submaximal contraction. Y-27632 inhibited the 5,6-EET-induced contraction in permeabilized PA. 5,6-EET (10 microM) increased phosphorylation of myosin light chain (MLC), increasing the ratio of phosphorylated MLC/total MLC from 0.10 +/- 0.03 to 0.30 +/- 0.02. Y-27632 prevented this increase in MLC phosphorylation. These data suggest that 5,6-EET induces contraction in intralobar PA by increasing Rho-kinase activity, phosphorylating MLC, and increasing the Ca(2+) sensitivity of the contractile apparatus.  相似文献   

13.
We have previously shown that sphingosine 1-phosphate (S1P) can induce intracellular Ca(2+) mobilization and cell contraction in C2C12 myoblasts and that the two phenomena are temporally unrelated. Although Ca(2+)-independent mechanisms of cell contraction have been the focus of numerous studies on Ca(2+) sensitization of smooth muscle, comparatively less studies have focused on the role that these mechanisms play in the regulation of skeletal muscle contractility. Phosphorylation and activation of myosin by Rho-dependent kinase mediate most of Ca(2+)-independent contractile responses. In the present study, we examined the potential role of Rho/Rho-kinase cascade activation in S1P-induced C2C12 cell contraction. First, we showed that depletion of Ca(2+), by pre-treatment with BAPTA, did not affect S1P-induced myoblastic contractility, whereas it abolished S1P-induced Ca(2+) transients. These results correlated with the absence of troponin C and with the immature cytoskeletal organization of these cells. Experimental evidence demonstrating the involvement of Rho pathway in S1P-stimulated myoblast contraction included: the activation/translocation of RhoA to the membrane in response to agonist-stimulation in cells depleted of Ca(2+) and the inhibition of dynamic changes of the actin cytoskeleton in cells where Rho functions had been inhibited either by overexpression of RhoGDI, a physiological inhibitor of GDP dissociation from Rho proteins, or by pretreatment with Y-27632, a specific Rho kinase inhibitor. Contribution of protein kinase C in this cytoskeletal rearrangement was also evaluated. However, the pretreatment with G?6976 or rottlerin, specific inhibitors of PKC alpha and PKC delta, respectively, failed to inhibit the agonist-induced myoblastic contraction. Single particle tracking of G-actin fluorescent probe was performed to statistically evaluate actin cytoskeletal dynamics in response to S1P. Stimulation with S1P was also able to increase the phosphorylation level of myosin light chain II. In conclusion, our results strongly suggest that Ca(2+)-independent/Rho-Rho kinase-dependent pathways may exert an important role in S1P-induced myoblastic cell contraction.  相似文献   

14.
Fibroblasts form fibers when grown inculture medium containing native type 1 collagen. The contractileforces generated can be precisely quantified and used to analyze thesignal transduction pathways regulating fibroblast contraction. Calfserum (30%) induces a sustained contraction that is accompanied by atransient increase in intracellular calcium([Ca2+]i). W-7, a calmodulin inhibitor,KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase, andML-7, a myosin light-chain kinase inhibitor, had no effects on eitherthe contraction or the [Ca2+]i responses.Neither genistein, a tyrosine kinase inhibitor, nor calphostin C, aprotein kinase C inhibitor, had major effects on force or[Ca2+]i. In contrast, the Rho kinaseinhibitors(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and HA1077 depressed the contraction in a dose-dependent manner without affecting the [Ca2+]iresponse. Stress fiber formation was also suppressed by Y-27632. Surprisingly, calf serum, Y-27632, and calf serum plus Y-27632 did notalter mono- or diphosphorylation of the myosin regulatory light chain(MRLC) compared with control untreated fibers. These results suggestthat the sustained contraction of NIH 3T3 fibroblast fibers induced bycalf serum is mediated by Rho kinase but is independent of a sustainedincrease in [Ca2+]i, calcium/calmodulin- orprotein kinase C-dependent pathways, or increases in MRLC phosphorylation.

