首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed and replaced by a pupal epithelium at metamorphosis. To determine how oxidative phosphorylation is altered during the programmed death of the larval cells, top-down control analysis was performed on mitochondria isolated from the midguts of larvae before and after the commitment to pupation. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored to determine the kinetic responses of the substrate oxidation system, proton leak, and phosphorylation system to changes in the membrane potential. Mitochondria from precommitment larvae have higher respiration rates than those from postcommitment larvae. State 4 respiration is controlled by the proton leak and the substrate oxidation system. In state 3, the substrate oxidation system exerted 90% of the control over respiration, and this high level of control did not change with development. Elasticity analysis, however, revealed that, after commitment, the activity of the substrate oxidation system falls. This decline may be due, in part, to a loss of cytochrome c from the mitochondria. There are no differences in the kinetics of the phosphorylation system, indicating that neither the F(1)F(0) ATP synthase nor the adenine nucleotide translocase is affected in the early stages of metamorphosis. An increase in proton conductance was observed in mitochondria isolated from postcommitment larvae, indicating that membrane area, lipid composition, or proton-conducting proteins may be altered during the early stages of the programmed cell death of the larval epithelium.  相似文献   

2.
This study involves the effect of aluminium phosphide exposure on the kinetic characteristics of cytochrome oxidase and the mitochondrial respiratory chain function in rat brain. Mitochondrial preparations from both control and aluminium phosphide-treated rats demonstrated significant decrease in the maximal activity of cytochrome oxidase (approximately 50%) when expressed per unit membrane protein and on a turnover number basis (nmol/min/nmol haem a). The results indicated that there was a decrease in the catalytic efficiency of the active oxidase molecules on aluminium phosphide treatment. Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria isolated from treated and control rats, in the break point of the biphasic plot which was shifted to a higher temperature. The decreased activity of cytochrome oxidase along with altered NADH and succinic dehydrogenase activities might have contributed towards a significant decline in state 3 and state 4 respiration. These alterations in the electron transport chain complexes in turn affected the ATP synthesis rate adversely in the mitochondria, isolated from treated rats. The data reflect the interaction of aluminium phosphide with redox chain components leading to the impairment of the electron transfer along the respiratory chain.  相似文献   

3.
4.
5.
In this study we compared the properties of cytochrome-c oxidase (COX) in cultured fibroblasts from two patients with Leigh Syndrome with COX from control fibroblasts. The fibroblasts from patients showed decreased growth rates and elevated lactate production. COX activity of patients fibroblasts was about 25% of control. Kinetic studies with isolated mitochondria showed a higher Km for cytochrome c and a markedly reduced molecular turnover of COX from patients, indicating a different structure of the enzyme. A biphasic change of COX activity was obtained by titration of dodecylmaltoside solubilized mitochondria from control fibroblasts with increasing concentrations of anions. With patient mitochondria we found only the inhibiting phase of COX activity and, in contrast to control mitochondria, irreversible inhibition of COX activity by guanidinium chloride. ELISA titrations with monoclonal antibodies to subunit II, IV, Vab, Vlac and VIIab indicated a normal amount of mitochondrial coded subunit II, but a reduced amount of nuclear coded subunits. The data indicate incompletely assembled nuclear coded subunits of COX from patient fibroblasts.  相似文献   

6.
The Bcl-2 family of proteins regulates mitochondrial functions during cell death by modulating the efflux of death-promoting proteins such as cytochrome c and endonuclease G. Upon the binding of death ligands to their receptors, caspase-8 cleaves Bid, a BH3-only protein, into tBid that causes the mitochondrial damages resulting in the release of cytochrome c and endonuclease G. Also, another BH3-only protein, hNoxa, has been shown to induce the efflux of cytochrome c from the mitochondria. Whether the efflux proteins from the mitochondria in response to tBid or hNoxa are the same or different, however, has not been addressed. We have demonstrated that endonuclease G activities are not detectable among the proteins released from isolated mitochondria by hNoxa but are detectable in that by tBid. These results suggest that the efflux of proteins from the mitochondria are differentially modulated by tBid and hNoxa.  相似文献   

7.
In this study we compared the properties of cytochrome-c oxidase (COX) in cultured fibroblasts from two patients with Leigh Syndrome with COX from control fibroblasts. The fibroblasts from patients showed decreased growth reates and elevated lactate production. COX activity of patients fibroblasts was about 25% of control. Kinetic studies with isolated mitochondria showed a higher Km for cytochrome c and a markedly reduced molecular turnover of COX from patients, indicating a different structure of the enzyme. A biphasic change of COX activity was obtained by titration of dodecylmaltoside solubilized mitochondria from control fibroblasts with increasing concentrations of anions. With patient mitochondria we found only the inhibiting phase of COX activity and, in contrast to control mitochondria, irreversible inhibition of COX activity by guanidinium chloride. ELISA titrations with monoclonal antibodies to subunit II, IV, Vab, VIac and VIIab indicated a normal amount of mitochondrial coded subunit II, but a reduced amound of nuclear coded subunits. The data indicate incompletely assembled nuclear coded subunits of COX from patient fibroblasts.  相似文献   

