首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.

Background

Aberrant growth of blood vessels in the eye forms the basis of many incapacitating diseases and currently the majority of patients respond to anti-angiogenic therapies based on blocking the principal angiogenic growth factor, vascular endothelial growth factor (VEGF). While highly successful, new therapeutic targets are critical for the increasing number of individuals susceptible to retina-related pathologies in our increasingly aging population. Prostate specific membrane antigen (PSMA) is a cell surface peptidase that is absent on normal tissue vasculature but is highly expressed on the neovasculature of most solid tumors, where we have previously shown to regulate angiogenic endothelial cell invasion. Because pathologic angiogenic responses are often triggered by distinct signals, we sought to determine if PSMA also contributes to the pathologic angiogenesis provoked by hypoxia of the retina, which underlies many debilitating retinopathies.

Methodology/Principal Findings

Using a mouse model of oxygen-induced retinopathy, we found that while developmental angiogenesis is normal in PSMA null mice, hypoxic challenge resulted in decreased retinal vascular pathology when compared to wild type mice as assessed by avascular area and numbers of vascular tufts/glomeruli. The vessels formed in the PSMA null mice were more organized and highly perfused, suggesting a more ‘normal’ phenotype. Importantly, the decrease in angiogenesis was not due to an impaired hypoxic response as levels of pro-angiogenic factors are comparable; indicating that PSMA regulation of angiogenesis is independent of VEGF. Furthermore, both systemic and intravitreal administration of a PSMA inhibitor in wild type mice undergoing OIR mimicked the PSMA null phenotype resulting in improved retinal vasculature.

Conclusions/Significance

Our data indicate that PSMA plays a VEGF-independent role in retinal angiogenesis and that the lack of or inhibition of PSMA may represent a novel therapeutic strategy for treatment of angiogenesis-based ocular diseases.  相似文献   

2.
Huang H  Shen J  Vinores SA 《PloS one》2011,6(6):e21411

Objective

VEGFR1 and 2 signaling have both been increasingly shown to mediate complications of ischemic retinopathies, including retinopathy of prematurity (ROP), age-related macular degeneration (AMD), and diabetic retinopathy (DR). This study evaluates the effects of blocking VEGFR1 and 2 on pathological angiogenesis and vascular leakage in ischemic retinopathy in a model of ROP and in choroidal neovascularization (CNV) in a model of AMD.

Materials and Methods

Neutralizing antibodies specific for mouse VEGFR1 (MF1) and VEGFR2 (DC101) were administrated systemically. CNV was induced by laser photocoagulation and assessed 14d after laser treatment. Retinal NV was generated in oxygen-induced ischemic retinopathy (OIR) and assessed at p17. NV quantification was determined by measuring NV tufts and vascular leakage was quantified by measuring [3H]-mannitol leakage from blood vessels into the retina. Gene expression was measured by real-time quantitative (Q)PCR.

Results

VEGFR1 and VEGFR2 expressions were up-regulated during CNV pathogenesis. Both MF1 and DC101 significantly suppressed CNV at 50 mg/kg: DC101 suppressed CNV by 73±5% (p<0.0001) and MF1 by 64±6% (p = 0.0002) in a dosage-dependent manner. The combination of MF1 and DC101 enhanced the inhibitory efficacy and resulted in an accumulation of retinal microglia at the CNV lesion. Similarly, both MF1 and DC101 significantly suppressed retinal NV in OIR at 50 mg/kg: DC101 suppressed retinal NV by 54±8% (p = 0.013) and MF1 by 50±7% (p<0.0002). MF1 was even more effective at inhibiting ischemia-induced BRB breakdown than DC101: the retina/lung leakage ratio for MF1 was reduced by 73±24%, p = 0.001 and for DC101 by 12±4%, p = 0.003. The retina/renal leakage ratio for MF1 was reduced by 52±28%, p = 0.009 and for DC101 by 13±4%, p = 0.001.

Conclusion

Our study provides further evidence that both VEGFR1 and 2 mediate pathological angiogenesis and vascular leakage in these models of ocular disease and suggests that antagonist antibodies to these receptor tyrosine kinases (RTKs) are potential therapeutic agents.  相似文献   

3.

