首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Genetic studies of Coxiella burnetii strains suggested the possibility of differentiating new isolates according to their plasmid DNA content. Virulence and/or clinical manifestations ('chronic' and 'acute' Q fever) had been claimed to correlate with this plasmid typing. A new plasmid, named QpDV, was found to be common to C. burnetii isolates obtained from acute and chronic Q fever. According to the results obtained, plasmid usage for detection and differentiation of respective pathovars of C. burnetii and the correlation between gene specificity and pathovar has to be revised. Closer studies suggested a common origin of C. burnetii plasmids, but also showed some differences characteristic for each plasmid, probably reflecting divergent evolution.  相似文献   

2.
Q fever is an infectious disease caused by Coxiella burnetii, which may become chronic when cytokine network and cell-mediated immune responses are altered. Chemokines, such as Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES, CCL5) and Monocyte Chemoattractant Protein-1 (MCP-1, CCL2), are specialized in the trafficing of peripheral blood mononuclear cells (PBMC), and are associated with T cell polarization that is essential for intracellular survival of C. burnetii. The present study investigated whether or not the infection status (no infection and acute or chronic infection with C. burnetii) of donors, affected the production of the two chemokines by PBMC with or without stimulation with virulent and avirulent C. burnetii. Our findings indicate that in vitro exposure to virulent or avirulent C. burnetii stimulated the production of RANTES and MCP-1 in PBMC obtained from healthy adults. The co-cultivation of endothelial cells and human PBMC resulted in an increased production of MCP-1 and the up-regulation of RANTES, which were contact-dependent. Unstimulated PBMC from patients with acute or chronic Q fever overproduced MCP-1. Interestingly, the addition of C. burnetii resulted in an increased production of RANTES and MCP-1 by PBMC obtained from patients with chronic Q fever, and the co-cultivation of PBMC with endothelial cells amplified increased production of chemokines. Circulating levels of RANTES and MCP-1 were also increased in chronic Q fever. We suggest that the overproduction of RANTES and MCP-1 secondary to the contact of PBMC with endothelium may perpetuate exaggerated inflammatory responses leading to inappropriate PBMC trafficking and to the pathogenesis of Q fever.  相似文献   

3.
Abstract Four mouse monoclonal antibodies reacting with Coxiella burnetii lipopolysaccharide antigens were produced and used in serotyping 17 C. burnetii isolates from acute Q fever and Q fever endocarditis patients in France. Two monoclonal antibodies (1B2 and 3B6) were considered specific for the Priscilla strain, a representative of Q fever endocarditis isolates, and did not react with the Nine Mile strain, which is representative of acute Q fever isolates. Monoclonal antibodies Nos. 1B2 and 3B6 reacted with 75% (3/4) acute Q fever isolates and 85% (11/13) of endocarditis isolates from France. It is reasonable to conclude that Priscilla-like strains cause both acute Q fever and Q fever endocarditis. The hypothesis that Priscilla-like strains only are associated with Q fever endocarditis should be reconsidered.  相似文献   

4.
The isocitrate dehydrogenase (icd) gene of Coxiella burnetii was cloned and sequenced to differentiate between isolates with various geographic origins and phenotypic properties. Based on the gene sequences all 19 isolates studied could be divided into three groups. Group 1 contained isolates originating from acute cases of Q fever, ticks and cows. Groups 2 and 3 included isolates from chronic Q fever patients and a prototype strain from an aborted goat. Although the icd gene profiles were different among isolates of the latter two groups, there were two base differences common for both groups which could be used as markers to distinguish them from group 1 isolates. Based on one of the markers a simple method using PCR-restriction fragment length polymorphism analysis was developed for rapid differentiation of C. burnetii isolates as well as for direct detection and differentiation of the bacterium in human serum samples. Taken together, the study results suggest that the icd-based differentiation method may be useful in clinical investigation of Coxiella infections.  相似文献   

