首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D G Stump  R S Lloyd 《Biochemistry》1988,27(6):1839-1843
T4 endonuclease V incises DNA at the sites of pyrimidine dimers through a two-step mechanism. These breakage reactions are preceded by the scanning of nontarget DNA and binding to pyrimidine dimers. In analogy to the synthetic tripeptides Lys-Trp-Lys and Lys-Tyr-Lys, which have been shown to be capable of producing single-strand scissions in DNA containing apurinic sites, endonuclease V has the amino acid sequence Trp-Tyr-Lys-Tyr-Tyr (128-132). Site-directed mutagenesis of the endonuclease V gene, denV, was performed at the Tyr-129 and at the Tyr-129 and Tyr-131 positions in order to convert the Tyr residues to nonaromatic amino acids to test their role in dimer-specific binding. The UV survival of repair-deficient (uvrA recA) Escherichia coli cells harboring the denV N-129 construction was dramatically reduced relative to wild-type denV+ cells. The survival of denV N-129,131 cells was indistinguishable from that of the parental strain lacking the denV gene. The mutant endonuclease V proteins were then characterized with regard to (1) dimer-specific nicking activity, (2) apurinic nicking activity, and (3) binding affinity to UV-irradiated DNA. Dimer-specific nicking activity and dimer-specific binding for both denV N-129 and N-129,131 were abolished, while apurinic-specific nicking was substantially retained in denV N-129,131 but was abolished in denV N-129. These results indicate that Tyr-129 and Tyr-131 positions of endonuclease V are at least important in pyrimidine dimer-specific binding and possibly nicking activity.  相似文献   

2.
Endonuclease V of bacteriophage T4 has been described as an enzyme, coded for by the denV gene, that incises UV-irradiated DNA. It has recently been proposed that incision of irradiated DNA by this enzyme and the analogous "correndonucleases" I and II of Micrococcus luteus requires the sequential action of a pyrimidine dimer-specific DNA glycosylase and an apyrimidinic/apurinic endonuclease. In support of this two-step mechanism, we found that our preparations of T4 endonuclease V contained a DNA glycosylase activity that produced alkali-labile sites in irradiated DNA and an apyrimidinic/apurinic endonuclease activity that converted these sites to nicks. Both activities could be detected in the presence of 10 mM EDTA. In experiments designed to determine which of the activities is coded by the denV gene, we found that the glycosylase was more heat labile in extracts of Escherichia coli infected with either of two thermosensitive denV mutants than in extracts of cells infected with wild-type T4. In contrast, apyrimidinic/apurinic endonuclease activity was no more heat labile in extracts of the former than in extracts of the latter. Our results indicate that the denV gene codes for a DNA glycosylase specific for pyrimidine dimers.  相似文献   

3.
T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function by virtue of its ability to function in the presence of metal-chelating agents. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.  相似文献   

4.
We demonstrate the feasibility of using passive host-cell reactivation of a shuttle-vector pRSVcat to detect cloned DNA-repair genes. As models, a transient expression vector, pRSVdenV, and a positive-selection vector, pRSVdenV/SVgpt, were constructed containing the T4 coliphage denV gene, coding for an ultraviolet-specific endonuclease, under promotion of the Rous sarcoma virus (RSV) long-terminal repeat. Cotransfection of one or three copies of pRSVdenV per UV-irradiated pRSVcat molecule into xeroderma pigmentosum (XP) cells (XP12Ro[M1]) resulted in a dramatic increase in transient expression of chloramphenicol acetyl transferase (CAT) activity. XP clones stable transformed by pRSVdenV/SVgpt but not the parent cell line rescued CAT activity from this UV-irradiated reporter gene. The ability to express CAT activity from a UV-irradiated pRSVcat correlated with the presence of the structural denV gene as detected by Southern blot analysis. Post-UV irradiation colony-forming ability and DNA nucleotide excision-repair synthesis were partially restored in XP clones which rescued CAT activity. These results demonstrate the feasibility of using the cloned denV gene with its well characterized pyrimidine cyclobutane dimer-specific endonuclease activity to reconstitute UV-induced DNA repair in human cells deficient in DNA repair. Measuring CAT expression from pRSVcat affords a rapid, sensitive procedure to screen for functional cloned DNA-repair genes and to test mutant cells for defects in DNA repair.  相似文献   

