首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation of eukaryotic DNA replication involves origin recruitment and activation of the MCM2-7 complex, the putative replicative helicase. Mini-chromosome maintenance (MCM)2-7 recruitment to origins in G1 requires origin recognition complex (ORC), Cdt1, and Cdc6, and activation at G1/S requires MCM10 and the protein kinases Cdc7 and S-Cdk, which together recruit Cdc45, a putative MCM2-7 cofactor required for origin unwinding. Here, we show that the Xenopus BRCA1 COOH terminus repeat-containing Xmus101 protein is required for loading of Cdc45 onto the origin. Xmus101 chromatin association is dependent on ORC, and independent of S-Cdk and MCM2-7. These results define a new factor that is required for Cdc45 loading. Additionally, these findings indicate that the initiation complex assembly pathway bifurcates early, after ORC association with the origin, and that two parallel pathways, one controlled by MCM2-7, and the other by Xmus101, cooperate to load Cdc45 onto the origin.  相似文献   

2.
Pacek M  Walter JC 《The EMBO journal》2004,23(18):3667-3676
In vertebrates, MCM2-7 and Cdc45 are required for DNA replication initiation, but it is unknown whether they are also required for elongation, as in yeast. Moreover, although MCM2-7 is a prime candidate for the eukaryotic replicative DNA helicase, a demonstration that MCM2-7 unwinds DNA during replication is lacking. Here, we use Xenopus egg extracts to investigate the roles of MCM7 and Cdc45 in DNA replication. A fragment of the retinoblastoma protein, Rb(1-400), was used to neutralize MCM7, and antibodies were used to neutralize Cdc45. When added immediately after origin unwinding, or after significant DNA synthesis, both inhibitors blocked further DNA replication, indicating that MCM7 and Cdc45 are required throughout replication elongation in vertebrates. We next exploited the fact that inhibition of DNA polymerase by aphidicolin causes extensive chromosome unwinding, likely due to uncoupling of the replicative DNA helicase. Strikingly, Rb(1-400) and Cdc45 antibodies both abolished unwinding by the uncoupled helicase. These results provide new support for the model that MCM2-7 is the replicative DNA helicase, and they indicate that Cdc45 functions as a helicase co-factor.  相似文献   

3.
The MCM2-7 complex is believed to function as the eukaryotic replicative DNA helicase. It is recruited to chromatin by the origin recognition complex (ORC), Cdc6, and Cdt1, and it is activated at the G(1)/S transition by Cdc45 and the protein kinases Cdc7 and Cdk2. Paradoxically, the number of chromatin-bound MCM complexes greatly exceeds the number of bound ORC complexes. To understand how the high MCM2-7:ORC ratio comes about, we examined the binding of these proteins to immobilized linear DNA fragments in Xenopus egg extracts. The minimum length of DNA required to recruit ORC and MCM2-7 was approximately 80 bp, and the MCM2-7:ORC ratio on this fragment was approximately 1:1. With longer DNA fragments, the MCM2-7:ORC ratio increased dramatically, indicating that MCM complexes normally become distributed over a large region of DNA surrounding ORC. Only a small subset of the chromatin-bound MCM2-7 complexes recruited Cdc45 at the onset of DNA replication, and unlike Cdc45, MCM2-7 was not limiting for DNA replication. However, all the chromatin-bound MCM complexes may be functional, because they were phosphorylated in a Cdc7-dependent fashion, and because they could be induced to support Cdk2-dependent Cdc45 loading. The data suggest that in Xenopus egg extracts, origins of replication contain multiple, distributed, initiation-competent MCM2-7 complexes.  相似文献   

