首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
2.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

3.
Proliferation of bronchial epithelial cells is an important biological process in physiological conditions and various lung diseases. The objective of this study was to determine how bronchial fibroblasts influence bronchial epithelial cell proliferation. The proliferative activity in cocultures was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct cells counts. Concentration of cytokines was measured in cell culture supernatants by means of ELISA. In primary cell cocultures, fibroblasts or fibroblast-conditioned medium enhanced 1.85-fold the proliferation of primary bronchial epithelial cells (P < 0.02) compared with bronchial epithelial cells cultured alone. The proliferative activity in cocultures and in fibroblast-conditioned medium was reduced by neutralizing antibody to hepatocyte growth factor (HGF) and HGF receptor c-met. Neutralizing antibodies to FGF-7 and IGF-1 had no effect. Treatment of fibroblast-epithelial cocultures with anti-IL-6 and anti-TNF-alpha neutralizing antibodies and with indomethacin decreased production of HGF. These results indicate that cytokines and PGE(2) may indirectly mediate epithelial cell proliferation via the regulation of HGF in bronchial stromal cells and that HGF plays a crucial role in proinflammatory cytokine-induced proliferation in the experimental system studied.  相似文献   

4.
Hepatocyte growth factor (HGF) is a pleiotropic growth factor that acts on various epithelial cells. The objectives of this study were to determine whether HGF altered the proliferation and prostaglandin (PG) secretion of bovine endometrial stromal and epithelial cells in vitro. We also observed HGF and HGF receptor (c-met) mRNA expression in cultured bovine endometrial stromal and epithelial cells by RT-PCR. Stromal and epithelial cells obtained from cows in early stage of the estrous cycle (days 2-5) were cultured in DMEM/Ham's F-12 supplemented with 10% calf serum. The cells were exposed to HGF (0-10 ng/ml) for 2, 4, or 6 days. HGF significantly increased the total DNA in epithelial (P < 0.05), but not stromal cells. In another experiment, when the cells reached confluence, the culture medium was replaced with fresh medium with 0.1% BSA containing HGF 0-100 ng/ml and the cells were cultured for 24 hr. The HGF stimulated PGF2alpha secretion in epithelial, but not stromal cells. RT-PCR revealed that mRNA of HGF is expressed only in stromal cells, and that c-met mRNA is expressed in both stromal and epithelial cells. These results suggest that HGF plays roles in the proliferation and the regulation of secretory function of bovine endometrial epithelial cells in a paracrine fashion.  相似文献   

5.
The growth of isolated epithelial and stromal cells from both androgen-dependent normal rat prostate and an androgen-responsive model rat prostate tumor is androgen-independent. When added to co-cultures of epithelial and stromal cells separated by a semipermeable membrane, androgen stimulated epithelial cell growth without an effect on stromal cell growth. Northern blot and nuclease protection analysis of mRNA revealed that stromal cells specifically expressed an androgen-sensitive secreted member of the heparin-binding fibroblast growth factor family [keratinocyte growth factor (KGF)/fibroblast growth factor-7]. KGF was mitogenic for epithelial cells, but not for stromal cells. Epithelial cells expressed specifically a splice variant of the bek receptor gene that specifically binds KGF. Expression of the bek receptor gene in stromal cells was undetectable by Northern blot and nuclease protection analyses. The results suggest that stromal cell-derived KGF has the properties of an andromedin, which mediates the indirect control of epithelial cell proliferation by androgen through a directional stromal-to-epithelial cell paracrine mechanism.  相似文献   

6.
Mifepristone (RU-486) is a potent antagonist of steroid hormone receptors such as glucocoticoid and progesterone receptors. This compound also is a very strong inducer of the interaction between androgen receptors and corepressors NCoR and SMRT and therefore could be used as selective receptor modulator.

In this study we determined the relative binding affinity of RU-486 to androgen receptors (AR) obtained from rat prostate cytosol as well as the in vivo effect of different doses of RU-486 on the prostate weight of hamsters treated with dihydrotestosterone and/or RU-486. We determined also the prostate cell death (apoptosis) in hamster treated with, dihydrotestosterone (DHT) and/or RU-486.

The results of this study indicated that the relative binding affinity of RU-486 for AR is 4.3%. The data from the in vivo experiments also showed that RU-486 inhibited the prostate weight significantly in the highest doses thus indicating the antagonistic action of this compound on hamster prostate.

