共查询到20条相似文献,搜索用时 31 毫秒
3.
Tumor necrosis factor alpha (TNF alpha), 12-O-tetradecanoylphorbol-13-acetate and cAMP stimulate hexose transport in quiescent 3T3-L1 preadipocytes by stabilizing the relatively labile mRNA coding for the basal glucose transporter, GLUT-1. The 3'-UTR of GLUT-1 mRNA contains a single copy of the destabilizing AUUUA motif in the context of an AU-rich region. The adenosine-uridine binding factor (AUBF) is a cytosolic protein which interacts with similar AU-rich regions in a variety of labile cytokine and oncogene mRNAs. Here, we demonstrate that AUBF complexes in vitro with GLUT-1 mRNA through the AU-rich portion of the 3'-UTR. AUBF activity is very low in quiescent preadipocytes, but can be up-regulated by agonists such as TPA, TNF alpha, cAMP, and okadaic acid, all of which stabilize GLUT-1 mRNA. The time courses of TNF alpha- and TPA-mediated AUBF up-regulation and GLUT-1 mRNA stabilization are coincident, suggesting a cause and effect relationship. 相似文献
4.
Transient exposure of cultured 3T3-L1 preadipocytes to hypolipidemic fibrate drugs results in extensive adipocyte conversion. Adipocyte conversion in culture was characterized by an increase in neutral lipids content and in adipocyte marker enzymes like hormone-sensitive lipase and glycerol-3-phosphate dehydrogenase. Adipocyte conversion in culture was also accompanied by induction of cyanide-insensitive peroxisomal palmitoyl-CoA oxidation. The conversion pattern exerted by fibrate drugs in 3T3-L1 cells was similar to that reported previously for primary cultured epididymal preadipocytes (R. Brandes, R. Arad and J. Bar-Tana, Biochim. Biophys. Acta, 877, 314-321 (1986)), and seems to refute clonal selection in the conversion sequel initiated by fibrate drugs in primary cultured preadipocytes. 相似文献
6.
α-Poly-l-lysine (PLL) has been used for various purposes such as cell attachment, immunization, and molecular delivery, and is known to be cytotoxic to several cell lines. Here, we studied the effect of PLL on the adipogenesis of 3T3-L1 cells and investigated the underlying mechanism. Differentiation media containing PLL with a molecular weight (MW) greater than 4 kDa enhanced lipid droplet formation and increased adipogenic marker levels, indicating an increase in adipocyte differentiation. PLL with a molecular weight between 30 and 70 kDa was more effective than PLL of other sizes in 3T3-L1 cell differentiation. Moreover, PLL induced 3T3-L1 adipogenesis in insulin-free adipocyte differentiation medium. Incubation with insulin and PLL exhibited greater adipogenesis than insulin treatment only even at a high concentration. PLL stimulated insulin signaling and augmented the signaling pathway when it was added with insulin. While PLL did not activate the glucocorticoid receptor, which is phosphorylated by dexamethasone (DEX), it showed a positive effect on the cAMP signal pathway when preadipocytes were treated with PLL and 3-isobutyl-1-methylxanthine (IBMX). Consistent with these results, incubation with PLL and DEX without IBMX induced adipocyte differentiation. We also observed that the mitotic clonal expansion phase was the critical stage in adipogenesis for inducing the effects of PLL. These results suggest that PLL functions as an adipogenic inducer in 3T3-L1 preadipocytes and PLL has a direct effect on insulin signaling, one of the main regulatory pathways. 相似文献
7.
The effect of endothelin (ET)-1 on the adipogenic differentiation of 3T3-L1 preadipocytes was examined. Cellular morphology and lipoprotein lipase activity were used as differentiation markers. ET-1 inhibited the hormone-induced adipogenic differentiation of 3T3-L1 preadipocytes morphologically and biochemically in a dose-dependent manner. These findings promote ET-1 as a potent inhibitor of adipogenic differentiation, playing an important role in cellular differentiation of preadipocytes and making it a significant regulator of lipid metabolism. 相似文献
8.
Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3β-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling. 相似文献
10.