8.
9.
1. The heterogeneity of liver mitochondria of the tadpoles, Rana catesbeiana, undergoing metamorphosis was investigated by a combination of pulse-chase labeling of mitochondria with [methyl-3H]thymidine and centrifugation of mitochondria on a density gradient of metrizamide. 2. The liver mitochondria of tadpole at premetamorphic stage are separated into two populations with mean densities of 1.128 (M2) and 1.112 (M3). 3. At metamorphic stage a population with mean densities of 1.174 (M1) appears additionally. 4. The activity of mitochondria to take up [methyl-3H]thymidine in vivo is 2-3 times higher at metamorphic stage than at premetamorphic stage. 5. The M1 population has a prominently high activity to take up L-[4.5-3H]leucine in vitro and also a high specific activity of cytochrome c oxidase. 6. These findings suggest that the mitochondrial populations found are of alternate stages in the mitochondrial maturation.  相似文献   

10.
The cytochrome P-450-dependent 20-monooxygenation of ecdysone is catalyzed both by mitochondria and microsomes isolated from Musca domestica (L.) larvae; however, about 50% of the activity is associated with mitochondria, and 37% is associated with microsomes. Pretreatment of larvae with ecdysone results in an increase in Vmax and a decrease in Km values in mitochondria but not in microsomes. Phenobarbital, a known cytochrome P-450 inducer, increases the cytochrome P-450 levels in microsomes without affecting the 20-monooxygenase activity, but both the cytochrome P-450 levels and monooxygenase activity are depressed in mitochondria from phenobarbital-pretreated larvae. The ecdysone 20-monooxygenase activity is equally distributed between mitochondria and microsomes in adult insects. Pretreatment of the insects with ecdysone does not significantly modify the 20-monooxygenase activity of either mitochondrial or microsomal fractions, but the cytochrome P-450 levels are reduced in mitochondria. Phenobarbital also depresses the mitochondrial cytochrome P-450 levels while markedly increasing the microsomal cytochrome P-450 levels. However, no significant changes in ecdysone 20-monooxygenase activity are produced by phenobarbital pretreatment. The effects of ecdysone on adult cytochrome P-450 are mostly evidenced in mitochondria isolated from females, whereas in males the changes are not statistically significant. It is concluded that the mitochondrial ecdysone 20-monooxygenase is under regulatory control by ecdysone in the larval stage, which suggests that only the mitochondrial activity has a physiological role during insect development in M. domestica. In adults, both the mitochondrial and microsomal ecdysone 20-monooxygenase activities are not responsive to ecdysone, which, coupled to their high Km values, indicates that the reaction may not be of physiological importance in adult insects and that the mitochondrial cytochrome P-450 species being depressed by ecdysone in females are possibly not involved in ecdysone metabolism.  相似文献   

11.
Huntington’s disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-l-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.  相似文献   

12.
The metabolic control of oxidative phosphorylation (OXPHOS) has attracted increasing attention in recent years, especially due to its importance for understanding the role of mitochondrial DNA mutations in human diseases and aging. Experiments on isolated mitochondria have indicated that a relatively small fraction of each of several components of the electron transport chain is sufficient to sustain a normal respiration rate. These experiments, however, may have not reflected the in vivo situation, due to the possible loss of essential metabolites during organelle isolation and the disruption of the normal interactions of mitochondria with the cytoskeleton, which may be important for the channeling of respiratory substrate to the organelles. To obtain direct evidence on this question, in particular, as concerns the in vivo control of respiration by cytochrome c oxidase (COX), we have developed an approach for measuring COX activity in intact cells, by means of cyanide titration, either as an isolated step or as a respiratory chain-integrated step. The method has been applied to a variety of human cell types, including wild-type and mtDNA mutation-carrying cells, several tumor-derived semidifferentiated cell lines, as well as specialized cells removed from the organism. The results obtained strongly support the following conclusions: (i) the in vivo control of respiration by COX is much tighter than has been generally assumed on the basis of experiments carried out on isolated mitochondria; (ii) COX thresholds depend on the respiratory fluxes under which they are measured; and (iii) measurements of relative enzyme capacities are needed for understanding the role of mitochondrial respiratory complexes in human physiopathology.  相似文献   

13.
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨm) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.  相似文献   

