首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 987 毫秒
1.
Objective: The effects of a very low‐carbohydrate (VLC), high‐fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high‐carbohydrate (HC), low‐fat (LF) regimen in dietary obese rats. Research Methods and Procedures: Male Sprague‐Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post‐load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC‐HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one‐half (HC) were pair‐fed an HC‐LF diet (Weeks 9 to 14 at 60% carbohydrate). Results: Energy intakes of pair‐fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. Discussion: When energy intake was matched, the VLC‐HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC‐LF diet.  相似文献   

2.
LU, HUIQING, ANNE BUISON, VIRGINIA UHLEY AND K-L CATHERINE JEN. Long-term weight cycling in female Wistar rats: effects on metabolism. Obes Res. Weight cycling (WC) induced by ad-lib and restricted high fat (HF) feeding has been shown to reduce final body weight but not body fat percent in female Wistar rats. We examined the metabolic consequences of this type of WC. Five groups of female Wistar rats were fed a HF diet and the sixth group was fed a low fat diet to serve as a control group. Of the five HF groups, four groups were weight cycled by ad-lib and restricted feeding of the HF diet One of these groups weight cycled three times (HFCYC group) while the remaining three groups weight cycled once only, corresponding to the first, second and the third cycle of the HFCYC group. HF feeding induced hyperinsulinemia, hypertriglyceridemia, insulin resistance and elevated adipose tissue lipoprotein lipase (AT-LPL) activity levels as compared to rats fed the low fat (LF) control diet. WC further increased blood insulin concentrations and insulin resistance in rats with three cycles of WC. However, blood pressure was not affected by HF feeding or WC. The magnitude of increase of AT-LPL was reduced in weight cycled, HF fed obese rats after 15 weeks refeeding. We concluded that even though WC did not enhance weight gain nor impair weight loss, it did facilitate the development of insulin resistance and may predispose animals to diabetes.  相似文献   

3.
Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity.  相似文献   

4.
Objective: To determine whether macronutrient composition of a hypocaloric diet can enhance its effectiveness and whether insulin sensitivity (Si) affects the response to hypocaloric diets. Research Methods and Procedures: Obese nondiabetic insulin‐sensitive (fasting insulin < 10 μU/mL; n = 12) and obese nondiabetic insulin‐resistant (fasting insulin > 15 μU/mL; n = 9) women (23 to 53 years old) were randomized to either a high carbohydrate (CHO) (HC)/low fat (LF) (60% CHO, 20% fat) or low CHO (LC)/high fat (HF) (40% CHO, 40% fat) hypocaloric diet. Primary outcome measures after a 16‐week dietary intervention were: changes in body weight (BW), Si, resting metabolic rate, and fasting lipids. Results: Insulin‐sensitive women on the HC/LF diet lost 13.5 ± 1.2% (p < 0.001) of their initial BW, whereas those on the LC/HF diet lost 6.8 ± 1.2% (p < 0.001; p < 0.002 between the groups). In contrast, among the insulin‐resistant women, those on the LC/HF diet lost 13.4 ± 1.3% (p < 0.001) of their initial BW as compared with 8.5 ± 1.4% (p < 0.001) lost by those on the HC/LF diet (p < 0.04 between two groups). These differences could not be explained by changes in resting metabolic rate, activity, or intake. Overall, changes in Si were associated with the degree of weight loss (r = ?0.57, p < 0.05). Discussion: The state of Si determines the effectiveness of macronutrient composition of hypocaloric diets in obese women. For maximal benefit, the macronutrient composition of a hypocaloric diet may need to be adjusted to correspond to the state of Si.  相似文献   

5.
While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non‐Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL‐fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL‐fed female offspring but not male offspring and increasing the fecundity of AL‐fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span.  相似文献   