Background

Hyperoxia exposure of premature infants causes obliteration of the immature retinal microvessels, leading to a condition of proliferative vitreoretinal neovascularization termed retinopathy of prematurity (ROP). Previous work has demonstrated that the hyperoxia-induced vascular injury is mediated by dysfunction of endothelial nitric oxide synthase resulting in peroxynitrite formation. This study was undertaken to determine the involvement of the ureahydrolase enzyme arginase in this pathology.

Methods and Findings

Studies were performed using hyperoxia-treated bovine retinal endothelial cells (BRE) and mice with oxygen-induced retinopathy (OIR) as experimental models of ROP. Treatment with the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) prevented hyperoxia-induced apoptosis of BRE cells and reduced vaso-obliteration in the OIR model. Furthermore, deletion of the arginase 2 gene protected against hyperoxia-induced vaso-obliteration, enhanced physiological vascular repair, and reduced retinal neovascularization in the OIR model. Additional deletion of one copy of arginase 1 did not improve the vascular pathology. Analyses of peroxynitrite by quantitation of its biomarker nitrotyrosine, superoxide by dihydroethidium imaging and NO formation by diaminofluoroscein imaging showed that the protective actions of arginase 2 deletion were associated with blockade of superoxide and peroxynitrite formation and normalization of NOS activity.

Conclusions

Our data demonstrate the involvement of arginase activity and arginase 2 expression in hyperoxia-induced vascular injury. Arginase 2 deletion prevents hyperoxia-induced retinal vascular injury by preventing NOS uncoupling resulting in decreased reactive oxygen species formation and increased nitric oxide bioavailability.  相似文献   

4.
5.

Introduction

To investigate the validity of using 670nm red light as a preventative treatment for Retinopathy of Prematurity in two animal models of oxygen-induced retinopathy (OIR).

Materials and Methods

During and post exposure to hyperoxia, C57BL/6J mice or Sprague-Dawley rats were exposed to 670nm light for 3 minutes a day (9J/cm2). Whole mounted retinas were investigated for evidence of vascular abnormalities, while sections of neural retina were used to quantify levels of cell death using the TUNEL technique. Organs were removed, weighed and independent histopathology examination performed.

Results

670nm light reduced neovascularisation, vaso-obliteration and abnormal peripheral branching patterns of retinal vessels in OIR. The neural retina was also protected against OIR by 670nm light exposure. OIR-exposed animals had severe lung pathology, including haemorrhage and oedema, that was significantly reduced in 670nm+OIR light-exposed animals. There were no significance differences in the organ weights of animals in the 670nm light-exposed animals, and no adverse effects of exposure to 670nm light were detected.

Discussion

Low levels of exposure to 670nm light protects against OIR and lung damage associated with exposure to high levels of oxygen, and may prove to be a non-invasive and inexpensive preventative treatment for ROP and chronic lung disease associated with prematurity.  相似文献   

6.

Purpose

Pathological fundus angiogenesis is a major cause of vision loss in retina diseases. Endostatin, a C-terminal fragment of collagen XVIII, is an endogenous anti-angiogenic protein. The present study aimed to investigate the in vitro and in vivo anti-angiogenic properties of two proteins: an N-terminal H1D/H3D mutant endostatin (M-ES) and a polyethylene glycol propionaldehyde (PEG) covalent M-ES (PEG-M-ES).

Methods

M-ES and PEG-M-ES properties were characterized in vitro using a zinc ion binding assay and a stability test. Activity assays, including migration, proliferation, and tube formation assays, were performed with human retinal microvascular endothelial cells (HRMECs) and human umbilical vein endothelial cells (HUVECs). Mouse oxygen-induced retinopathy (OIR) and choroidal neovascularization (CNV) models were used to evaluate in vivo anti-angiogenic effects. In addition, a rabbit model was used to study the retinal pharmacokinetic profile following an intravitreal injection.

Results

The results indicated that the H1D/H3D mutations of endostatin reduced the zinc binding capacity of M-ES and facilitated PEG covalent binding. PEG-M-ES was more stable and persisted longer in the retina compared with M-ES. The in vitro studies demonstrated that M-ES and PEG-M-ES inhibited HRMEC and HUVEC proliferation, migration, and tube formation more efficiently than ES. In vivo, a single intravitreal injection of M-ES and PEG-M-ES significantly decreased neovascularization in both the OIR and CNV animal models.

Conclusion

The present study demonstrated for the first time that PEG-M-ES exhibits a long-term inhibitory effect on neovascularization in vitro and in vivo. These data suggest that PEG-M-ES may represent an innovative therapeutic strategy to prevent fundus neovascularization.  相似文献   

7.