The immunohistochemistry analysis showed that after 1 month of castration, the hamster prostate was atrophic. Treatment with DHT produced epithelial cell activity (measured by the increase in the prostate weight) and very low rate of apoptosis. When DHT was administered together with RU-486 (10 mg/kg) no change was observed. On the other hand, DHT plus higher doses of RU-486 (40, 80 mg/kg) resulted in an increase of apoptosis in stromal and secretory epithelial cells. In addition to the increase of the prostate cell apoptosis produced by the treatment with high dose of RU-486, other factors could contribute to the decrease of the prostate weight observed. Another possibility could be a reduction in the ductal fluid due to poor epithelial cell secretory activity more than apoptosis itself. Furthermore, in this experiment, RU-486 could have inhibited the growth of the prostate gland produced by DHT in a greater extent than the induction of atrophy and cell death. This fact could depend on the doses used, due to the low affinity of this compound for the androgen receptors.  相似文献   


7.
R Montesano  K Matsumoto  T Nakamura  L Orci 《Cell》1991,67(5):901-908
We have previously shown that Madin-Darby canine kidney (MDCK) epithelial cells grown in collagen gels in the presence of fibroblasts or fibroblast-conditioned medium (CM) form branching tubules, instead of the spherical cysts that develop under control conditions. We now report that the fibroblast-derived molecule responsible for epithelial tubulogenesis is hepatocyte growth factor (HGF). First, addition of exogenous HGF to cultures of MDCK cells induces formation of epithelial tubules. Second, the tubulogenic activity of fibroblast CM is completely abrogated by antibodies to HGF. These results demonstrate that HGF, a polypeptide that was identified as a mitogen for cultured hepatocytes, has the properties of a paracrine mediator of epithelial morphogenesis, and suggest that it may play important roles in the formation of parenchymal organs during embryonic development.  相似文献   

8.
Fibroblast growth factor (FGF)-10, a homologue of FGF-7, is expressed significantly in normal rat prostate tissue, well differentiated rat prostate tumors with an epithelial and stromal compartment and only in derived prostate stromal cells in culture. Similar to FGF-7, recombinant rat FGF-10 was a specific mitogen for prostate epithelial cells. In contrast to FGF-7 which is widely expressed among stromal cells in tissues, the expression of FGF-10 correlated with the presence of stromal cells of muscle origin. Radioreceptor binding assays and covalent cross-linking analysis revealed that FGF-10 binds with an affinity equal to FGF-7 to resident epithelial cell receptor, FGFR2IIIb, but unlike FGF-7 also binds the IIIb splice variant of FGFR1. Analysis of mRNA expression by RNase protection revealed that, similar to FGF-7, the expression of FGF-10 was responsive to androgen in stromal cells from normal prostate and non-malignant differentiated tumors. Although FGF-10 cDNA exhibits a signal sequence for secretion, cultured stromal cells exhibit strictly a cell-associated FGF-10 antigen that correlates with an alternately translated intracellular isoform. FGF-10 requires 1.4 times higher NaCl for elution from immobilized heparin than does FGF-7 and binds to four times the number of sites on the pericellular matrix of epithelial cells. The results show that prostate stromal cell-derived FGF-10, like FGF-7, exhibits the properties of an andromedin which may indirectly mediate control of epithelial cell growth and function by androgen. Although FGF-10 and FGF-7 bind and activate the same resident epithelial cell receptor (FGFR2IIIb), differences in cell type of origin, compartmentation by alternate translation, the affinity for FGFR1IIIb, and access to FGFR by differential interaction with pericellular matrix heparan sulfate suggest they may play both independent and compensatory roles in prostate homeostasis.  相似文献   

9.
 为探讨雄激素对人前列腺中鸟氨酸脱羧酶( O D C)基因表达的调节作用,以研究雄激素诱导前列腺良性增生的分子机理,分离培养了人胎儿前列腺间质细胞,以 M T T 法测定不同浓度 D H T对细胞的促增殖作用;以最适浓度的 D H T(1 000 μg/ L)刺激该细胞,分别于 0,3,6,12,24,30 h 提取总 R N A,用斑点杂交及 Northern blot 法分析测定各组细胞中 O D C m R N A 的丰度,并对杂交膜进行薄层扫描定量.结果显示:(1) D H T 对前列腺间质细胞的增殖呈双相调节作用,即在低浓度时随着 D H T 浓度的增加,对该细胞的促增殖作用增强,1 000 μg/ L时刺激活性最强,高浓度 D H T 对该细胞的刺激作用降低.(2)斑点杂交显示,在 1 000 μg/ L D H T 刺激细胞后 6 h 时, O D C m R N A开始明显升高,24 h 达高峰(约为 0 h 的 48 倍),至 30 h 有所降低.(3) Northern blot 结果显示,人胎儿前列腺间质细胞中有两种 O D C m R N A,分别为 20 kb 和 26 kb,经扫描定量结果显示:1 000μg/ L D H T 对两种 O D C m R N A  相似文献   