5.
Coxiella burnetii is the etiological agent of Q fever. Currently, the Netherlands is facing the largest Q fever epidemic ever, with almost 4,000 notified human cases. Although the presence of a hypervirulent strain is hypothesized, epidemiological evidence, such as the animal reservoir(s) and genotype of the C. burnetii strain(s) involved, is still lacking. We developed a single-nucleotide-polymorphism (SNP) genotyping assay directly applicable to clinical samples. Ten discriminatory SNPs were carefully selected and detected by real-time PCR. SNP genotyping appeared to be highly suitable for discrimination of C. burnetii strains and easy to perform with clinical samples. With this new method, we show that the Dutch outbreak is caused by at least 5 different C. burnetii genotypes. SNP typing of 14 human samples from the outbreak revealed the presence of 3 dissimilar genotypes. Two genotypes were also present in livestock at 9 farms in the outbreak area. SNP analyses of bulk milk from 5 other farms, commercial cow milk, and cow colostrum revealed 2 additional genotypes that were not detected in humans. SNP genotyping data from clinical samples clearly demonstrate that at least 5 different C. burnetii genotypes are involved in the Dutch outbreak.  相似文献   

6.
Coxiella burnetii is the causative agent of Q fever. The bacterium is highly infectious and is classified as a category B biological weapon. The tools of molecular biology are of utmost importance in a rapid and unambiguous identification of C. burnetii in naturally occurring Q fever outbreaks, or in cases of a deliberate release of the infectious agent. In this work, development of a multiple locus variable number tandem repeats (VNTR) analysis (MLVA) for the characterization of C. burnetii is described. Sixteen C. burnetii isolates and five passage history/laboratory variants were characterized. The VNTR markers revealed many polymorphisms resulting in nine unique MLVA types that cluster into five different clusters. This proves that the MLVA system is highly discriminatory. The selected VNTR markers were stable. The MLVA method developed in this report is a promising tool for the characterization of C. burnetii isolates and their epidemiological study.  相似文献   

7.
The genetic variation of Japanese isolates of Coxiella burnetii, the agent of Q fever, was found for the first time. Forty-nine out of 72 isolates had the chronic pattern of the isocitrate hydrogenase gene. Sequence analysis revealed that the isolates have a specific nucleotide sequence. The putative amino acid sequence was the same as that of chronic reference strains. These results suggest the variation of C. burnetii isolates in Japan.  相似文献   

8.
Q fever is a disease caused by Coxiella burnetii, an obligate intracellular bacterium. Acute Q fever is characterized by efficient immune response, whereas chronic Q fever is characterized by dysregulated immune response as demonstrated by the lack of granulomas, the failure of C. burnetii to induce lymphoproliferation, and interferon-γ production. The mitogen-activated protein kinase (MAPK) signaling pathway plays crucial roles in innate immune responses and control of bacterial infections. However, its role in Q fever has not been addressed. First, we investigated the activation of MAPKs p38, c-jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 in murine macrophages stimulated with C. burnetii. Coxiella burnetii NM phase I (virulent) and NM phase II (avirulent) induced the activation of JNK and ERK1/2. Avirulent C. burnetii activate p38, whereas C. burnetii did not induce the phosphorylation of p38. Second, the level of p38 activation was studied in Q fever patients. We found that p38 was activated in monocyte-derived macrophages from healthy donors and patients with acute Q fever in response to a potent agonist such as lipopolysaccharide. Interestingly, p38 was not activated in patients with active chronic Q fever and was activated in patients with cured chronic Q fever. These results suggest that the determination of p38 activation may serve as a tool for measuring Q fever activity.  相似文献   

9.
Q fever is a disease caused by Coxiella burnetii, an obligate intracellular bacterium. Acute Q fever is spontaneously resolutive and is characterized by an efficient immune response. In contrast, chronic Q fever is characterized by dysregulated immune response, as demonstrated by the failure of C. burnetii to induce lymphoproliferation and the lack of granulomas. Recently, it has been demonstrated that when co-expressed in heterologous mammalian cell lines, the ligands of Numb proteins X1 and X2 (LNX1 and LNX2) regulate the level of the T-cell co-receptor CD8, which plays an essential role in T-cell-mediated immune response. We decided to investigate the expression of LNX1 and LNX2 genes in patients with acute or chronic Q fever. Interestingly, we found a high level of LNX1 and LNX2 mRNAs in endocarditis, the principal manifestation of chronic Q fever, but not in acute Q fever. Our data suggest that LNXs may be used as complementary biomarkers to follow the prognosis of chronic Q fever.  相似文献   