6.
Objective: Adiponectin influences insulin sensitivity (SI) and fat oxidation. Little is known about changes in adiponectin with changes in the fat content of eucaloric diets. We hypothesized that dietary fat content may influence adiponectin according to an individual's SI. Research Methods and Procedures: We measured changes in adiponectin, insulin, glucose, and leptin in response to high‐fat (HF) and low‐fat (LF) eucaloric diets in lean (n = 10) and obese (n = 11) subjects. Obese subjects were further subdivided in relation to a priori SI. Results: We found significantly higher insulin, glucose, and leptin and lower adiponectin in obese vs. lean subjects during both HF and LF. The mean group values of these measurements, including adiponectin (lean, HF 21.9 ± 9.8; LF, 20.8 ± 6.6; obese, HF 10.0 ± 3.3; LF, 9.5 ± 2.3 ng/mL; mean ± SD), did not significantly change between HF and LF diets. However, within the obese group, the insulin‐sensitive subjects had significantly higher adiponectin during HF than did the insulin‐resistant subjects. Additionally, the change in adiponectin from LF to HF diet correlated positively with the obese subjects’ baseline SI. Discussion: Although in lean and obese women, group mean values for adiponectin did not change significantly with a change in fat content of a eucaloric diet, a priori measured SI in obese subjects predicted an increase in adiponectin during the HF diet; this may be a mechanism that preserves SI in an already obese group.  相似文献   

7.
Objective: To see whether a fat‐rich (50%) evening meal promoted fat oxidation and a different spontaneous food intake on the following day at breakfast than a meal with a lower fat content (20%) in 10 prepubertal obese girls. Research Methods and Procedures: The postabsorptive and postprandial (10.5 hours) energy expenditure after a low‐fat (LF) (20% fat, 68% carbohydrate, 12% protein) and an isocaloric (2.1 MJ) and isoproteic high‐fat (HF; 50% fat, 38% carbohydrate, 12% protein) meal were measured by in direct calorimetry. Results: Fat oxidation was not significantly different after the two meals [LF, 31 ± 9 vs. HF, 35 ± 9 g/10.5 hours, p = not significant (NS)]. The girls oxidized 1.8 ± 0.9 times more fat than that ingested (11.1 grams) with the LF meal vs. 0.3 ± 0.3 times more fat than that ingested (27.1 grams) with the HF meal (p < 0.001). Carbohydrate oxidation was significantly higher after an LF than an HF meal (39 ± 12 vs. 29 ± 9 g/10.5 hours, p < 0, 05). At breakfast, the girls spontaneously ingested a similar amount of energy (1.5 ± 0.7 vs. 1.5 ± 0.6 MJ, p = NS) and macronutrient proportions (fat, 23% vs. 26%, p = NS; protein, 9% vs. 10%; carbohydrate, 68% vs. 64%,) independently of their having eaten an HF or an LF dinner. Discussion: An HF dinner did not stimulate fat oxidation, and no compensatory effect in spontaneous food intake was observed during breakfast the following morning. Cumulated total fat oxidation after dinner was higher than total fat ingested at dinner, but a much larger negative fat balance was observed after the LF meal. Spontaneous energy and nutrient intakes at breakfast were similar after LF and HF isocaloric, isoproteic dinners. This study points out the lack of sensitivity of short‐term fat balance to subsequently readjust fat intake and emphasizes the importance of an LF meal to avoid transient positive fat imbalance.  相似文献   

8.
9.
Objective: With anthropometric models using skinfolds and circumferences, we studied changes in the percentage of subcutaneous fat in the total cross‐sectional area (SF%) at four body sites in obese women, before and after weight loss induced by 6 months of caloric restriction. Research Methods and Procedures: In 61 obese women [31 African Americans and 30 whites; ages, 24 to 68 years; body mass index (BMI), ≥28kg/m2], we measured SF% at the midpoint of the upper arm and thigh and the waistline and hipline, and we measured the percentage of total body fat by DXA before (Obs#1) and after (Obs#2) a 6‐month nonintervention control period and then after 6 months on a 1200 kcal/d diet (Obs#3). Results: The mean body weight and BMI increased (1.8 kg and 0.61 kg/m2; p = 0.0001), but there were no significant changes in any other body composition measurements from Obs#1 to Obs#2. The means of Obs#3 for weight and BMI decreased by 11%, and the percentage of total body fat decreased by 13% of Obs#2 mean values (p = 0.0001). The mean SF% at each site decreased 7.6% to 18.0% of the Obs#2 mean values (p < 0.001). The SF% decreases were greater at mid‐arm and mid‐thigh than in the cross‐sectional regions at the waistline and hipline (p = 0.05). There was no interaction between age or ethnicity (p > 0.2). Conclusions: In obese women, caloric restriction alone reduces anthropometrically measured subcutaneous fat proportionally more in peripheral than in central regions.  相似文献   