10.
Li M  Jiang X  Liu D  Na Y  Gao GF  Xi Z 《Autophagy》2008,4(1):54-60
Androgen plays a critical role in the development and progression of prostate cancer. However, the regulatory role of androgen in the autophagic process and the function of the increased autophagosomes following androgen deprivation remain poorly understood. We found that autophagosomes, which were induced upon serum deprivation in LNCaP cells, can be significantly suppressed by dihydrotestosterone (DHT). Pharmacological inhibition of autophagy by 3-methyladenine led to increased apoptosis of LNCaP cells in serum-free medium compared to the medium with DHT or serum. Additionally, depletion of Beclin 1 to inhibit autophagy by small interfering RNA resulted in a slower proliferation of LNCaP cells in the medium depleted of serum than in the medium with DHT. Altogether, these findings suggested that LNCaP cells can resort to the autophagic pathway to survive under androgen deprivation conditions, which can be a novel mechanism involved in the transition of prostate cancer cells from an androgen-dependent to an androgen-independent cell type.  相似文献   

11.
The main aim of our study is to determine the significance of the stromal microenvironment in the malignant behavior of prostate cancer. The stroma-derived growth factors/cytokines and hyaluronan act in autocrine/paracrine ways with their receptors, including receptor-tyrosine kinases and CD44 variants (CD44v), to potentiate and support tumor epithelial cell survival. Overexpression of hyaluronan, CD44v9 variants, and stroma-derived growth factors/cytokines are specific features in many cancers, including prostate cancer. Androgen/androgen receptor interaction has a critical role in regulating prostate cancer growth. Our previous study showed that 1) that increased synthesis of hyaluronan in normal epithelial cells promotes expression of CD44 variants; 2) hyaluronan interaction with CD44v6-v9 promotes activation of receptor-tyrosine kinase, which stimulates phosphatidylinositol 3-kinase-induced cell survival pathways; and 3) CD44v6/short hairpin RNA reduces colon tumor growth in vivo (Misra, S., Hascall, V. C., De Giovanni, C., Markwald, R. R., and Ghatak, S. (2009) J. Biol. Chem. 284, 12432–12446). Our results now show that hepatocyte growth factor synthesized by myofibroblasts associated with prostate cancer cells induces activation of HGF-receptor/cMet and stimulates hyaluronan/CD44v9 signaling. This, in turn, stabilizes the androgen receptor functions in prostate cancer cells. The stroma-derived HGF induces a lipid raft-associated signaling complex that contains CD44v9, cMet/phosphatidylinositol 3-kinase, HSP90 and androgen receptor. CD44v9/short hairpin RNA reverses the assembly of these components in the complex and inhibits androgen receptor function. Our results provide new insight into the hyaluronan/CD44v9-regulated androgen receptor function and the consequent malignant activities in prostate cancer cells. The present study describes a physiologically relevant in vitro model for studying the molecular mechanisms by which stroma-derived HGF and hyaluronan influence androgen receptor and CD44 functions in the secretory epithelia during prostate carcinogenesis.  相似文献   

12.
Dehydroepiandrosterone (DHEA) is commonly used as a dietary supplement and may affect prostate pathophysiology when metabolized to androgens and/or estrogens. Human prostate LAPC-4 cancer cells with a wild type androgen receptor (AR) were treated with DHEA, androgens dihydrotestosterone (DHT), T, or R1881), and E(2) and assayed for prostate specific antigen (PSA) protein and gene expression. In LAPC-4 monocultures, DHEA and E(2) induced little or no increase in PSA protein or mRNA expression compared to androgen-treated cells. When prostate cancer-associated (6S) stromal cells were added in coculture, DHEA stimulated LAPC-4 cell PSA protein secretion to levels approaching induction by DHT. Also, DHEA induced 15-fold more PSA mRNA in LAPC-4 cocultures than in monocultures. LAPC-4 proliferation was increased 2-3-fold when cocultured with 6S stromal cells regardless of hormone treatment. DHEA-treated 6S stromal cells exhibited a dose- and time-dependent increase in T secretion, demonstrating stromal cell metabolism of DHEA to T. Coculture with non-cancerous stroma did not induce LAPC-4 PSA production, suggesting a differential modulation of DHEA effect in a cancer-associated prostate stromal environment. This coculture model provides a research approach to reveal detailed endocrine, intracrine, and paracrine signaling between stromal and epithelial cells that regulate tissue homeostasis within the prostate, and the role of the tumor microenvironment in cancer progression.  相似文献   