10.
The acute disease antigen A (adaA) gene is believed to be associated with Coxiella burnetii strains causing acute Q fever. The detailed analysis of the adaA genomic region of 23 human- and 86 animal-derived C. burnetii isolates presented in this study reveals a much more polymorphic appearance and distribution of the adaA gene, resulting in a classification of C. burnetii strains of better differentiation than previously anticipated. Three different genomic variants of the adaA gene were identified which could be detected in isolates from acute and chronic patients, rendering the association of adaA positive strains with acute Q fever disease disputable. In addition, all adaA positive strains in humans and animals showed the occurrence of the QpH1 plasmid. All adaA positive isolates of acute human patients except one showed a distinct SNP variation at position 431, also predominant in sheep strains, which correlates well with the observation that sheep are a major source of human infection. Furthermore, the phylogenetic analysis of the adaA gene revealed three deletion events and supported the hypothesis that strain Dugway 5J108-111 might be the ancestor of all known C. burnetii strains. Based on our findings, we could confirm the QpDV group and we were able to define a new genotypic cluster. The adaA gene polymorphisms shown here improve molecular typing of Q fever, and give new insights into microevolutionary adaption processes in C. burnetii.  相似文献   

11.
Coxiella burnetii is the agent of the worldwide zoonosis, Q fever. The in vitro susceptibility to tetracycline and fluoroquinolones of Japanese isolates of C. burnetii was evaluated for the first time. The MICs against Japanese isolates were almost the same as the MICs against the foreign reference isolates. The results suggest that the common antibiotics therapy for Q fever used in other countries is also effective for Japanese Q fever patients.  相似文献   

12.
During large Q fever outbreaks in the Netherlands between 2007 and 2010, dairy goat farms were implicated as the primary source of human Q fever. The transmission of Coxiella burnetii to humans is thought to occur primarily via aerosols, although available data on C. burnetii in aerosols and other environmental matrices are limited. During the outbreak of 2009, 19 dairy goat farms and one dairy sheep farm were selected nationwide to investigate the presence of C. burnetii DNA in vaginal swabs, manure, surface area swabs, milk unit filters, and aerosols. Four of these farms had a positive status during the Coxiella burnetii bulk milk monitoring program in 2009 and additionally reported abortion waves in 2008 or 2009. Eleven farms were reported as having positive bulk milk only, and five selected (control) farms had a bulk milk-negative status in 2009 and no reported Q fever history. Screening by quantitative PCR (qPCR) revealed that on farms with a history of abortions related to C. burnetii and, to a lesser extent, on farms positive by bulk milk monitoring, generally higher proportions of positive samples and higher levels of C. burnetii DNA within positive samples were observed than on the control farms. The relatively high levels of C. burnetii DNA in surface area swabs and aerosols sampled in stables of bulk milk-positive farms, including farms with a Q fever-related abortion history, support the hypothesis that these farms can pose a risk for the transmission of C. burnetii to humans.  相似文献   

13.
Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response.  相似文献   

14.
Coxiella burnetii, a gram-negative obligate intracellular bacterium, causes human Q fever and is considered a potential agent of bioterrorism. Distinct genomic groups of C. burnetii are revealed by restriction fragment-length polymorphisms (RFLP). Here we comprehensively define the genetic diversity of C. burnetii by hybridizing the genomes of 20 RFLP-grouped and four ungrouped isolates from disparate sources to a high-density custom Affymetrix GeneChip containing all open reading frames (ORFs) of the Nine Mile phase I (NMI) reference isolate. We confirmed the relatedness of RFLP-grouped isolates and showed that two ungrouped isolates represent distinct genomic groups. Isolates contained up to 20 genomic polymorphisms consisting of 1 to 18 ORFs each. These were mostly complete ORF deletions, although partial deletions, point mutations, and insertions were also identified. A total of 139 chromosomal and plasmid ORFs were polymorphic among all C. burnetii isolates, representing ca. 7% of the NMI coding capacity. Approximately 67% of all deleted ORFs were hypothetical, while 9% were annotated in NMI as nonfunctional (e.g., frameshifted). The remaining deleted ORFs were associated with diverse cellular functions. The only deletions associated with isogenic NMI variants of attenuated virulence were previously described large deletions containing genes involved in lipopolysaccharide (LPS) biosynthesis, suggesting that these polymorphisms alone are responsible for the lower virulence of these variants. Interestingly, a variant of the Australia QD isolate producing truncated LPS had no detectable deletions, indicating LPS truncation can occur via small genetic changes. Our results provide new insight into the genetic diversity and virulence potential of Coxiella species.  相似文献   