14.
Steroid-induced difference spectra have been used to examine the combination of cholesterol with adrenal mitochondrial cytochrome P-450 which participates in cholesterol side chain cleavage (P-450scc) and the depletion of cholesterol from the cytochrome which results from turnover of the enzyme system. Type I difference spectra-induced by cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and cholest-5-ene-3beta, 20 alpha, 22R-triol (20alpha, 22R dihydroxycholesterol) have been used to quantitate binding of cholesterol to two sites (I and II) on cytochrome P-450scc. The action of adrenocorticotropic hormone (ACTH) in vivo and the action of calcium or phosphate ions on isolated mitochondria stimulate the combination of cholesterol with site I but not site II. Cholesterol derived from lecithin-cholesterol micelles, however, binds to both sites. Malate-induced cholesterol depletion occurred at a comparable rate to the transfer of cholesterol from lecithin-cholesterol micelles. However, a residual proportion of cholesterol-cytochrome P-450scc complexes remained, even after 10 min of exposure to malate, and was of similar magnitude in mitochondria from both cycloheximide-treated and stressed rats. It is suggested that this reflects a less reactive form of cholesterol-cytochrome complex. Steroid-induced difference spectra indicate that sites I and II on cytochrome P-450scc are similarly depleted after metabolism of mitochondrial cholesterol in vitro and after inhibition of the action of ACTH in vivo. Anaerobiosis of adrenal cells after excision of the accumulation of cholesterol at cytochrome P-450cc. When anaerobiosis was prevented, cytochrome P-450scc in the freshly isolated mitochondria was apparently essentially free of complexed cholesterol, irrespective of the extent of ACTH action. For 30 min after suspension of the mitochondria in 0.25 M sucrose at 4 degrees, cholesterol combines with cytochrome P-450scc. The extent of this process was not affected by the presence of cycloheximide during ether stress treatment of the rats. It is concluded that there are at least two pools of mitochondrial cholesterol with access to cytochrome P-450scc but that ACTH stimulates only the pool which most readily interacts with the cytochrome.  相似文献   

15.
16.
17.
Specific antibody has been obtained against cytochrome b (pig heart mitochondria). It inhibits the electron transport of the respiratory chain in the intact mitochondria at the cytochrome b site of the inner mitochondrial membrane. It has no effect on the isolated submitochondrial particles which are inside-out inner membrane vescicles free of any outer membrane or outside-out inner membrane. These findings indicate a probably not transmembranous topologic localization of cytochrome b; this component of the respiratory chain seems located near the outer side of the inner mitochondrial membrane.  相似文献   

18.
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30--50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

19.
Two genes encoding cytochrome c oxidase subunits, Cox2a and Cox2b, are present in the nuclear genomes of apicomplexan parasites and show sequence similarity to corresponding genes in chlorophycean algae. We explored the presence of COX2A and COX2B subunits in the cytochrome c oxidase of Toxoplasma gondii. Antibodies were raised against a synthetic peptide containing a 14-residue fragment of the COX2A polypeptide and against a hexa-histidine-tagged recombinant COX2B protein. Two distinct immunochemical stainings localized the COX2A and COX2B proteins in the parasite's mitochondria. A mitochondria-enriched fraction exhibited cyanide-sensitive oxygen uptake in the presence of succinate. T. gondii mitochondria were solubilized and subjected to Blue Native Electrophoresis followed by second dimension electrophoresis. Selected protein spots from the 2D gels were subjected to mass spectrometry analysis and polypeptides of mitochondrial complexes III, IV and V were identified. Subunits COX2A and COX2B were detected immunochemically and found to co-migrate with complex IV; therefore, they are subunits of the parasite's cytochrome c oxidase. The apparent molecular mass of the T. gondii mature COX2A subunit differs from that of the chlorophycean alga Polytomella sp. The data suggest that during its biogenesis, the mitochondrial targeting sequence of the apicomplexan COX2A precursor protein may be processed differently than the one from its algal counterpart.  相似文献   

20.
Qi Z  He J  Su Y  He Q  Liu J  Yu L  Al-Attas O  Hussain T  Ding S  Ji L  Qian M 《PloS one》2011,6(7):e21140
The purpose of this study was to outline the timelines of mitochondrial function, oxidative stress and cytochrome c oxidase complex (COX) biogenesis in cardiac muscle with age, and to evaluate whether and how these age-related changes were attenuated by exercise. ICR/CD-1 mice were treated with pifithrin-μ (PFTμ), sacrificed and studied at different ages; ICR/CD-1 mice at younger or older ages were randomized to endurance treadmill running and sedentary conditions. The results showed that mRNA expression of p53 and its protein levels in mitochondria increased with age in cardiac muscle, accompanied by increased mitochondrial oxidative stress, reduced expression of COX subunits and assembly proteins, and decreased expression of most markers in mitochondrial biogenesis. Most of these age-related changes including p53 activity targeting cytochrome oxidase deficient homolog 2 (SCO2), p53 translocation to mitochondria and COX biogenesis were attenuated by exercise in older mice. PFTμ, an inhibitor blocking p53 translocation to mitochondria, increased COX biogenesis in older mice, but not in young mice. Our data suggest that physical exercise attenuates age-related changes in mitochondrial COX biogenesis and p53 activity targeting SCO2 and mitochondria, and thereby induces antisenescent and protective effects in cardiac muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号