4.
Ying CY  Gautier J 《The EMBO journal》2005,24(24):4334-4344
Eukaryotes have six minichromosome maintenance (MCM) proteins that are essential for DNA replication. The contribution of ATPase activity of MCM complexes to their function in replication is poorly understood. We have established a cell-free system competent for replication in which all MCM proteins are supplied by purified recombinant Xenopus MCM complexes. Recombinant MCM2-7 complex was able to assemble onto chromatin, load Cdc45 onto chromatin, and restore DNA replication in MCM-depleted extracts. Using mutational analysis in the Walker A motif of MCM6 and MCM7 of MCM2-7, we show that ATP binding and/or hydrolysis by MCM proteins is dispensable for chromatin loading and pre-replicative complex (pre-RC) assembly, but is required for origin unwinding during DNA replication. Moreover, this ATPase-deficient mutant complex did not support DNA replication in MCM-depleted extracts. Altogether, these results both demonstrate the ability of recombinant MCM proteins to perform all replication roles of MCM complexes, and further support the model that MCM2-7 is the replicative helicase. These data establish that mutations affecting the ATPase activity of the MCM complex uncouple its role in pre-RC assembly from DNA replication.  相似文献   

5.
6.
We previously used a soluble cell-free system derived from Xenopus eggs to investigate the role of protein phosphatase 2A (PP2A) in chromosomal DNA replication. We found that immunodepletion of PP2A or inhibition of PP2A by okadaic acid (OA) inhibits initiation of DNA replication by preventing loading of the initiation factor Cdc45 onto prereplication complexes. Evidence was provided that PP2A counteracts an inhibitory protein kinase that phosphorylates and inactivates a crucial Cdc45 loading factor. Here, we report that the inhibitory effect of OA is abolished by caffeine, an inhibitor of the checkpoint kinases ataxia-telangiectasia mutated protein (ATM) and ataxia-telangiectasia related protein (ATR) but not by depletion of ATM or ATR from the extract. Furthermore, we demonstrate that double-strand DNA breaks (DSBs) cause inhibition of Cdc45 loading and initiation of DNA replication and that caffeine, as well as immunodepletion of either ATM or ATR, abolishes this inhibition. Importantly, the DSB-induced inhibition of Cdc45 loading is prevented by addition of the catalytic subunit of PP2A to the extract. These data suggest that DSBs and OA prevent Cdc45 loading through different pathways, both of which involve PP2A, but only the DSB-induced checkpoint implicates ATM and ATR. The inhibitory effect of DSBs on Cdc45 loading does not result from downregulation of cyclin-dependent kinase 2 (Cdk2) or Cdc7 activity and is independent of Chk2. However, it is partially dependent on Chk1, which becomes phosphorylated in response to DSBs. These data suggest that PP2A counteracts ATM and ATR in a DNA damage checkpoint in Xenopus egg extracts.  相似文献   

7.
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2–7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2–7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.  相似文献   

8.
Current models suggest that the replication initiation factor Mcm10 is required for association of Mcm2-7 with origins of replication to generate the prereplicative complex (pre-RC). Here we report that Xenopus Mcm10 (XMcm10) is not required for origin binding of XMcm2-7. Instead, the chromatin binding of XMcm10 at the onset of DNA replication requires chromatin-bound XMcm2-7, and it is independent of Cdk2 and Cdc7. In the absence of XMcm10, XCdc45 binding, XRPA binding, and initiation-dependent plasmid supercoiling are blocked. Therefore, XMcm10 performs its function after pre-RC assembly and before origin unwinding. As one of the earliest known pre-RC activation steps, chromatin binding of XMcm10 is an attractive target for regulation by cell cycle checkpoints.  相似文献   

9.
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences.  相似文献   

10.
The CMG complex composed of Mcm2-7, Cdc45 and GINS is postulated to be the eukaryotic replicative DNA helicase, whose activation requires sequential recruitment of replication proteins onto Mcm2-7. Current models suggest that Mcm10 is involved in assembly of the CMG complex, and in tethering of DNA polymerase α at replication forks. Here, we report that Mcm10 is required for origin DNA unwinding after association of the CMG components with replication origins in fission yeast. A combination of promoter shut-off and the auxin-inducible protein degradation (off-aid) system efficiently depleted cellular Mcm10 to <0.5% of the wild-type level. Depletion of Mcm10 did not affect origin loading of Mcm2-7, Cdc45 or GINS, but impaired recruitment of RPA and DNA polymerases. Mutations in a conserved zinc finger of Mcm10 abolished RPA loading after recruitment of Mcm10. These results show that Mcm10, together with the CMG components, plays a novel essential role in origin DNA unwinding through its zinc-finger function.  相似文献   