15.
16.
Coxiella burnetii is an acidophilic, intracellular bacterium that causes the human disease Q fever. In some studies, it is important to distinguish between viable and nonviable C.?burnetii. We compared four methods for detecting and measuring viable C.?burnetii in biological samples as follows: growth in two different cell culture lines, infection of severe combined immunodeficient (SCID) mice (leading to death) and infection of SCID mice with detection of C.?burnetii in their spleen (after euthanasia at day 50 postinfection). Two isolates of C.?burnetii were used ('Henzerling' and 'Arandale'). Our in-house qPCR assay for C.?burnetii DNA was used as a control. SCID mouse inoculation was more sensitive than cell culture. The assay that detected C.?burnetii in SCID mouse spleens was slightly more sensitive than SCID mice deaths alone. Approximately one viable C.?burnetii cell could be detected by this method, making it suitable for determining the viability of C.?burnetii in a sample.  相似文献   

17.
Antisera from rabbits immunized with formalin inactivated Coxiella burnetii isolates associated with either acute (Nine Mile, phase I or phase II) or chronic (Priscilla) Q fever showed reactivity to a C. burnetii macrophage infectivity potentiator protein (Cb-Mip) cloned in Escherichia coli. Further, antisera generated in BALB/c mice after infection with live Nine Mile phase I or Priscilla isolates also showed reactivity to Cb-Mip by immunoblot analysis. In addition, human serum from an individual with previous serological and clinical evidence of Q fever showed reactivity to Cb-Mip. This study indicates that Cb-Mip is immunogenic in both experimental and natural infections, and is the first report on the presence of antibodies to Mip/Mip-like proteins of intracellular bacteria in human sera. Cb-Mip may serve as a potential target antigen for developing recombinant vaccines or diagnostic assays for Q fever.  相似文献   

18.
Q fever, caused by Coxiella burnetii, is a zoonosis with a worldwide distribution. A large rural area in the southeast of the Netherlands was heavily affected by Q fever between 2007 and 2009. This initiated the development of a robust and internally controlled multiplex quantitative PCR (qPCR) assay for the detection of C. burnetii DNA in veterinary and environmental matrices on suspected Q fever-affected farms. The qPCR detects three C. burnetii targets (icd, com1, and IS1111) and one Bacillus thuringiensis internal control target (cry1b). Bacillus thuringiensis spores were added to samples to control both DNA extraction and PCR amplification. The performance of the qPCR assay was investigated and showed a high efficiency; a limit of detection of 13.0, 10.6, and 10.4 copies per reaction for the targets icd, com1, and IS1111, respectively; and no cross-reactivity with the nontarget organisms tested. Screening for C. burnetii DNA on 29 suspected Q fever-affected farms during the Q fever epidemic in 2008 showed that swabs from dust-accumulating surfaces contained higher levels of C. burnetii DNA than vaginal swabs from goats or sheep. PCR inhibition by coextracted substances was observed in some environmental samples, and 10- or 100-fold dilutions of samples were sufficient to obtain interpretable signals for both the C. burnetii targets and the internal control. The inclusion of an internal control target and three C. burnetii targets in one multiplex qPCR assay showed that complex veterinary and environmental matrices can be screened reliably for the presence of C. burnetii DNA during an outbreak.  相似文献   

19.
Coxiella burnetii is the agent of Q fever , an emergent worldwide zoonosis of wide clinical spectrum. Although C. burnetii infection is typically associated with acute infection, atypical pneumonia and flu-like symptoms, endocarditis, osteoarticular manifestations and severe disease are possible, especially when the patient has a suppressed immune system; however, these severe complications are typically neglected. This study reports the sequencing of the repetitive element IS1111 of the transposase gene of C. burnetii from blood and bronchoalveolar lavage (BAL) samples from a patient with severe pneumonia following methotrexate therapy, resulting in the molecular diagnosis of Q fever in a patient who had been diagnosed with active seronegative polyarthritis two years earlier. To the best of our knowledge, this represents the first documented case of the isolation of C. burnetii DNA from a BAL sample.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号