首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high protein content at the expense of carbohydrates (LC-HF-HP) causes differential effects on body weight and glucose homeostasis that depend on the integrity of brain melanocortin (MC) signaling. In vehicle-treated rats, switching from HC to either HF or LC-HF-HP feeding caused similar reductions in food intake without alterations in body weight. A reduced caloric intake (-16% in HF and LC-HF-HP groups) required to maintain or increase body weight underlay these effects. Chronic third cerebroventricular infusion of the MC receptor antagonist SHU9119 (0.5 nmol/day) produced obesity and hyperphagia with an increased food efficiency again observed during HF (+19%) and LC-HF-HP (+33%) feeding. In this case, however, HF feeding exaggerated SHU9119-induced hyperphagia and weight gain relative to HC and LC-HF-HP feeding. Relative to vehicle-treated controls, SHU9119 treatment increased plasma insulin (2.8-4 fold), leptin (7.7-15 fold), and adiponectin levels (2.4-3.7 fold), but diet effects were only observed on plasma adiponectin (HC and LC-HF-HP相似文献   

2.
3.
Lin L  Park M  York DA 《Peptides》2007,28(3):643-649
Enterostatin injected into the amygdala selectively reduces dietary fat intake by an action that involves a serotonergic component in the paraventricular nucleus. We have investigated the role of melanocortin signaling in the response to enterostatin by studies in melanocortin 4 receptor (MC4R) knock out mice and by the use of the MC4R and MC3R antagonist SHU9119, and by neurochemical phenotyping of enterostatin activated cells. We also determined the effect of enterostatin in vivo on the expression of AgRP in the hypothalamus and amygdala of rats and in culture on a GT1-7 neuronal cell line. Enterostatin had no effect on food intake in MC4R knock out mice. SHU9119 i.c.v. blocked the feeding response to amygdala enterostatin in rats. Amygdala enterostatin induced fos activation in alpha-melanocyte stimulating hormone (alpha-MSH) neurons in the arcuate nucleus. Enterostatin also reduced the expression of AgRP in the hypothalamus and amygdala and in GT1-7 cells. These data suggest enterostatin inhibits dietary fat intake through a melanocortin signaling pathway.  相似文献   

4.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

5.
Metabolic, cognitive, and environmental factors processed in the forebrain modulate food intake by changing the potency of direct controls of meal ingestion in the brain stem. Here, we behaviorally and anatomically test the role of the hypothalamic proopiomelanocortin (POMC) system in mediating some of these descending, indirect controls. Melanotan II (MTII), a stable melanocortin 4 receptor (MC4R) and melanocortin 3 receptor (MC3R) agonist injected into the fourth ventricle near the dorsal vagal complex, potently inhibited 14-h food intake by decreasing meal size but not meal frequency; SHU9119, an antagonist, increased food intake by selectively increasing meal size. Furthermore, MTII injected into the fourth ventricle increased and SHU9119 tended to decrease heart rate and body temperature measured telemetrically in freely moving rats. Numerous alpha-melanocyte-stimulating hormone-immunoreactive axons were in close anatomical apposition to nucleus tractus solitarius neurons showing c-Fos in response to gastric distension, expressing neurochemical phenotypes implicated in ingestive control, and projecting to brown adipose tissue. In retrograde tracing experiments, a small percentage of arcuate nucleus POMC neurons was found to project to the dorsal vagal complex. Thus melanocortin signaling in the brain stem is sufficient to alter food intake via changing the potency of satiety signals and to alter sympathetic outflow. Although the anatomical findings support the involvement of hypothalamomedullary POMC projections in mediating part of the descending, indirect signal, they do not rule out involvement of POMC neurons in the nucleus tractus solitarius in mediating part of the direct signal.  相似文献   

6.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

7.
Park BS  Jin SH  Park JJ  Park JW  Namgoong IS  Kim YI  Lee BJ  Kim JG 《PloS one》2011,6(1):e15981

Background/Objective

Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and hypoactivity.

Methodology

Rats were intracerebroventricularly (ICV) injected with visfatin, and changes in food intake, body weight, body temperature and locomotor activity were monitored. Real-time PCR was applied to determine the expressions of pro-inflammatory cytokines, proopiomelanocortin (POMC) and prostaglandin-synthesizing enzymes in their brain. To determine the roles of cyclooxygenase (COX) and melanocortin in the visfatin action, rats were ICV-injected with visfatin with or without SHU9119, a melanocortin receptor antagonist, or indomethacin, a COX inhibitor, and their sickness behaviors were evaluated.