13.
Hepatocyte growth factor is a regulator of monocyte-macrophage function   总被引:6,自引:0,他引:6  
Hepatocyte growth factor (HGF) is a potent paracrine mediator of stromal/epithelial interactions, which is secreted as a matrix-associated inactive precursor (pro-HGF) and locally activated by tightly controlled urokinase cleavage. It induces proliferation and motility in epithelial and endothelial cells, and plays a role in physiological and pathological processes involving invasive cell growth, such as angiogenesis and parenchymal regeneration. We now report that HGF induces directional migration and cytokine secretion in human monocytes. Monocyte activation by endotoxin and IL-1beta results in the up-regulation of the HGF receptor expression and in the induction of cell-associated pro-HGF convertase activity, thus enhancing cell responsiveness to the factor. Furthermore, we provide evidence for the secretion of biologically active HGF by activated monocytes, implying an autocrine stimulation. Altogether, these data indicate that monocyte function is modulated by HGF in a paracrine/autocrine manner, and provide a new link between stromal environment and mononuclear phagocytes.  相似文献   

14.
True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co‐culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non‐macromastic epithelial cells when co‐cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia‐derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co‐culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co‐cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy.  相似文献   

15.
16.
Clonogenicity of human endometrial epithelial and stromal cells   总被引:20,自引:0,他引:20  
The human endometrium regenerates from the lower basalis layer, a germinal compartment that persists after menstruation to give rise to the new upper functionalis layer. Because adult stem cells are present in tissues that undergo regeneration, we hypothesized that human endometrium contains small populations of epithelial and stromal stem cells responsible for cyclical regeneration of endometrial glands and stroma and that these cells would exhibit clonogenicity, a stem-cell property. The aims of this study were to determine 1) the clonogenic activity of human endometrial epithelial and stromal cells, 2) which growth factors support this clonogenic activity, and 3) determine the cellular phenotypes of the clones. Endometrial tissue was obtained from women undergoing hysterectomy. Purified single- cell suspensions of epithelial and stromal cells were cultured at cloning density (300-500/cm(2)) in serum medium or in serum- free medium supplemented with one of eight growth factors. Small numbers of epithelial (0.22%) and stromal cells (1.25%) initiated colonies in serum-containing medium. The majority of colonies were small, containing large, loosely arranged cells, and 37% of epithelial and 1 in 60 of stromal colonies were classified as large, comprising small, densely packed cells. In serum-free medium, transforming growth factor-alpha (TGF alpha), epidermal growth factor (EGF), platelet-derived growth factor-BB (PDGF-BB) strongly supported clonogenicity of epithelial cells, while leukemia-inhibitory factor (LIF), hepatocyte growth factor (HGF), stem-cell factor (SCF), insulin-like growth factor-I (IGF- I) were weakly supportive, and basic fibroblast growth factor (bFGF) was without effect. TGF alpha, EGF, PDGF-BB, and bFGF supported stromal cell clonogenicity, while HGF, SCF, LIF, and IGF- I were without effect. Small epithelial colonies expressed three epithelial markers but not stromal markers; however, large epithelial colonies showed little reactivity for all markers except alpha(6)-integrin. All stromal colonies contained fibroblasts, expressing stromal markers, and in some colonies, myofibroblasts were also identified. This analysis of human endometrium has demonstrated the presence of rare clonogenic epithelial and stromal cells with high proliferative potential, providing the first evidence for the existence of putative endometrial epithelial and stromal stem cells.  相似文献   