  相似文献   

15.
NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca(2+) accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.  相似文献   

16.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

17.
To clarify whether cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) activation and Rho-kinase inhibition share a common mechanism to decrease the Ca2+ sensitivity of airway smooth muscle contraction, we examined the effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a stable cAMP analog, and (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide dihydrochloride, monohydrate (Y-27632), a Rho-kinase inhibitor, on carbachol (CCh)-, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-, 4beta-phorbol 12,13-dibutyrate (PDBu)-, and leukotriene D4 (LTD4)-induced Ca2+ sensitization in alpha-toxin-permeabilized rabbit tracheal and human bronchial smooth muscle. In rabbit trachea, CCh-induced smooth muscle contraction was inhibited by 8-BrcAMP and Y-27632 to a similar extent. However, GTPgammaS-induced smooth muscle contraction was resistant to 8-BrcAMP. In the presence of a saturating concentration of Y-27632, PDBu-induced smooth muscle contraction was completely reversed by 8-BrcAMP. Conversely, PDBu-induced smooth muscle contraction was resistant to Y-27632. In the presence of a saturating concentration of 8-BrcAMP, GTPgammaS-induced Ca2+ sensitization was also reversed by Y-27632. The 8-BrcAMP had no effect on the ATP-triggered contraction of tracheal smooth muscle that had been treated with calyculin A in rigor solutions. The 8-BrcAMP and Y-27632 additively accelerated the relaxation rate of PDBu- and GTPgammaS-treated smooth muscle under myosin light chain kinase-inhibited conditions. In human bronchus, LTD4-induced smooth muscle contraction was inhibited by both 8-BrcAMP and Y-27632. We conclude that cAMP/PKA-induced Ca2+ desensitization contains at least two mechanisms: 1) inhibition of the muscarinic receptor signaling upstream from Rho activation and 2) cAMP/PKA's preferential reversal of PKC-mediated Ca2+ sensitization in airway smooth muscle.  相似文献   

18.
Sphingosylphosphorylcholine (SPC), a sphingolipid, concentration-dependently (1-50 microM) induced contraction and slight elevation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle of the pig coronary artery, the result being a marked increase in the force/[Ca(2+)](i) ratio. In alpha-toxin- or beta-escin-permeabilized, but not Triton X-100-permeabilized, vascular strips, SPC induced contraction at constant [Ca(2+)](i) (pCa 6.3) in the absence of GTP, whereas a G-protein-coupled receptor agonist, histamine, required the presence of GTP to induce the contraction. The Rho-kinase blocker, Y-27632 (10 microM) abolished the SPC-induced Ca(2+)-sensitization, without affecting the Ca(2+)-induced contraction. These results suggest that SPC induces Ca(2+)-sensitization of force in vascular smooth muscle, presumably through the activation of Rho-kinase (or a related kinase).  相似文献   

19.
Hepatic stellate cells (HSCs) play a central role in the development of hepatic fibrosis. Recent evidence has revealed that HSCs also play a role in its resolution, where HSC apoptosis was determined. Moreover, induction of HSC apoptosis caused a reduction of experimental hepatic fibrosis in rats. Thus knowing the mechanism of HSC apoptosis might be important to clarify the pathophysiology and establish the therapeutic strategy for hepatic fibrosis. In HSCs, Rho and Rho kinase are known to regulate contraction, migration, and proliferation with modulation of cell morphology. Controversy exists as to the participation of Rho and Rho kinase on cell survival, and little is known regarding this matter in HSCs. In this study, we directed our focus on the role of the Rho pathway in the regulation of HSC survival. C3, an inhibitor of Rho, increased histone-associated DNA fragmentation and caspase 3 activity with enhanced condensation of nuclear chromatin in rat cultured HSCs. Moreover, Y-27632, an inhibitor of Rho kinase, had the same effects, suggesting that inhibition of the Rho/Rho kinase pathway causes HSC apoptosis. On the other hand, lysophosphatidic acid, which stimulates the Rho/Rho kinase pathway, decreased histone-associated DNA fragmentation in HSCs. Inhibition of the Rho/Rho kinase pathway did not affect p53, Bcl-2, or Bax levels in HSCs. Thus we concluded that the Rho/Rho kinase pathway may play a role in the regulation of HSC survival.  相似文献   

20.
Rabbit brain actomyosin showed several fold stimulation of the MgATPase activity by Ca2+ alone and by Ca2+/calmodulin. The calmodulin-binding drug, fluphenazine, abolished the stimulated activity. In the presence of Ca2+, exogenous calmodulin had a biphasic effect on ATPase activity at low concentrations (less than 0.15 microM) and activated the ATPase activity by 60-70% at about 1 microM. Tropomyosin-troponin complex from skeletal muscle did not stimulate the ATPase activity of brain actomyosin, but conferred Ca2+ sensitivity to a skeletal muscle myosin/brain actomyosin mixture. These results indicate the presence of myosin-linked, calmodulin-dependent, Ca2+-regulatory system for brain actomyosin. Heavy and light chains of brain myosin were found to be rapidly phosphorylated by endogenous Ca2+-dependent protein kinase(s). Ca2+-independent phosphorylation of one of the light chains was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号