10.
Objective: To evaluate the hypothesis that nighttime consumption of calories leads to an increased propensity to gain weight. Research Methods and Procedures: Sixteen female rhesus monkeys (Macaca mulatta) were ovariectomized and placed on a high‐fat diet to promote weight gain, and we examined whether monkeys that ate a high percentage of calories at night were more likely to gain weight than monkeys that ate the majority of calories during the day. Results: Within 6 weeks post‐ovariectomy, calorie intake and body weight increased significantly (129 ± 14%, p = 0.04; 103 ± 0.91%, p = 0.02, respectively). Subsequent placement on high‐fat diet led to further significant increases in calorie intake and body weight (368 ± 56%, p = 0.001; 113 ± 4.0%, p = 0.03, respectively). However, there was no correlation between the increase in calorie intake and weight gain (p = 0.34). Considerable individual variation existed in the percentage of calories consumed at night (6% to 64% total daily caloric intake). However, the percentage of calorie intake occurring at night was not correlated with body weight (r = 0.04; p = 0.87) or weight gain (r = 0.07; p = 0.79) over the course of the study. Additionally, monkeys that showed the greatest nighttime calorie intake did not gain more weight (p = 0.94) than monkeys that showed the least nighttime calorie intake. Discussion: These results show that eating at night is not associated with an increased propensity to gain weight, suggesting that individuals trying to lose weight should not rely on decreasing evening calorie intake as a primary strategy for promoting weight loss.  相似文献   

11.
Objective: Our objective was to determine the effects of dairy consumption on adiposity and body composition in obese African Americans. Research Methods and Procedures: We performed two randomized trials in obese African‐American adults. In the first (weight maintenance), 34 subjects were maintained on a low calcium (500 mg/d)/low dairy (<1 serving/d) or high dairy (1200 mg Ca/d diet including 3 servings of dairy) diet with no change in energy or macronutrient intake for 24 weeks. In the second trial (weight loss), 29 subjects were similarly randomized to the low or high dairy diets and placed on a caloric restriction regimen (?500 kcal/d). Results: In the first trial, body weight remained stable for both groups throughout the maintenance study. The high dairy diet resulted in decreases in total body fat (2.16 kg, p < 0.01), trunk fat (1.03 kg, p < 0.01), insulin (18.7 pM, p < 0.04), and blood pressure (6.8 mm Hg systolic, p < 0.01; 4.25 mm Hg diastolic, p < 0.01) and an increase in lean mass (1.08 kg, p < 0.04), whereas there were no significant changes in the low dairy group. In the second trial, although both diets produced significant weight and fat loss, weight and fat loss on the high dairy diet were ~2‐fold higher (p < 0.01), and loss of lean body mass was markedly reduced (p < 0.001) compared with the low dairy diet. Discussion: Substitution of calcium‐rich foods in isocaloric diets reduced adiposity and improved metabolic profiles in obese African Americans without energy restriction or weight loss and augmented weight and fat loss secondary to energy restriction.  相似文献   

12.
Objective: To characterize the meal patterns of free feeding Sprague‐Dawley rats that become obese or resist obesity when chronically fed a high‐fat diet. Research Methods and Procedures: Male Sprague‐Dawley rats (N = 120) were weaned onto a high‐fat diet, and body weight was monitored for 19 weeks. Rats from the upper [diet‐induced obese (DIO)] and lower [diet‐resistant (DR)] deciles for body‐weight gain were selected for study. A cohort of chow‐fed (CF) rats weight‐matched to the DR group was also studied. Food intake was continuously monitored for 7 consecutive days using a BioDAQ food intake monitoring system. Results: DIO rats were obese, hyperphagic, hyperleptinemic, hyperinsulinemic, hyperglycemic, and hypertriglyceridemic relative to the DR and CF rats. The hyperphagia of DIOs was caused by an increase in meal size, not number. CF rats ate more calories than DR rats; however, this was because of an increase in meal number, not size. When expressed as a function of lean mass, CF and DR rats consumed the same amount of calories. The intermeal intervals of DIO and DR rats were similar; both were longer than CF rats. The nocturnal satiety ratio of DIO rats was significantly lower than DR and CF rats. The proportion of calories eaten during the nocturnal period did not differ among groups. Discussion: The hyperphagia of a Sprague‐Dawley rat model of chronic diet‐induced obesity is caused by an increase in meal size, not number. These results are an important step toward understanding the mechanisms underlying differences in feeding behavior of DIO and DR rats.  相似文献   