Background

Erythropoiesis stimulating agents (ESAs) are widely used to treat anaemia but concerns exist about their potential to promote pathological angiogenesis in some clinical scenarios. In the current study we have assessed the angiogenic potential of three ESAs; epoetin delta, darbepoetin alfa and epoetin beta using in vitro and in vivo models.

Methodology/Principal Findings

The epoetins induced angiogenesis in human microvascular endothelial cells at high doses, although darbepoetin alfa was pro-angiogenic at low-doses (1–20 IU/ml). ESA-induced angiogenesis was VEGF-mediated. In a mouse model of ischaemia-induced retinopathy, all ESAs induced generation of reticulocytes but only epoetin beta exacerbated pathological (pre-retinal) neovascularisation in comparison to controls (p<0.05). Only epoetin delta induced a significant revascularisation response which enhanced normality of the vasculature (p<0.05). This was associated with mobilisation of haematopoietic stem cells and their localisation to the retinal vasculature. Darbepoetin alfa also increased the number of active microglia in the ischaemic retina relative to other ESAs (p<0.05). Darbepoetin alfa induced retinal TNFα and VEGF mRNA expression which were up to 4 fold higher than with epoetin delta (p<0.001).

Conclusions

This study has implications for treatment of patients as there are clear differences in the angiogenic potential of the different ESAs.  相似文献   

8.

Purpose

To evaluate the effect of metformin on vascular changes in oxygen-induced retinopathy (OIR) in mouse, and to elucidate the possible underlying mechanism.

Methods

OIR mice were treated with metformin by intraperitoneal injection from postnatal day 12 (P12) to P17 or P21. At P17 and P21, vessel formation and avascular areas were assessed using retinal flat mounts. Levels of vascular endothelial growth factor (VEGF) were measured by enzyme-linked immunosorbent assays, and the effects of metformin on VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) were assessed. The effects of metformin on the levels of Flk1 (VEGF receptor-2) and phosphorylated Flk1 (pFlk1) were measured by Western blotting (HUVECs) and immunohistochemistry (retinal tissue).

Results

Retinal morphologic changes were analyzed between two groups (saline-treated OIR; metformin-treated OIR). Metformin treatment did not change the extent of avascular areas at P17. However, at P21, when OIR pathology was markedly improved in the saline-treated group, OIR pathology still remained in the metformin-treated OIR group. VEGF expression levels did not differ between metformin- and saline-treated OIR groups at P17 and P21, but Flk1 levels were significantly reduced in the metformin group compared with saline-treated OIR group. Moreover, metformin inhibited VEGF-induced cell proliferation and decreased levels of Flk1 and pFlk1, consistent with the interpretation that metformin inhibits vascular growth by reducing Flk1 levels.

Conclusion

Metformin exerts anti-angiogenesis effects and delays the normal vessel formation in the recovery phase of OIR in mice, likely by suppressing the levels of Flk1.  相似文献   

9.

Purpose

Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina.

Materials and methods

The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice.

Results

Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact.

Conclusions

Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone marrow cells are involved in the pathology or severity of retinal angiogenic diseases.  相似文献   

10.

Background

Drugs inhibiting vascular endothelial growth factor (VEGF) signaling are globally administered to suppress deregulated angiogenesis in a variety of eye diseases. However, anti-VEGF therapy potentially affects the normal functions of retinal neurons and glias which constitutively express VEGF receptor 2. Thus, it is desirable to identify novel drug targets which are exclusively expressed in endothelial cells (ECs). Here we attempted to identify an EC-specific Rho guanine nucleotide exchange factor (GEF) and evaluate its role in retinal angiogenesis.

Methodology/Principal Findings

By exploiting fluorescence-activated cell sorting and microarray analyses in conjunction with in silico bioinformatics analyses, we comprehensively identified endothelial genes in angiogenic retinal vessels of postnatal mice. Of 9 RhoGEFs which were highly expressed in retinal ECs, we show that Arhgef15 acted as an EC-specific GEF to mediate VEGF-induced Cdc42 activation and potentiated RhoJ inactivation, thereby promoting actin polymerization and cell motility. Disruption of the Arhgef15 gene led to delayed extension of vascular networks and subsequent reduction of total vessel areas in postnatal mouse retinas.