5.
Purification of the T4 endonuclease V   总被引:1,自引:0,他引:1  
A new purification protocol has been developed for the rapid isolation to physical homogeneity of T4 endonuclease V. The enzyme was purified from an Escherichia coli strain which harbors a plasmid containing the T4 denV structural gene downstream of the lambda rightward promoter. The purification of the enzyme was monitored by pyrimidine dimer-specific nicking activity, Western blot analysis and silver or Coomassie Blue staining of SDS-polyacrylamide gels. Milligram quantities of the enzyme have been purified by the following procedure. After sonication of cells and removal of major cell debris, total protein and nucleic acids were passed over a single-stranded DNA agarose column. Endonuclease V was eluted at 650 mM KCl with a linear salt gradient yielding enzyme of approximately 20% purity and following dialysis, was applied to a chromatofocusing column. The enzyme elutes at pH 9.4 and is greater than 90% homogeneous at this step. The final purification step is CM-Sephadex chromatography which attains greater than 98% homogeneity.  相似文献   

6.
Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV+ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing apurinic or apyrimidinic sites to reactions containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.  相似文献   

7.
The denV gene from bacteriophage T4, which codes for endonuclease V, a small DNA repair enzyme, has been cloned and identified by an approach combining DNA sequencing and genetics, independent of the phenotypic effect of the cloned gene. Appropriate DenV+ and DenV- deletion mutants were mapped physically to define precisely a region encompassing the denV gene. This region was sequenced in order to identify a protein-coding sequence of the correct size for the denV gene (400-500 bp). Finally, identification was confirmed by sequencing the corresponding fragments cloned from four genetically and phenotypically well-characterized denV mutants. The denV gene is located at 64 kb on the T4 genome, adjacent to the ipII gene, and codes for a basic protein of 138 amino acids with a deduced molecular weight of 16,078.  相似文献   

8.
We performed experiments to determine whether the phage T4-induced UV endonuclease activity is a single protein containing both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities. The UV endonuclease activity is induced by the denV gene and codes for the glycosylase activity. We obtained several kinds of evidence that the protein containing the glycosylase activity also contains the apyrimidinic endonuclease activity. After chromatography on DEAE-cellulose, the two activities copurified during phosphocellulose chromatography and Sephadex G-100 chromatography, with a constant ratio of activities across the activity peaks. On Sephadex G-100 columns the molecular weights of the two activities agreed within 2,500 or less. When an extract of cells infected with the T4 V1 mutant was purified in exactly the same way as an extract of cells infected with T4 V1+, neither glycosylase nor apyrimidinic endonuclease activity was detected in the normal elution position of the T4 UV endonuclease activity. The glycosylase and apyrimidinic endonuclease activities were induced with similar kinetics, which were characteristic of immediate early rather than delayed early enzymes. This correlated well with the presumed major role of these activities in repairing thymine dimers in parental DNA before DNA replication begins. Finally, glycosylase and apyrimidinic endonuclease activities were lost in parallel during incubation of the enzyme at 46 degree C. Our results indicated that both of these enzyme activities are contained in the same enzyme molecule and, probably, in the same polypeptide.  相似文献   

9.
In order to evaluate the contributions that histidine residues might play both in the catalytic activities of endonuclease V and in binding to nontarget DNA, the technique of oligonucleotide site directed mutagenesis was used to create mutations at each of the four histidine residues in the endonuclease V gene. Although none of the histidines were shown to be absolutely required for the pyrimidine dimer specific DNA glycosylase activity or the apurinic lyase activity, conservative amino acid changes at His16 produced enzymes with little or no catalytic activity. In addition, the evaluation of conservative and radical amino acid substitutions at positions 34, 56, and 107 is consistent with the interpretation that each of these histidines may be involved in nontarget DNA binding. The data supporting this conclusion are that histidine changes to lysine at positions 34 and 107 enhance the nontarget DNA binding activity of the mutant enzymes while neutralization of charge at His56 reduces nontarget DNA binding.  相似文献   