13.
Objective: There is conflicting evidence about the propensity of trans fatty acids (TFAs) to cause obesity and insulin resistance. The effect of moderately high intake of dietary monounsaturated TFAs on body composition and indices of glucose metabolism was evaluated to determine any pro‐diabetic effect in the absence of weight gain. Research Methods and Procedures: Male African green monkeys (Chlorocebus aethiops; n = 42) were assigned to diets containing either cis‐monounsaturated fatty acids or an equivalent diet containing the trans‐isomers (~8% of energy) for 6 years. Total calories were supplied to provide maintenance energy requirements and were intended to not promote weight gain. Longitudinal body weight and abdominal fat distribution by computed tomography scan analysis at 6 years of study are reported. Fasting plasma insulin, glucose, and fructosamine concentrations were measured. Postprandial insulin and glucose concentrations, and insulin‐stimulated serine/threonine protein kinase (Akt), insulin receptor activation, and tumor necrosis factor‐α concentrations in subcutaneous fat and muscle were measured in subsets of animals. Results: TFA‐fed monkeys gained significant weight with increased intra‐abdominal fat deposition. Impaired glucose disposal was implied by significant postprandial hyperinsulinemia, elevated fructosamine, and trends toward higher glucose concentrations. Significant reduction in muscle Akt phosphorylation from the TFA‐fed monkeys suggested a mechanism for these changes in carbohydrate metabolism. Discussion: Under controlled feeding conditions, long‐term TFA consumption was an independent factor in weight gain. TFAs enhanced intra‐abdominal deposition of fat, even in the absence of caloric excess, and were associated with insulin resistance, with evidence that there is impaired post‐insulin receptor binding signal transduction.  相似文献   

14.
Objective : To investigate, in young obese male Zucker rats, the effects of chronic food restriction and subsequent refeeding on: 1) parameters of nonadipose and adipose growth, 2) regional adipose depot cellularity [fat cell volume (FCV) and number], and 3) circulating leptin levels. Research Methods and Procedures : Obese (fa/fa) and lean (Fa/?) male Zucker rats were studied from age 5 to 19 weeks. After baseline food intake monitoring, 10 obese rats were subjected to 58 days of marked caloric restriction from ad libitum levels [obese‐restricted (OR)], followed by a return to ad libitum feeding for 22 days. Ten lean control rats and 10 obese control rats were fed ad libitum for the entire experiment. All rats were fed using a computer‐driven automated feeding system designed to mimic natural eating patterns. Results : After food restriction, OR rats weighed significantly less than did lean and obese rats and showed a significant diminution in body and adipose growth as compared with obese rats. Relative adiposity was not different between obese and OR rats and was significantly higher than that of lean rats. The limitation in growth of the adipose tissue mass in OR rats was due mostly to suppression of fat cell proliferation because the mean FCV in each of the four depots was not affected. Serum leptin levels of OR and obese rats were not different from each other but were significantly higher than those of lean rats. Discussion : Marked caloric restriction affects obese male Zucker rats in a manner different from that of nongenetic rodent models (i.e., Wistar rats). In comparison with the response to caloric deprivation of Wistar rats, these calorically restricted obese male Zucker rats appeared to defend their relative adiposity and mean FCV at the expense of fat cell number. These findings indicate that genetic and/or tissue‐specific controls override the general consequences of food restriction in this genetic model of obesity.  相似文献   

15.
Accumulation of triacylglycerols (TAGs) and acylcarnitines in skeletal muscle upon high‐fat (HF) feeding is the resultant of fatty acid uptake and oxidation and is associated with insulin resistance. As medium‐chain fatty acids (MCFAs) are preferentially β‐oxidized over long‐chain fatty acids, we examined the effects of medium‐chain TAGs (MCTs) and long‐chain TAGs (LCTs) on muscle lipid storage and whole‐body glucose tolerance. Rats fed a low‐fat (LF), HFLCT, or an isocaloric HFMCT diet displayed a similar body weight gain over 8 weeks of treatment. Only HFLCT increased myocellular TAG (42.3 ± 4.9, 71.9 ± 6.7, and 48.5 ± 6.5 µmol/g for LF, HFLCT, and HFMCT, respectively, P < 0.05) and long‐chain acylcarnitine content (P < 0.05). Neither HF diet increased myocellular diacylglycerol (DAG) content. Intraperitoneal (IP) glucose tolerance tests (1.5 g/kg) revealed a significantly decreased glucose tolerance in the HFMCT compared to the HFLCT‐fed rats (802 ± 40, 772 ± 18, and 886 ± 18 area under the curve for LF, HFLCT, and HFMCT, respectively, P < 0.05). Finally, no differences in myocellular insulin signaling after bolus insulin injection (10 U/kg) were observed between LF, HFLCT, or HFMCT‐fed rats. These results show that accumulation of TAGs and acylcarnitines in skeletal muscle in the absence of body weight gain do not impede myocellular insulin signaling or whole‐body glucose intolerance.  相似文献   