Principal Findings

Administration of visfatin decreased food intake, body weight and locomotor activity and increased body temperature. Visfatin evoked significant increases in the levels of pro-inflammatory cytokines, prostaglandin-synthesizing enzymes and POMC, an anorexigenic neuropeptide. Indomethacin attenuated the effects of visfatin on hyperthermia and hypoactivity, but not anorexia. Further, SHU9119 blocked visfatin-induced anorexia but did not affect hyperthermia or hypoactivity.

Conclusions

Visfatin induced sickness responses via regulation of COX and the melanocortin pathway in the brain.  相似文献   

8.
Agouti-related peptide (AgRP) is a receptor antagonist of central nervous system (CNS) melanocortin receptors and appears to have an important role in the control of food intake since exogenous CNS administration in rats and overexpression in mice result in profound hyperphagia and weight gain. Given that AgRP is heavily colocalized with neuropeptide Y (NPY) and that orexigenic effects of NPY depend on activity at opioid receptors, we hypothesized that AgRP's food-intake effects are also mediated by opioid receptors. Subthreshold doses of the opioid receptor antagonist naloxone blocked AgRP-induced intake when given simultaneously but not 24 h after AgRP injection. Opioids not only influence food intake but food selection as well. Hence, we tested AgRP's effect to alter food choice between matched diets with differing dietary fat content. AgRP selectively enhanced intake of the high-fat but not the low-fat diet. Additionally, AgRP selectively increased chow intake in rats given ad libitum access to a 20% sucrose solution and standard rat chow. The current results indicate that AgRP influences not only caloric intake but food selection as well and that the early effects of AgRP depend critically on an interaction with opioid receptors.  相似文献   

9.
The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (−42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (−60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity.  相似文献   

10.
11.
Polidori C  Geary N  Massi M 《Peptides》2006,27(1):144-149
It has been recently reported that acute intracerebroventricular injection of 1 nmol/rat of the non-selective melanocortin 3 and 4 receptor (MC3/4) agonist MTII reduces ethanol intake in female AA alcohol-preferring rats and alters opioid peptide levels in the ventral tegmental area of rats. To better understand the role of the MC system in the control of ethanol intake, we tested the acute and chronic effects of lateral ventricular (LV) injections of 0.01-1 nmol MTII, of 0.1-1 nmol of the MC3/4R receptor antagonist agouti related peptide (AgRP), and 0.1-0.5 nmol of the MC3/4R receptor antagonist SHU9119 on food, water, and 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats, which spontaneously ingest pharmacologically relevant quantities of ethanol both under short and long term access conditions. The data showed that with 2h/day ethanol access, LV MTII injections reduced intake of food and ethanol intakes. When food, water, and ethanol were available ad libitum and 0.01 nmol MTII was given by daily LV injection, however, ethanol intake was reduced for only the first 2 days, whereas food intake was reduced for all 5 days of treatment. Finally, acute LV injection of neither AgRP nor SHU9119 affected ethanol intake under ad libitum conditions, although both antagonists significantly increased food and water intake. In conclusion, these data fail to support a role for endogenous MC3/4R in the control of spontaneous ethanol intake in the msP rat. MC3/4R agonism, however, reduced ethanol intake in association with reduced food intake, suggesting that MTII might reduce nutrient-related controls of ethanol intake rather than, or in addition to, reward-related controls of ethanol intake.  相似文献   

12.
The aim of the current investigations was to examine the effects of a low‐carbohydrate high‐fat diet (LC‐HFD) on body weight, body composition, growth hormone (GH), IGF‐I, and body weight regain after stopping the dietary intervention and returning the diet back to standard laboratory chow (CH). In study one, both adolescent and mature male Wistar rats were maintained on either an isocaloric LC‐HFD or CH for 16 days before having their diet switched. In study two, mature rats were maintained on either LC‐HFD or CH for 16 days to determine the effects of the LC‐HFD on fat pad weight. LC‐HFD leads to body weight loss in mature rats (P < 0.01) and lack of body weight gain in adolescent rats (P < 0.01). Despite less body weight, increased body fat was observed in rats maintained on LC‐HFD (P < 0.05). Leptin concentrations were higher (P < 0.05), and IGF‐I (P < 0.01) concentrations were reduced in the LC‐HFD rats. When the diet was returned to CH following LC‐HFD, body weight regain was above and beyond that which was lost (P < 0.01). The LC‐HFD resulted in increased body fat and had a negative effect upon both GH and IGF‐I concentrations, which might have implications for the accretion and maintenance of lean body mass (LBM), normal growth rate and overall metabolic health. Moreover, when the LC‐HFD ceases and a high‐carbohydrate diet follows, more body weight is regained as compared to when the LC‐HFD is consumed, in the absence of increased energy intake.  相似文献   