Conclusions/Significance

Our study provides information useful to the development of new means of selectively manipulating angiogenesis without affecting homeostasis in un-targeted tissues; not only in eyes but also in various disease settings such as cancer.  相似文献   

11.

Background

Retinopathy of prematurity (ROP) is a major cause of vision impairment in low birth weight infants. While previous work has focused on defining the mechanisms of vascular injury leading to retinal neovascularization, recent studies show that neurons are also affected. This study was undertaken to determine the role of the mitochondrial arginine/ornithine regulating enzyme arginase 2 (A2) in retinal neuro-glial cell injury in the mouse model of ROP.

Methods and Findings

Studies were performed using wild type (WT) and A2 knockout (A2−/−) mice exposed to Oxygen Induced Retinopathy (OIR). Neuronal injury and apoptosis were assessed using immunohistochemistry, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end) labeling and Western blotting. Electroretinography (ERG) was used to assess retinal function. Neuro-glial injury in WT ROP mice was evident by TUNEL labeling, retinal thinning, decreases in number of rod bipolar cells and glial cell activation as compared with room air controls. Significant reduction in numbers of TUNEL positive cells, inhibition of retinal thinning, preservation of the rod bipolar cells and prevention of glial activation were observed in the A2−/− retinas. Retinal function was markedly impaired in the WT OIR mice as shown by decreases in amplitude of the b-wave of the ERG. This defect was significantly reduced in A2−/− mice. Levels of the pro-apoptotic proteins p53, cleaved caspase 9, cytochrome C and the mitochondrial protein Bim were markedly increased in WT OIR retinas compared to controls, whereas the pro-survival mitrochondrial protein BCL-xl was reduced. These alterations were largely blocked in the A2−/− OIR retina.

Conclusions

Our data implicate A2 in neurodegeneration during ROP. Deletion of A2 significantly improves neuronal survival and function, possibly through the regulation of mitochondrial membrane permeability mediated apoptosis during retinal ischemia. These molecular events are associated with decreased activation of glial cells, suggesting a rescue effect on macroglia as well.  相似文献   

12.

Background

Vision loss due to vascular disease of the retina is a leading cause of blindness in the world. Retinal angiomatous proliferation (RAP) is a subgroup of neovascular age-related macular degeneration (AMD), whereby abnormal blood vessels develop in the retina leading to debilitating vision loss and eventual blindness. The novel mouse strain, neoretinal vascularization 2 (NRV2), shows spontaneous fundus changes associated with abnormal neovascularization. The purpose of this study is to characterize the induction of pathologic angiogenesis in this mouse model.

Methods

The NRV2 mice were examined from postnatal day 12 (p12) to 3 months. The phenotypic changes within the retina were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, and immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software.

Results

We found that NRV2 mice develop multifocal retinal depigmentation in the posterior fundus. Depigmented lesions developed vascular leakage observed by fluorescein angiography. The spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p)15 and extended toward retinal pigment epithelium (RPE). By three months of age, histological analysis revealed encapsulation of the neovascular lesion by the RPE in the photoreceptor cell layer and subretinal space.

Conclusions

The NRV2 mouse strain develops early neovascular lesions within the retina, which grow downward towards the RPE beginning at p15. This retinal neovascularization model mimics early stages of human retinal angiomatous proliferation (RAP) and will likely be a useful in elucidating targeted therapeutics for patients with ocular neovascular disease.  相似文献   

13.

Purpose

Pharmacologic inhibition of aldose reductase (AR) previously has been studied with respect to diabetic retinopathy with mixed results. Since drugs can have off-target effects, we studied the effects of AR deletion on the development and molecular abnormalities that contribute to diabetic retinopathy. Since recent data suggests an important role for leukocytes in the development of the retinopathy, we determined also if AR in leukocytes contributes to leukocyte-mediated death of retinal endothelial cells in diabetes.

Methods

Wild-type (WT; C57BL/6J) and AR deficient (AR−/−) mice were made diabetic with streptozotocin. Mice were sacrificed at 2 and 10 months of diabetes to evaluate retinal vascular histopathology, to quantify retinal superoxide production and biochemical and physiological abnormalities in the retina, and to assess the number of retinal endothelial cells killed by blood leukocytes in a co-culture system.