16.
Dietary trans‐fatty acids are associated with increased risk of cardiovascular disease and have been implicated in the incidence of obesity and type 2 diabetes mellitus (T2DM). It is established that high‐fat saturated diets, relative to low‐fat diets, induce adiposity and whole‐body insulin resistance. Here, we test the hypothesis that markers of an obese, prediabetic state (fatty liver, visceral fat accumulation, insulin resistance) are also worsened with provision of a low‐fat diet containing elaidic acid (18:1t), the predominant trans‐fatty acid isomer found in the human food supply. Male 8‐week‐old Sprague–Dawley rats were fed a 10% trans‐fatty acid enriched (LF‐trans) diet for 8 weeks. At baseline, 3 and 6 weeks, in vivo magnetic resonance spectroscopy (1H‐MR) assessed intramyocellular lipid (IMCL) and intrahepatic lipid (IHL) content. Euglycemic–hyperinsulinemic clamps (week 8) determined whole‐body and tissue‐specific insulin sensitivity followed by high‐resolution ex vivo 1H‐NMR to assess tissue biochemistry. Rats fed the LF‐trans diet were in positive energy balance, largely explained by increased energy intake, and showed significantly increased visceral fat and liver lipid accumulation relative to the low‐fat control diet. Net glycogen synthesis was also increased in the LF‐trans group. A reduction in glucose disposal, independent of IMCL accumulation was observed in rats fed the LF‐trans diet, whereas in rats fed a 45% saturated fat (HF‐sat) diet, impaired glucose disposal corresponded to increased IMCLTA. Neither diet induced an increase in IMCLsoleus. These findings imply that trans‐fatty acids may alter nutrient handling in liver, adipose tissue, and skeletal muscle and that the mechanism by which trans‐fatty acids induce insulin resistance differs from diets enriched with saturated fats.  相似文献   

17.
The epidemic of obesity sweeping developed nations is accompanied by an increase in atherosclerotic cardiovascular diseases. Dyslipidemia, diabetes, hypertension, and obesity are risk factors for cardiovascular disease. However, delineating the mechanism of obesity‐accelerated atherosclerosis has been hampered by a paucity of animal models. Similar to humans, apolipoprotein E–deficient (apoE?/?) mice spontaneously develop atherosclerosis over their lifetime. To determine whether apoE?/? mice would develop obesity with accelerated atherosclerosis, we fed mice diets containing 10 (low fat (LF)) or 60 (high fat (HF)) kcal % from fat for 17 weeks. Mice fed the HF diet had a marked increase in body weight and atherosclerotic lesion formation compared to mice fed the LF diet. There were no significant differences between groups in serum total cholesterol, triglycerides, or leptin concentrations. Plasma concentrations of the acute‐phase reactant serum amyloid A (SAA) are elevated in both obesity and cardiovascular disease. Accordingly, plasma SAA concentrations were increased fourfold (P < 0.01) in mice fed the HF diet. SAA was associated with both pro‐ and antiatherogenic lipoproteins in mice fed the HF diet compared to those fed the LF diet, in which SAA was primarily associated with the antiatherogenic lipoprotein high‐density lipoprotein (HDL). Moreover, SAA was localized with apoB‐containing lipoproteins and biglycan in the vascular wall. Taken together, these data suggest male apoE‐deficient mice are a model of metabolic syndrome and that chronic low level inflammation associated with increased SAA concentrations may mediate atherosclerotic lesion formation.  相似文献   