13.
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.  相似文献   

14.
Maternal obesity due to long‐term high‐fat diet (HFD) consumption leads to faster growth in offspring during suckling, and increased adiposity at 20 days of age. Decreased expression of the orexigenic neuropeptide Y (NPY) and increased anorexigenic proopiomelanocortin (POMC) mRNA expression were observed in the fed state. However, hunger is the major drive to eat and hypothalamic appetite regulators change in response to meals. Therefore, it is important to compare both satiated and fasting states. Female Sprague–Dawley rats (8 weeks old) were fed a cafeteria‐style HFD (15.33 kJ/g) or chow for 5 weeks before mating, with the same diet continuing throughout gestation and lactation. At postnatal day 20, male pups were killed either after overnight fasting or in the fed state. Pups from obese dams were hyperphagic during both pre‐ and postweaning periods. Pups from obese dams had higher hypothalamic mRNA expression of POMC and NPY Y1 receptor, but lower hypothalamic melanocortin‐4 receptor (MC4R) and its downstream target single‐minded gene 1 (Sim1), in the fed state. Overnight fasting reduced circulating glucose, insulin, and leptin and increased hypothalamic NPY Y1 receptor mRNA in pups from both lean and obese dams. Hypothalamic NPY and agouti‐related protein (AgRP) were only increased by fasting in pups from obese dams; reductions in MC4R and Sim1 were only seen in pups from lean dams. At weaning, the suppressed orexigenic signals in offspring from obese dams were normalized after overnight fasting, although anorexigenic signaling appeared impaired in these animals. This may contribute to their hyperphagia and faster growth.  相似文献   

15.
Pregnancy is characterized by an increase in food intake that, in turn, produce a positive energy balance in order to face the considerable metabolic demands associated with the challenge of reproduction. Since hypothalamus is a key brain region involved in many peripheral signals and neuronal pathways that control energy homeostasis and food intake, we investigated if during pregnancy the increase in food intake is mediated by stimulating orexigenic and/or inhibiting anorexigenic neural pathways. We examined hypothalamic gene expressions of Ob-Rb, NPY, AgRP, POMC, MC4-R, and preproorexins in pregnant Wistar rats at day 19 of gestation. Food intake and body weight were increased progressively during the pregnancy. Visceral fat mass depots and serum leptin levels were also increased when compared with virgin animals. No differences were found in mRNA expression of Ob-Rb, POMC, MC4-R, NPY or preproorexin between virgin and pregnant animals. However, pregnancy produced a selective increase in AgRP mRNA levels. These results indicate that the positive energy balance that occurred during pregnancy can hardly be explained by changes in Ob-Rb despite hyperleptinemia associated with pregnancy. The enhanced expression of AgRP suggests the involvement of this neuropeptide in mediating pregnancy-associated hyperphagia.  相似文献   

16.
Schuhler S  Ebling FJ 《Peptides》2006,27(2):301-309
Siberian hamsters express photoperiod-regulated seasonal cycles of body weight and food intake, providing an opportunity to study the role of melanocortin systems in regulating long-term adaptive changes in energy metabolism. These hamsters accumulate intraperitoneal fat reserves when kept in long summer photoperiods, but show a profound long-term decrease in food intake and body weight when exposed to a short winter photoperiod. Icv administration of a MC3/4-R agonist (MTII) potently suppresses food intake in hamsters in both the obese and lean state, indicating the potential for melanocortin systems to regulate energy metabolism in the hypothalamus of the Siberian hamster. Icv treatment with the melanocortin antagonist SHU9119 increases food intake in both seasonal states. Moreover, hamsters bearing neurotoxic lesions, which destroy the majority of POMC expressing neurons in the arcuate nucleus are still able to show seasonal regulation of body weight. These studies in a seasonal model substantiate the view that endogenous melanocortin systems exert a tonic inhibition of food intake in mammals. The observations that this melanocortin tone occurs to a similar extent in both an anabolic state induced by a long day photoperiod, and in a catabolic state induced by a short day photoperiod, suggests that alterations in endogenous melanocortin tone are not the primary cause of the lipolysis, weight-loss and hypophagia which characterize the establishment of the short day-induced overwintering state.  相似文献   