11.
Sheu YJ  Stillman B 《Molecular cell》2006,24(1):101-113
Origins of DNA replication are licensed in G1 by recruiting the minichromosome maintenance (MCM) proteins to form a prereplicative complex (pre-RC). Prior to initiation of DNA synthesis from each origin, a preinitiation complex (pre-IC) containing Cdc45 and other proteins is formed. We report that Cdc7-Dbf4 protein kinase (DDK) promotes assembly of a stable Cdc45-MCM complex exclusively on chromatin in S phase. In this complex, Mcm4 is hyperphosphorylated. Studies in vitro using purified DDK and Mcm4 demonstrate that hyperphosphorylation occurs at the Mcm4 N terminus. However, the DDK substrate specificity is conferred by an adjacent DDK-docking domain (DDD), sufficient for facilitating efficient phosphorylation of artificial phosphoacceptors in cis. Genetic evidence suggests that phosphorylation of Mcm4 by DDK is important for timely S phase progression and for cell viability upon overproduction of Cdc45. We suggest that DDK docks on and phosphorylates MCM proteins at licensed origins to promote proper assembly of pre-IC.  相似文献   

12.
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.  相似文献   

13.
Kanemaki M  Labib K 《The EMBO journal》2006,25(8):1753-1763
The Cdc45 protein is crucial for the initiation of chromosome replication in eukaryotic cells, as it allows the activation of prereplication complexes (pre-RCs) that contain the MCM helicase. This causes the unwinding of origins and the establishment of DNA replication forks. The incorporation of Cdc45 at nascent forks is a highly regulated and poorly understood process that requires, in budding yeast, the Sld3 protein and the GINS complex. Previous studies suggested that Sld3 is also important for the progression of DNA replication forks after the initiation step, as are Cdc45 and GINS. In contrast, we show here that Sld3 does not move with DNA replication forks and only associates with MCM in an unstable manner before initiation. After the establishment of DNA replication forks from early origins, Sld3 is no longer essential for the completion of chromosome replication. Unlike Sld3, GINS is not required for the initial recruitment of Cdc45 to origins and instead is necessary for stable engagement of Cdc45 with the nascent replisome. Like Cdc45, GINS then associates stably with MCM during S-phase.  相似文献   

14.

Background  

Each of the three individual components of the CMG complex (Cdc45, MCM and GINS) is essential for chromosomal DNA replication in eukaryotic cells, both for the initiation of replication at origins and also for normal replication fork progression. The MCM complex is a DNA helicase that most likely functions as the catalytic core of the replicative helicase, unwinding the parental duplex DNA ahead of the moving replication fork, whereas Cdc45 and the GINS complex are believed to act as accessory factors for MCM.  相似文献   

15.
MCM7 is one of the subunits of the MCM2–7 complex that plays a critical role in DNA replication initiation and cell proliferation of eukaryotic cells. After forming the pre-replication complex (pre-RC) with other components, the MCM2–7 complex is activated by DDK/cyclin-dependent kinase to initiate DNA replication. Each subunit of the MCM2–7 complex functions differently under regulation of various kinases on the specific site, which needs to be investigated in detail. In this study, we demonstrated that MCM7 is a substrate of cyclin E/Cdk2 and can be phosphorylated on Ser-121. We found that the distribution of MCM7-S121A is different from wild-type MCM7 and that the MCM7-S121A mutant is much less efficient to form a pre-RC complex with MCM3/MCM5/cdc45 compared with wild-type MCM7. By using the Tet-On inducible HeLa cell line, we revealed that overexpression of wild-type MCM7 but not MCM7-S121A can block S phase entry, suggesting that an excess of the pre-RC complex may activate the cell cycle checkpoint. Further analysis indicates that the Chk1 pathway is activated in MCM7-overexpressed cells in a p53-dependent manner. We performed experiments with the human normal cell line HL-7702 and also observed that overexpression of MCM7 can cause S phase block through checkpoint activation. In addition, we found that MCM7 could also be phosphorylated by cyclin B/Cdk1 on Ser-121 both in vitro and in vivo. Furthermore, overexpression of MCM7-S121A causes an obvious M phase exit delay, which suggests that phosphorylation of MCM7 on Ser-121 in M phase is very important for a proper mitotic exit. These data suggest that the phosphorylation of MCM7 on Ser-121 by cyclin/Cdks is involved in preventing DNA rereplication as well as in regulation of the mitotic exit.  相似文献   

