首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sizing up miRNAs as cancer genes   总被引:15,自引:0,他引:15  
  相似文献   

3.
MicroRNAs play an important role in the regulation of expression of many genes involved in cancer pathogenesis. One of the causes of miRNA level deregulation in tumors is the methylation of CpG islands in the promoter regions of the genes that encode them. Hypermethylation may lead to the suppression of miRNA gene expression and, as a consequence, to a decrease in their inhibitory effect on target gene mRNAs. A search for new miRNA genes hypermethylated in breast cancer has been carried out in the present study. The methylation of five miRNA genes associated with breast cancer (miR-132, miR-1258, miR-107, miR-130b, miR-137) has been as studied using a representative set of 41 breast cancer samples by methylation-specific PCR. Three new genes, MIR-132, MIR-137 and MIR-1258, with a high frequency of hypermethylation (41, 37 and 34%, respectively) have been identified in breast cancer. The methylation of these genes in the breast tissues of ten donors without cancer pathology in anamnesis was only found in single cases. These results enable the involvement of three miRNAs (miR-132, miR-137, miR-1258) and the methylation of the genes that encode them in the pathogenesis of breast cancer to be suggested.  相似文献   

4.
The uncovering of genes involved in susceptibility to the sporadic cancer types is a great challenge. It is well established that the way in which an individual deals with DNA damage is related to the chance to develop cancer. Mutagen sensitivity is a phenotype that reflects an individual's susceptibility to the major sporadic cancer types, including colon, lung, and head and neck cancer. A standard test for mutagen sensitivity is measuring the number of chromatid breaks in lymphocytes after exposure to bleomycin. The aim of the present study was to search for the pathways involved in mutagen sensitivity. Lymphoblastoid cell lines of seven individuals with low mutagen sensitivity were compared with seven individuals with a high score. RNA was isolated from cells exposed to bleomycin (4 hours) and from unexposed cells. Microarray analysis (19K) was used to compare gene expression of insensitive and sensitive cells. The profile of most altered genes after bleomycin exposure, analyzed in all 14 cell lines, included relatively many genes involved in biological processes, such as cell growth and/or maintenance, proliferation, and regulation of cell cycle, as well as some genes involved in DNA repair. When comparing the insensitive and sensitive individuals, other differentially expressed genes were found that are involved in signal transduction and cell growth and/or maintenance (e.g., BUB1 and DUSP4). This difference in expression profiles between mutagen-sensitive and mutagen-insensitive individuals justifies further studies aimed at elucidating the genes responsible for the development of sporadic cancers.  相似文献   

5.
Dysregulation in the expression of miRNAs contributes to the occurrence and development of many human cancers. We herein attempted to obtain the potential association between miRNA expression profile and breast cancer by applying high-throughput sequencing technology. Small RNAs from seven paired tumor and adjacent normal tissue samples were sequenced. To determine the miRNA expression profiles in tissues and sera, another five equally pooled serum samples from 20 patients and 30 normal women were sequenced. Despite a similar number in abundantly expressed miRNAs across samples, we detected varying miRNA expression profiles. Some miRNAs showed inconsistent or opposite dysregulation trends across different tumor tissues, including some abundantly expressed miRNA gene clusters and gene families. Wilcoxon sign-rank test for paired samples analysis revealed that abnormal miRNAs showed a higher level of variation across the seven tumor samples. We also completely surveyed abnormal miRNAs expressed in tumor and serum tissues in the mixed datasets based on the relative expression levels. Most of these miRNAs were significantly down-regulated in tumor samples, but nine abnormal miRNAs (miR-18a, 19a, 20a, 30a, 103b, 126, 126*, 192, 1287) were consistently expressed in tumor tissues and serum samples. Based on experimentally validated target mRNAs, functional enrichment analysis indicated that these abnormal miRNAs and miRNA groups (miRNA gene clusters and gene families) have important roles in multiple biological processes. Dynamic miRNA expression profiles, various abnormal miRNA profiles and complexity of the miRNA regulatory network reveal that the miRNA expression profile is a potential biomarker for classifying or detecting human disease.  相似文献   

6.
MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5′ tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences.  相似文献   