17.
The incidence of juvenile obesity is increasing at an alarming rate. In adults, central insulin administration decreases hypothalamic orexigenic neuropeptides, food intake and body weight more effectively in males than females. Mechanisms regulating energy balance in juvenile animals are inherently different from those in adults due to differences in growth rates and hormonal milieu. Therefore, we sought to determine if central insulin treatment in juvenile rats (4 wk) would have similar sex-dependent effects on food intake as those reported in adult rats. Twenty-four hour food intake was measured following icv saline or insulin (0.01 or 0.1 U) prior to the onset of dark phase of the light cycle. An additional set of animals was used to assess the effects of central insulin on hypothalamic orexigenic (NPY, AgRP) and anorexigenic (POMC) neuropeptide mRNA expression. In both males and females, insulin reduced meal size initially (first 4 h) and later decreased meal frequency (4-24 h) to reduce cumulative food intake. Consistent with this, central insulin decreased hypothalamic NPY and AgRP and increased POMC mRNA expression. In contrast to adult studies, there were no demonstrated sex differences. These studies indicate that juvenile females and males are equally sensitive to central insulin anorexigenic effects, perhaps due to a lack of circulating gonadal hormones. The anorexigenic responsiveness of both genders suggests a potential pharmacologic approach to childhood obesity.  相似文献   

18.
Dietary resistant starch increases hypothalamic POMC expression in rats   总被引:1,自引:0,他引:1  
Resistant starch (RS) is fermentable dietary fiber. Inclusion of RS in the diet causes decreased body fat accumulation and altered gut hormone profile. This study investigates the effect of feeding RS on the neuropeptide messenger RNA (mRNA) expressions in the arcuate nucleus (ARC) of the hypothalamus and whether vagal afferent nerves are involved. The rats were injected intraperitoneally with capsaicin to destroy unmyelinated small vagal afferent nerve fibers. The cholecystokinin (CCK) food suppression test was performed to validate the effectiveness of the capsaicin treatment. Then, capsaicin-treated rats and vehicle-treated rats were subdivided into a control diet or a RS diet group, and fed the corresponding diet for 65 days. At the end of study, body fat, food intake, plasma peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), and hypothalamic pro-opiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AgRP) gene expressions were measured. RS-fed rats had decreased body fat, increased POMC expression in the hypothalamic ARC, and elevated plasma PYY and GLP-1 in both the capsaicin and vehicle-treated rats. Hypothalamic NPY and AgRP gene expressions were not changed by RS or capsaicin. Therefore, destruction of the capsaicin-sensitive afferent nerves did not alter the response to RS in rats. These findings suggest that dietary RS might reduce body fat through increasing the hypothalamic POMC expression and vagal afferent nerves are not involved in this process. This is the first study to show that dietary RS can alter hypothalamic POMC expression.  相似文献   

19.
Joppa MA  Ling N  Chen C  Gogas KR  Foster AC  Markison S 《Peptides》2005,26(11):2294-2301
We investigated the effect of melanocortin 4 receptor (MC4) antagonists on food intake in mice. Food intake during the light phase was significantly increased by ICV administration of mixed MC3/MC4 antagonists (AgRP and SHU9119) or MC4 selective antagonist peptide [(Cyclo (1-5)[Suc-D-Nal-Arg-Trp-Lys]NH2] (MBP10) and the small molecule antagonists THP and NBI-30. Both mixed and selective antagonists significantly reversed anorexia induced by ICV administration of the MC4 agonist (c (1-6) HfRWK-NH2) and the cytokine IL-1beta. These findings provide pharmacological evidence that the MC4 receptor mediates the effects of melanocortin agonists and antagonists on food intake in mice, and support the idea that selective small molecule MC4 antagonists may be useful as therapeutics for cachexia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号