Results

Diabetes in WT mice developed the expected degeneration of retinal capillaries, and increased generation of superoxide by the retina. Leukocytes from diabetic WT mice also killed more retinal endothelial cells than did leukocytes from nondiabetic animals (p<0.0001). Deletion of AR largely (P<0.05) inhibited the diabetes-induced degeneration of retinal capillaries, as well as the increase in superoxide production by retina. AR-deficiency significantly inhibited the diabetes-induced increase in expression of inducible nitric oxide synthase (iNOS) in retina, but had no significant effect on expression of intercellular adhesion molecule-1 (ICAM-1), phosphorylated p38 MAPK, or killing of retinal endothelial cells by leukocytes.

Conclusions

AR contributes to the degeneration of retinal capillaries in diabetic mice. Deletion of the enzyme inhibits the diabetes-induced increase in expression of iNOS and of superoxide production, but does not correct a variety of other pro-inflammatory abnormalities associated with the development of diabetic retinopathy.  相似文献   

14.

Background

Advanced age contributes to clinical manifestations of many retinopathies and represents a major risk factor for age-related macular degeneration, a leading cause of visual impairment and blindness in the elderly. Rod photoreceptors are especially vulnerable to genetic defects and changes in microenvironment, and are among the first neurons to die in normal aging and in many retinal degenerative diseases. The molecular mechanisms underlying rod photoreceptor vulnerability and potential biomarkers of the aging process in this highly specialized cell type are unknown.

Methodology/Principal Findings

To discover aging-associated adaptations that may influence rod function, we have generated gene expression profiles of purified rod photoreceptors from mouse retina at young adult to early stages of aging (1.5, 5, and 12 month old mice). We identified 375 genes that showed differential expression in rods from 5 and 12 month old mouse retina compared to that of 1.5 month old retina. Quantitative RT-PCR experiments validated expression change for a majority of the 25 genes that were examined. Macroanalysis of differentially expressed genes using gene class testing and protein interaction networks revealed overrepresentation of cellular pathways that are potentially photoreceptor-specific (angiogenesis and lipid/retinoid metabolism), in addition to age-related pathways previously described in several tissue types (oxidative phosphorylation, stress and immune response).

Conclusions/Significance

Our study suggests a progressive shift in cellular homeostasis that may underlie aging-associated functional decline in rod photoreceptors and contribute to a more permissive state for pathological processes involved in retinal diseases.  相似文献   

15.

Objective

There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1).

Materials and Methods

pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis.

Results

After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation.

Conclusion

This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease.  相似文献   

16.

Purpose

To present a novel method for quantitative assessment of retinal vessel permeability using a fluorescein angiography-based computer algorithm.

Methods

Twenty-one subjects (13 with diabetic retinopathy, 8 healthy volunteers) underwent fluorescein angiography (FA). Image pre-processing included removal of non-retinal and noisy images and registration to achieve spatial and temporal pixel-based analysis. Permeability was assessed for each pixel by computing intensity kinetics normalized to arterial values. A linear curve was fitted and the slope value was assigned, color-coded and displayed. The initial FA studies and the computed permeability maps were interpreted in a masked and randomized manner by three experienced ophthalmologists for statistical validation of diagnosis accuracy and efficacy.

Results

Permeability maps were successfully generated for all subjects. For healthy volunteers permeability values showed a normal distribution with a comparable range between subjects. Based on the mean cumulative histogram for the healthy population a threshold (99.5%) for pathological permeability was determined. Clear differences were found between patients and healthy subjects in the number and spatial distribution of pixels with pathological vascular leakage. The computed maps improved the discrimination between patients and healthy subjects, achieved sensitivity and specificity of 0.974 and 0.833 respectively, and significantly improved the consensus among raters for the localization of pathological regions.

Conclusion

The new algorithm allows quantification of retinal vessel permeability and provides objective, more sensitive and accurate evaluation than the present subjective clinical diagnosis. Future studies with a larger patients’ cohort and different retinal pathologies are awaited to further validate this new approach and its role in diagnosis and treatment follow-up. Successful evaluation of vasculature permeability may be used for the early diagnosis of brain microvascular pathology and potentially predict associated neurological sequelae. Finally, the algorithm could be implemented for intraoperative evaluation of micovascular integrity in other organs or during animal experiments.  相似文献   

17.

Background

Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction.

Methods

We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida.

Results

There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2.

Conclusions

These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.  相似文献   

18.