17.
We have investigated the role of autocrine/paracrine TGF-β secretion in the regulation of cell growth by androgens as demonstrated by its inhibition by two androgen response modifiers; the nonsteroidal antiandrogen hydroxyflutamide (OHF), believed to act by inhibiting androgen binding to androgen receptors, or finasteride, an inhibitor of 5α-reductase, the enzyme necessary for the conversion of testosterone to 5α-dihydrotestosterone (DHT), using the nontumorigenic rat prostatic epithelial cell line NRP-152. Growth of these cells was stimulated three- to sixfold over control by either testosterone or DHT under serum-free culture conditions. This was accompanied by a two- to threefold decrease in the secretion rate of TGF-β1, -β2, and -β3. Finasteride reversed the ability of testosterone but not DHT to stimulate growth and downregulate expression of TGF-β1, -β2, and -β3 in a dose-dependent fashion, suggesting that this activity of testosterone required its conversion to DHT. OHF antagonized the stimulatory effects of DHT on NRP-152 cell growth but could reverse the inhibitory effects of DHT only on TGF-β2 and TGF-β3 and not TGF-β1 secretion. This suggests that either TGF-β1 regulation by DHT or the androgen antagonism of OHF occurs independent of androgen receptor binding. Neutralizing antibodies to TGF-β (pantropic and isoform-specific) were able to block the ability of finasteride to antagonize the effects of testosterone nearly completely while only partially inhibiting the antiandrogenic effects of OHF. Thus, the ability of androgens to stimulate growth of NRP-152 cells involves the downregulation of the production of TGF-β1, -β2, and -β3 in addition to other growth-stimulatory mechanisms. J. Cell. Physiol. 175:184–192, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    Effects of estradiol on prostate epithelial cells in the castrated rat.   总被引:3,自引:0,他引:3  
    There is evidence that estrogens can modulate the activity of prostate epithelial cells. To determine whether estradiol can have a direct influence on rat prostate, this study examined the effects of estradiol-17beta (E(2)) administered alone or in combination with dihydrotestosterone (DHT) to castrated rats for 3 weeks on prostate binding protein (PBP) C1 mRNA expression and androgen receptor (AR) localization. PBP C1 mRNA levels were measured by semi-quantitative in situ hybridization using a (35)S-labeled cDNA probe. In intact animals, strong hybridization signal could be observed in prostate sections after 12 hr of exposure to Kodak X-Omat films. In castrated rats, no PBP C1 mRNA could be detected even with longer exposure times, an effect that was prevented by administration of DHT. E(2) administered alone induced a detectable hybridization signal, and the concomitant administration of E(2) and DHT induced an increase in PBP C1 mRNA that significantly exceeded that obtained in animals that received only DHT. In prostate epithelial cells of intact animals, AR immunostaining was restricted to the nucleus. In castrated animals the alveoli were decreased in size and the epithelial cells were atrophied. AR staining was weak and was detected in both cytoplasm and nucleus. DHT administration completely obviated the effect of castration on epithelial cell histology and on AR immunostaining distribution and intensity. Interestingly, E(2) administration alone induced moderate hypertrophy of epithelial cells compared to the histological appearance of cells in untreated castrated rats. Moreover, in E(2)-treated animals the nuclear staining was much stronger than that detected in untreated castrated rats, whereas the cytoplasmic staining was not modified by the treatment. In animals that received both DHT and E(2), the staining was similar to that seen in DHT-treated rats. These results suggest that E(2) can influence the activity of rat prostate epithelial cells by mechanisms that remain to be fully clarified.  相似文献   

    19.
    Androgens influence prostate growth and development, so androgen withdrawal can control progression of prostate diseases. Although estrogen treatment was originally used to induce androgen withdrawal, more recently direct estrogen effects on the prostate have been recognized, but the nature of androgen-estrogen interactions within the prostate remain poorly understood. To characterize androgen effects on estrogen sensitivity in the mouse prostate, we contrasted models of castration-induced androgen withdrawal in the prostate stromal and epithelial compartments with a prostate epithelial androgen receptor (AR) knockout (PEARKO) mouse model of selective epithelial AR inactivation. Castration markedly increased prostate epithelial estrogen receptor (ER)α immunoreactivity compared with very low ERα expression in intact males. Similarly, strong basal and luminal ERα expression was detected in PEARKO prostate of intact males, suggesting that epithelial AR activity regulated epithelial ERα expression. ERβ was strongly expressed in intact, castrated, and PEARKO prostate. However, strong clusters of epithelial ERβ positivity coincided with epithelial stratification in PEARKO prostate. In vivo estrogen sensitivity was increased in PEARKO males, with greater estradiol-induced prostate growth and epithelial proliferation leading to squamous metaplasia, featuring markedly increased epithelial proliferation, thickening, and keratinization compared with littermate controls. Our results suggest that ERα expression in the prostate epithelial cells is regulated by local, epithelia-specific, androgen-dependent mechanisms, and this imbalance in the AR- and ER-mediated signaling sensitizes the mature prostate to exogenous estrogens.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号