7.
8.
9.
10.
Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N?=?217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0) were generated. We focused on dysregulated genes with a fold change (FC) of >?1.50 or <?0.67, that were significant after adjustment for multiple comparisons. miRNA:mRNA seed-region matches were determined. Twenty-three genes were significantly downregulated (FC?<?0.67) and 18 were significantly upregulated (FC?>?1.50). Of these 41 genes, 11 were significantly associated with miRNA differential expression. BIRC5 had the greatest number of miRNA associations (14) and the most miRNAs with a seed-region match (10). Four of these matches, miR-145-5p, miR-150-5p, miR-195-5p, and miR-650, had a negative beta coefficient. CSF2RB was associated with ten total miRNAs (five with a seed-region match, and one miRNA, miR-92a-3p, with a negative beta coefficient). Of the three miRNAs associated with CTSS, miR-20b-5p, and miR-501-3p, had a seed-region match and a negative beta coefficient between miRNA:mRNA pairs. Several miRNAs that were associated with dysregulated gene expression, seed-region matches, and negative beta coefficients also were associated with CRC-specific survival. Our data suggest that miRNAs could influence several apoptosis-related genes. BIRC5, CTSS, and CSF2R all had seed-region matches with miRNAs that would favor apoptosis. Our study identifies several miRNA associated with apoptosis-related genes, that if validated, could be important therapeutic targets.  相似文献   

11.
During recent years, miRNAs have been shown to play important roles in the regulation of gene expression. Accordingly, much effort has been put into the discovery of novel uncharacterized miRNAs in various organisms. miRNAs are structurally defined by a hairpin-loop structure recognized by the two-step processing apparatus, Drosha and Dicer, necessary for the production of mature ∼22-nucleotide miRNA guide strands. With the emergence of high-throughput sequencing applications, tools have been developed to identify miRNAs and profile their expression based on sequencing reads. However, as the read depth increases, false-positive predictions increase using established algorithms, underscoring the need for more stringent approaches. Here we describe a transparent pipeline for confident miRNA identification in animals, termed miRdentify. We show that miRdentify confidently discloses more than 400 novel miRNAs in humans, including the first male-specific miRNA, which we successfully validate. Moreover, novel miRNAs are predicted in the mouse, the fruit fly and nematodes, suggesting that the pipeline applies to all animals. The entire software package is available at www.ncrnalab.dk/mirdentify.  相似文献   

12.
13.
14.
MicroRNAs (miRNAs) play essential roles in a vast array of biological processes, including growth and development, defense against viral infection, and responses to environmental changes in plant. Wheat hybrid necrosis is an interesting genetic phenomenon observed frequency and it is lethal or semi lethal, resulting in gradual death or loss of productivity. However, the molecular basis and mechanisms associated with hybrid necrosis in wheat are still not well understood. Here, we report the population and expression profiles of miRNAs in wheat hybrid necrosis. We identified a total of 57 conserved miRNA families as well as 182 putative novel miRNAs. Expression profiling revealed that expression of 49 known miRNAs and 165 novel miRNAs was changed in hybrid necrosis. And the expression levels of some miRNAs and their predicated targets have been confirmed by qRT-PCR. These results indicate that these miRNAs, especially miR159, miR166, miR167 and miR5072 could be involved in the extensive regulation of gene expression in response to hybrid necrosis.  相似文献   

15.

Background

Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation.

Methodology/Principal Findings

We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network.

Conclusion/Significance

The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate that reprogramming during newt regeneration shares common molecular signatures with reprogramming in stem or germ cells. On the other hand that miRNAs can regulate the levels of other miRNAs is a novel level of regulation, which might provide new insights on their function.  相似文献   

16.
Plant Cell, Tissue and Organ Culture (PCTOC) - In vitro regeneration of cotton seems to be highly genotype dependent and typically ensues through the extraordinarily complex mechanism of somatic...  相似文献   

17.
DNA-Double strand breaks (DSBs) generated by radiation therapy represent the most efficient lesions to kill tumor cells, however, the inherent DSB repair efficiency of tumor cells can cause cellular radioresistance and impact on therapeutic outcome. Genes of DSB repair represent a target for cancer therapy since their down-regulation can impair the repair process making the cells more sensitive to radiation. In this study, we analyzed the combination of ionizing radiation (IR) along with microRNA-mediated targeting of genes involved in DSB repair to sensitize human non-small cell lung cancer (NSCLC) cells. MicroRNAs are natural occurring modulators of gene expression and therefore represent an attractive strategy to affect the expression of DSB repair genes. As possible IR-sensitizing targets genes we selected genes of homologous recombination (HR) and non-homologous end joining (NHEJ) pathway (i.e. RAD51, BRCA2, PRKDC, XRCC5, LIG1). We examined these genes to determine whether they may be real targets of selected miRNAs by functional and biological validation. The in vivo effectiveness of miRNA treatments has been examined in cells over-expressing miRNAs and treated with IR. Taken together, our results show that hsa-miR-96-5p and hsa-miR-874-3p can directly regulate the expression of target genes. When these miRNAs are combined with IR can decrease the survival of NSCLC cells to a higher extent than that exerted by radiation alone, and similarly to radiation combined with specific chemical inhibitors of HR and NHEJ repair pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号