18.
Objective: The autonomic nervous system (ANS) plays an important role in regulating energy expenditure and body fat content; however, the extent to which the ANS contributes to pediatric obesity remains inconclusive. The aim of this study was to evaluate whether sympathetic and/or the parasympathetic nerve activities were altered in an obese pediatric population. We further examined a physiological association between the duration of obesity and the sympatho‐vagal activities to scrutinize the nature of ANS alteration as a possible etiologic factor of childhood obesity. Research Methods and Procedures: Forty‐two obese and 42 non‐obese healthy sedentary school children were carefully selected from 1080 participants initially recruited to this study. The two groups were matched in age, gender, and height. The clinical records of physical characteristics and development of the obese children were retrospectively reviewed to investigate the onset and progression of obesity. The ANS activities were assessed during a resting condition by means of heart rate variability power spectral analysis, which enables us to identify separate frequency components, i.e., total power (TP), low‐frequency (LF) power, and high‐frequency (HF) power. The spectral powers were then logarithmically transformed for statistical testing. Results: The obese children demonstrated a significantly lower TP (6.77 ± 0.12 vs. 7.11 ± 0.04 ln ms2, p < 0.05), LF power (6.16 ± 0.12 vs. 6.42 ± 0.05 ln ms2, p < 0.05), and HF power (5.84 ± 0.15 vs. 6.34 ± 0.07 ln ms2, p < 0.01) compared with the non‐obese children. A partial correlation analysis revealed that the LF and HF powers among 42 obese children were negatively associated with the duration of obesity independent of age (LF: partial r = ?0.55, p < 0.001; HF: partial r = ?0.40, p < 0.01). The obese children were further subdivided into two groups based on the length of their obesity. All three spectral powers were significantly reduced in the obese group with obesity of >3 years (n = 18) compared to the group with obesity of <3 years. Discussion: Our data indicate that obese children possess reduced sympathetic as well as parasympathetic nerve activities. Such autonomic depression, which is associated with the duration of obesity, could be a physiological factor promoting the state and development of obesity. These findings further imply that preventing and treating obesity beginning in the childhood years could be an urgent and crucial pediatric public health issue.  相似文献   

19.
Objective: To assess the interaction of high‐fat diets (HF) made with different dietary fatty acids and exercise on body‐weight regulation, adiposity, and metabolism. Research Methods and Procedures: Male Wistar rats born to dams fed HF diets (40% w/w) made with either fish oil (FO), soybean oil (SO), or palm oil (PO) were fed diets similar to their dams and divided randomly into exercise (EX, swimming) or sedentary control (SD) groups when they were 9 weeks old. EX lasted for 6 weeks. Twenty‐four hours after the last EX bout, fasted rats were killed by decapitation. Chemical analyses and body composition analysis were conducted. Results: The results demonstrated that different fatty acids had different effects on body weight, composition, and metabolism. SO‐fed rats gained the most weight and fat. EX reduced body weight of FO‐ and PO‐fed rats, but SO‐fed rats were still heavier and fatter than other rats. Data from SO‐ and PO‐fed rats suggested that they are insulin resistant and that EX normalized this abnormality. Of the three HF diets used, FO produced the least adverse effects compared with PO and SO. Discussion: Not only the quantity of dietary fat, but also the type of fat used, will produce different effects on body weight and metabolism. EX ameliorates the suggested insulin resistance induced in rats fed either highly saturated or n‐6 polyunsaturated fatty acids. Long‐chain n‐3 polyunsaturated fatty acids, as found in fish oil, are more beneficial than n‐6 polyunsaturated fatty acids when fed in high amounts to rats.  相似文献   

20.
The aim of the study was to evaluate the effect of a temporary quantitative feed restriction on growth performance, nutrient digestibility and carcass criteria of rabbits. A total of 80 weaned male Californian rabbits (30 d of age) were randomly assigned to four treatments of 20 rabbits each. The Control group was fed ad libitum during the whole experimental period (days 30–72 of age). For the three restricted fed groups the feed intake was reduced by 15%, 30% and 45% compared to the Control group, respectively. The feed restriction was applied after weaning and lasted for 21 d. Thereafter, at 51 d of age, in all treatments the feed supply returned to ad libitum intake till 72 d of age (AL period). The feed restriction decreased the body weight gain of rabbits (during the restriction period and the whole experimental period, p < 0.001) and improved feed conversion ratio during all tested periods (p < 0.001). In the AL period, the daily body weight gain of all groups was similar. After the AL period, the digestibility of all measured nutrients was significantly higher for animals fed restrictively. Furthermore, feed restrictions significantly decreased the proportion of perirenal and scapular fat and increased relative weight and length of the gastrointestinal tract. Therefore, it can be concluded that the applied feed restriction improved feed conversion, nutrient digestibility and reduced fat at the slaughter age of Californian rabbits, but the reduced body weight gain could not be compensated by a subsequent ad libitum feeding for 3 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号