The effect of progesterone on the differentiation of the 3T3-L1 preadipocytes was investigated and compared with other sex steroids (estradiol and testosterone), with cortisol, with the synthetic progestin R5020 and with the progestin/glucocorticoid antagonist RU38486. At 10 −8 M, progesterone stimulated the activity of glycerol-3-phosphate dehydrogenase and triglyceride deposition. Progesterone, R5020, cortisol, and RU38486 increased triglycerides about 2-fold at 10 −7 M. Only minimal effects were observed with testosterone and estradiol even at 10 −6 M. When the cells were cultured in presence of 10 −5 M metyrapone the effect of progesterone was unchanged, suggesting that the progesterone was not metabolized to a glucocorticoid. Progesterone, R5020 and RU38486 competed efficiently with [ 3H]dexamethasone for the glucocorticoid receptor in 3T3-L1 cytosol. These results indicate a significant, reproducible dose-dependent effect of progestins on differentiation of the preadipocytes, which appears to be mediated via the glucocorticoid receptor. 相似文献
11.
Mouse resistin, a cysteine-rich protein primarily secreted from mature adipocytes, is involved in insulin resistance and type 2 diabetes. Human resistin, however, is mainly secreted by immune mononuclear cells, and it competes with lipopolysaccharide for the binding to Toll-like receptor 4, which could mediate some of the well-known proinflammatory effects of resistin in humans. In addition, resistin has been involved in the regulation of many cell differentiation and proliferation processes, suggesting that different receptors could be involved in mediating its numerous effects. Thus, a recent work identifies an isoform of Decorin (Δ Decorin) as a functional resistin receptor in adipocyte progenitors that may regulate white adipose tissue expansion. Our work shows that the mouse receptor tyrosine kinase-like orphan receptor (ROR)1 could mediate some of the described functions of resistin in 3T3-L1 adipogenesis and glucose uptake. We have demonstrated an interaction of mouse resistin with specific domains of the extracellular region of the ROR1 receptor. This interaction results in the inhibition of ROR1 phosphorylation, modulates ERK1/2 phosphorylation, and regulates suppressor of cytokine signaling 3, glucose transporter 4, and glucose transporter 1 expression. Moreover, mouse resistin modulates glucose uptake and promotes adipogenesis of 3T3-L1 cells through ROR1. In summary, our results identify mouse resistin as a potential inhibitory ligand for the receptor ROR1 and demonstrate, for the first time, that ROR1 plays an important role in adipogenesis and glucose homeostasis in 3T3-L1 cells. These data open a new line of research that could explain important questions about the resistin mechanism of action in adipogenesis and in the development of insulin resistance. 相似文献
12.
Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus- resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino- terminal mutants. Both NH2- and COOH-terminal mutants retained insulin- dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin- dependent redistribution of GLUT-4. We conclude that the phenylalanine- based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes. 相似文献
13.
It has been shown previously that heterokaryons between myoblasts and non-myogenic cells disturb myogenic differentiation (Hirayama et al. (2001); Cell Struct. Funct. 26, 37-47), suggesting that some myogenesis inhibitory factors exist in non-myogenic cells. Skeletal myoblasts and adipose cells are derived from a common mesodermal stem cell, indicating that both cells have a closer relationship in the developmental lineage than the other somatic cells. To investigate the functional relationship between myoblasts and adipose cells, heterokaryons between quail myoblasts and 3T3-L1 cells, a mouse preadipocyte cell line, were prepared and examined for characteristics of myogenic differentiation. Myogenic differentiation was inhibited in the heterokaryons between quail myoblasts and well-differentiated (adipocytes) 3T3-L1 cells. On the contrary, normal myogenic differentiation proceeded in the heterokaryons between quail myoblasts and undifferentiated (preadipocytes) 3T3-L1 cells. Further investigation showed that the mouse myogenin gene from 3T3-L1 cells was transactivated in the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells. The results demonstrated that undifferentiated 3T3-L1 cells have no myogenesis inhibitory factors but acquire these during terminal differentiation into adipocytes. 相似文献
14.