16.
17.
For initiation of eukaryotic DNA replication the origin recognition complex (ORC) associates with chromatin sites and constitutes a landing pad allowing Cdc6, Cdt1 and MCM proteins to accomplish the pre-replication complex (pre-RC). In S phase, the putative MCM helicase is assumed to move away from the ORC to trigger DNA unwinding. By using the fluorescence-based assays bioluminescence resonance energy transfer (BRET) and bimolecular fluorescence complementation (BiFC) we show in live mammalian cells that one key interaction in pre-RC assembly, the interaction between Orc2 and Orc3, is not restricted to the nucleus but also occurs in the cytoplasm. BRET assays also revealed a direct interaction between Orc2 and nuclear localization signal (NLS)-depleted Orc3. Further, we assessed the subcellular distribution of Orc2 and Orc3 in relation to MCM proteins Mcm3 and Mcm6 as well as to a key protein involved in elongation of DNA replication, proliferating nuclear cell antigen (PCNA). Our findings illustrate the spatial complexity of the elaborated process of DNA replication as well as that the BRET and BiFC techniques are novel tools that could contribute to our understanding of the processes at the very beginning of the duplication of the genome.  相似文献   

18.
To maintain genetic stability, the entire mammalian genome must replicate only once per cell cycle. This is largely achieved by strictly regulating the stepwise formation of the pre-replication complex (pre-RC), followed by the activation of individual origins of DNA replication by Cdc7/Dbf4 kinase. However, the mechanism how Cdc7 itself is regulated in the context of cell cycle progression is poorly understood. Here we report that Cdc7 is phosphorylated by a Cdk1-dependent manner during prometaphase on multiple sites, resulting in its dissociation from origins. In contrast, Dbf4 is not removed from origins in prometaphase, nor is it degraded as cells exit mitosis. Our data thus demonstrates that constitutive phosphorylation of Cdc7 at Cdk1 recognition sites, but not the regulation of Dbf4, prevents the initiation of DNA replication in normally cycling cells and under conditions that promote re-replication in G2/M. As cells exit mitosis, PP1α associates with and dephosphorylates Cdc7. Together, our data support a model where Cdc7 (de)phosphorylation is the molecular switch for the activation and inactivation of DNA replication in mitosis, directly connecting Cdc7 and PP1α/Cdk1 to the regulation of once-per-cell cycle DNA replication in mammalian cells.  相似文献   

19.
Loading of the Mcm2-7 DNA replicative helicase onto origin-proximal DNA is a critical and tightly regulated event during the initiation of eukaryotic DNA replication. The resulting protein-DNA assembly is called the prereplicative complex (pre-RC), and its formation requires the origin recognition complex (ORC), Cdc6, Cdt1, and ATP. ATP hydrolysis by ORC is required for multiple rounds of Mcm2-7 loading. Here, we investigate the role of ATP hydrolysis by Cdc6 during pre-RC assembly. We find that Cdc6 is an ORC- and origin DNA-dependent ATPase that functions at a step preceding ATP hydrolysis by ORC. Inhibiting Cdc6 ATP hydrolysis stabilizes Cdt1 on origin DNA and prevents Mcm2-7 loading. In contrast, the initial association of Mcm2-7 with the other pre-RC components does not require ATP hydrolysis by Cdc6. Importantly, these coordinated yet distinct functions of ORC and Cdc6 ensure the correct temporal and spatial regulation of pre-RC formation.  相似文献   

20.
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号