Background

Diabetic maculopathy, the leading cause of vision loss in patients with type 2 diabetes, is characterized by hyper-permeability of retinal blood vessels with subsequent formation of macular edema and hard exudates. The degree of hyperglycemia and duration of diabetes have been suggested to be good predictors of retinal complications. Intervention studies have determined that while intensive treatment of diabetes reduced the development of proliferative diabetic retinopathy it was associated with a two to three-fold increased risk of severe hypoglycemia. Thus we hypothesized the need to identify downstream glycemic targets, which induce retinal vascular permeability that could be targeted therapeutically without the additional risks associated with intensive treatment of the hyperglycemia. Betacellulin is a 32 kD member of the epidermal growth factor family with mitogenic properties for the retinal pigment epithelial cells. This led us to hypothesize a role for betacellulin in the retinal vascular complications associated with diabetes.

Methods and Findings

In this study, using a mouse model of diabetes, we demonstrate that diabetic mice have accentuated retinal vascular permeability with a concomitant increased expression of a cleaved soluble form of betacellulin (s-Btc) in the retina. Intravitreal injection of soluble betacellulin induced retinal vascular permeability in normoglycemic and hyperglycemic mice. Western blot analysis of retinas from patients with diabetic retinopathy showed an increase in the active soluble form of betacellulin. In addition, an increase in the levels of A disintegrin and metalloproteinase (ADAM)-10 which plays a role in the cleavage of betacellulin was seen in the retinas of diabetic mice and humans.

Conclusions

These results suggest that excessive amounts of betacellulin in the retina may contribute to the pathogenesis of diabetic macular edema.  相似文献   

19.

Purpose

To identify preoperative markers on spectral domain optical coherence tomography (SD-OCT) for residual inner limiting membrane (ILM) in epiretinal membrane (ERM) peeling.

Methods

In this retrospective case series the preoperative SD-OCTs from 119 eyes of 119 consecutive patients who underwent surgery for idiopathic ERM by a single surgeon were evaluated for markers predisposing for ILM persistence after ERM removal. ILM persistence was determined via intraoperative indocyanine green staining. The main outcome measures were correlation of central foveal thickness (CFT), ERM thickness, extent of elevated ERM and retinal folding, intraretinal cysts, and discontinuation of the ERM, with ILM persistence after ERM peeling.

Results

The persistence of the ILM was found in 50.4% (n = 60). After Bonferroni correction for multiple testing, a greater extent of elevated ERM and thicker ERMs were associated with persistence of the ILM (p<0.005). The other parameters showed no statistically significant correlations with the persistence of the ILM (p≥0.005).

Conclusion

Residual ILM can be found in nearly half of the eyes after ERM peeling. A loose connection between the ERM and the retinal surface predisposes for ILM persistence. Preoperative SD-OCT is helpful in identifying risk markers for the persistence of the ILM in ERM surgery.  相似文献   

20.

Background

To assess the association of albuminuria and retinopathy with metabolic syndrome (MetS) and the related metabolic components defined by various criteria in Chinese community-based subjects.

Methods

A total of 3240 Chinese subjects were recruited from urban communities and classified into subgroups with isolated or concomitant state of the two microvascular diseases. MetS was defined according to the standard of International Diabetes Federation, the National Cholesterol Education Program''s Adult Treatment Panel III and Chinese Diabetes Society (CDS), separately. Albuminuria was defined as an elevated morning urine albumin-to-creatinine ratio. Retinopathy were identified with nonmydriatic retinal photographs according to the Diabetic Retinopathy Disease Severity Scale. Logistic regression was performed to analyze the contributive risk factors.

Results

The subgroup of isolated retinopathy was the oldest (P<0.05), with higher blood pressure (P<0.001) and larger waist circumference (P<0.05). After adjusting for age, sex and other metabolic components, individuals with blood pressure over 130/85 mmHg were prone to have isolated albuminuria (OR: 1.51, P = 0.0001); while individuals with fasting plasma glucose over 5.6 mmol/L were in high risk of retinopathy concomitant with albuminria (OR: 3.04, P = 0.006). Larger waist circumference was a potential risk factors for isolated albuminuria and isolated retinopathy, though not significant after further adjustment of other metabolic components. The risk for albuminuria and retinopathy increased with the aggregation of three or more metabolic components. However, the MetS per se did not have synergic effect and only the MetS defined by CDS remained as a risk factor.

Conclusions

Albuminuria and retinopathy were highly associated with accumulated metabolic abnormalities including sub-clinical elevated blood pressure and elevated fasting plasma glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号