Thyroid-stimulating hormone (TSH) action in adipose tissue remains largely unknown. Our previous work indicates that human preadipocytes express functional TSH receptor (TSHR) protein, demonstrated by TSH activation of p70 S6 kinase (p70 S6K). We have now studied murine 3T3-L1 preadipocytes to further characterize TSH signaling and cellular action. Western blot analysis of 3T3-L1 preadipocyte lysate revealed the 100-kDa mature processed form of TSHR. TSH activated p70 S6K and protein kinase B (PKB/Akt), as measured by immunoblot analysis. Preincubation with wortmannin or LY-294002 completely blocked TSH activation of p70 S6K and PKB/Akt, implicating phosphoinositide 3-kinase (PI3K) in their regulation. TSH increased phosphotyrosine protein(s) in the 125-kDa region and augmented the associated PI3K activity fourfold. TSH had no effect on cAMP levels in 3T3-L1 preadipocytes, suggesting that adenylyl cyclase is not involved in TSH activation of the PI3K-PKB/Akt-p70 S6K pathway. 3T3-L1 preadipocyte cell death was reduced by 29-76% in serum-deprived (6 h) preadipocytes treated with 1-20 microM TSH. In the presence of 20 microM TSH, an 88% reduction in terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL)-positive cells was observed in serum-starved (3 h) 3T3-L1 preadipocytes as well as a 93% reduction in the level of cleaved activated caspase 3. In summary, TSH acts as a survival factor in 3T3-L1 preadipocytes. TSH does not stimulate cAMP accumulation in these cells but instead activates a PI3K-PKB/Akt-p70 S6K pathway. 相似文献
15.
The endogenous protein phosphorylation stimulated by catecholamines was compared in 3T3-L1 preadipocytes and adipocytes. Phosphorylation of a protein with an approximate molecular weight of 57,000 was stimulated both in preadipocytes and adipocytes of 3T3-L1. Stimulated phosphorylation of four other proteins with approximate molecular weights of 90,000, 62,000, 48,000, and 32,000 was observed only in 3T3-L1 adipocytes. All of these proteins appeared to be localized in the microsomal fraction. Phosphorylation of these proteins was stimulated by norepinephrine, epinephrine, isoproterenol, dibutyryl cyclic AMP, theophylline, or 1-methyl-3-isobutylxanthine, but not by A23187. Among the phosphorylated proteins in 3T3-L1 adipocytes, the 62,000 dalton protein was most evident. Using this protein as a marker, it appeared that epinephrine and norepinephrine were effective in stimulating the phosphorylation at the same concentration range. This result was in clear contrast to the different affinities of these catecholamines for beta-receptors of 3T3-L1 adipocytes reported by Lai, Rosen, and Rubin (J. Biol. Chem. (1982) 257, 6691-6696). The phosphorylation of the 62,000 dalton protein in 3T3-L1 adipocytes was observed 1 min after the addition of norepinephrine, and dephosphorylation was observed within 10 min after the addition of propranolol. 相似文献
16.
Tristetraprolin is a zinc-finger-containing RNA-binding protein. Tristetraprolin binds to AU-rich elements of target mRNAs such as proto-oncogenes, cytokines and growth factors, and then induces mRNA rapid degradation. It was observed as an immediate-early gene that was induced in response to several kinds of stimulus, such as insulin and other growth factors and stimulators of innate immunity such as lipopolysaccharides. We observed that tristetraprolin was briefly expressed during a 1-8 h period after induction of differentiation in 3T3-L1 preadipocytes. Detailed analysis showed that tristetraprolin mRNA expression was stimulated by fetal bovine serum and differentiation inducers, and was followed by rapid degradation. The 3'UTR of tristetraprolin mRNAs contain adenine- and uridine-rich elements. Biochemical analyses using RNA pull-down, RNA immunoprecipitation and gel shift experiments demonstrated that adenine- and uridine-rich element-binding proteins, HuR and tristetraprolin itself, were associated with tristetraprolin adenine- and uridine-rich elements. Functional characterization confirmed that tristetraprolin negatively regulated its own expression. Thus, our results indicated that the tight autoregulation of tristetraprolin expression correlated with its critical functional role in 3T3-L1 differentiation. 相似文献
18.
This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation. Clonal expansion, an early event required for 3T3-L1 adipogenesis, was reduced in the presence of MacCM (89%; n = 3; p < 0.001), and BrdU incorporation was impaired by 55% ( n = 3; p < 0.01). Activation of ERK1/2 was not affected by MacCM, and neither was the expression of p27 kip1, a cyclin-dependent kinase inhibitor. However, phosphorylation of the retinoblastoma protein (Rb), required for cell cycle progression, was impaired by MacCM (94% inhibition; n = 3; p < 0.01). Differentiation-dependent expression, nuclear localization, and DNA binding ability of C/EBPβ were not inhibited by MacCM. Alterations in cell cycle-associated proteins may be important with respect to the anti-adipogenic action of MacCM. 相似文献
19.
Phoenixin-14 (PNX) is a newly discovered peptide produced by proteolytic cleavage of the small integral membrane protein 20 (Smim20). Previous studies showed that PNX is involved in controlling reproduction, pain, anxiety and memory. Furthermore, in humans, PNX positively correlates with BMI suggesting a potential role of PNX in controlling fat accumulation in obesity. Since the influence of PNX on adipose tissue formation has not been so far demonstrated, we investigated the effects of PNX on proliferation and differentiation of preadipocytes using 3T3-L1 and rat primary preadipocytes. We detected Smim20 and Gpr173 mRNA in 3T3-L1 preadipocytes as well as in rat primary preadipocytes. Furthermore, we found that PNX peptide is produced and secreted from 3T3-L1 and rat primary adipocytes. PNX increased 3T3-L1 preadipocytes proliferation and viability. PNX stimulated the expression of adipogenic genes ( Pparγ, C/ebpβ and Fabp4) in 3T3-L1 adipocytes. 3T3-L1 preadipocytes differentiated in the presence of PNX had increased lipid content. Stimulation of cell proliferation and differentiation by PNX was also confirmed in rat preadipocytes. PNX failed to induce AKT phosphorylation, however, PNX increased cAMP levels in 3T3-L1 cells. Suppression of Epac signalling attenuated PNX-induced Pparγ expression without affecting cell proliferation. Our data show that PNX stimulates differentiation of 3T3-L1 and rat primary preadipocytes into mature adipocytes via cAMP/Epac-dependent pathway. In conclusion our data shows that phoenixin promotes white adipogenesis, thereby may be involved in controlling body mass regulation. 相似文献
20.
Adipogenesis is the differentiation of preadipocytes to adipocytes which is marked by the accumulation of lipid droplets. Adipogenic differentiation of 3T3-L1 cells is achieved by exposing the cells to Insulin, Dexamethasone and IBMX for 5–7 days. Thiazolidinedione drugs, like rosiglitazone are potent insulin sensitizing agents and have been shown to enhance lipid droplet formation in 3T3-L1 cells, a model cell line for preadipocyte differentiation. Guggulsterone is a natural drug extracted from the gum resin of tree Commiphora mukul. Guggulsterone has been shown to inhibit adipogenesis and induce apoptosis in 3T3-L1 cells. In this study we treated the 3T3-L1 preadipocytes with rosiglitazone and guggulsterone and assessed the protein expression profile using 2D gel electrophoresis-based proteomics to find out differential target proteins of these drugs. The proteins that were identified upon rosiglitazone treatment generally regulate cell proliferation and/or exhibit anti-inflammatory effect which strengthens its differentiation-inducing property. Guggulsterone treatment resulted in the identification of the apoptosis-inducing proteins to be up regulated which rightly is in agreement with the apoptosis-inducing property of guggulsterone in 3T3-L1 cells. Some of the proteins identified in our proteomic screen such as Galectin1, AnnexinA2 & TCTP were further confirmed by Real Time qPCR. Thus, the present study provides a better outlook of proteins being differentially regulated/expressed upon treatment with rosiglitazone and guggulsterone. The detailed study of the differentially expressed proteins identified in this proteomic screen may further provide the better molecular insight into the mode of action of these anti-diabetic drugs rosiglitazone and guggulsterone. 相似文献
|