10.
D R Dowd  R S Lloyd 《Biochemistry》1989,28(22):8699-8705
Endonuclease V, a pyrimidine dimer specific endonuclease in T4 bacteriophage, is able to scan DNA, recognize pyrimidine dimer photoproducts produced by exposure to ultraviolet light, and effectively incise DNA through a two-step mechanism at the damaged bases. The interaction of endonuclease V with nontarget DNA is thought to occur via electrostatic interactions between basic amino acids and the acidic phosphate DNA backbone. Arginine-3 was chosen as a potential candidate for involvement in this protein-nontarget DNA interaction and was extensively mutated to assess its role. The mutations include changes to Asp, Glu, Leu, and Lys and deleting it from the enzyme. Deletion of Arg-3 resulted in an enzyme that retained marginal levels of AP specificity, but no other detectable activity. Charge reversal to Glu-3 and Asp-3 results in proteins that exhibit AP-specific nicking and low levels of dimer-specific nicking. These enzymes are incapable of affecting cellular survival of repair-deficient Escherichia coli after irradiation. Mutations of Arg-3 to Lys-3 or Leu-3 also are unable to complement repair-deficient E. coli. However, these two proteins do exhibit a substantial level of in vitro dimer- and AP-specific nicking. The mechanism by which the Leu-3 and Lys-3 mutant enzymes locate pyrimidine dimers within a population of heavily irradiated plasmid DNA molecules appears to be significantly different from that for the wild-type enzyme. The wild-type endonuclease V processively incises all dimers on an individual plasmid prior to dissociation from that plasmid and subsequent reassociation with other plasmids, yet neither of these mutants exhibits any of the characteristics of this processive nicking activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The expression of the T4 denV gene, which previously had been cloned in plasmid constructs downstream of the bacteriophage lambda hybrid promoter-operator oLpR, was analyzed under a variety of growth parameters. Expression of the denV gene product, endonuclease V, was confirmed in DNA repair-deficient Escherichia coli (uvrA recA) by Western blot analyses and by enhancements of resistance to UV irradiation.  相似文献   

12.
Phage T4 deletion mutants that are folate analog resistant (far) and contain deletions in the region of the T4 genome near denV have been isolated previously. We showed that one of these mutants (T4farP12) expressed normal denV gene activity, whereas another mutant (T4farP13) was defective in the denV gene. The rII-distal (right) physical endpoints of these deletions defined the limits of the interval in which the rII-proximal (left) endpoint of the denV gene should be located. The deletion endpoints were identified by restriction and Southern hybridization analyses of phage derivatives containing deoxycytidine instead of hydroxymethyldeoxycytidine in their DNAs. The results of these analyses localized the rII-proximal (left) end of the denV gene to a region between 62.4 and 64.3 kilobases on the T4 physical map. denV+ phage resulted from marker rescue with two of five denV- alleles tested, using plasmids containing a 1.8-kilobase fragment from this region or a 179-base-pair terminal fragment derived from it. Sequencing of the 179-base-pair fragment from wild-type DNA showed a 130-base-pair open reading frame with its termination codon at the rII-proximal end. Confirmation that this open reading frame is part of the denV coding sequence was obtained by identifying a TAG amber codon in the homologous DNA derived from a denV amber mutant strain. This mutant strain rescued the denV+ allele from plasmids containing the wild-type sequence. An adjacent overlapping restriction fragment was also cloned, permitting determination of the remaining denV gene sequence. Based on these results, the 3' end of the coding region of the denV locus was mapped to kilobase position 64.07 on the T4 physical map, and the 5' end was mapped to position 64.48.  相似文献   

13.
The human endonuclease V gene is located in chromosome 17q25.3 and encodes a 282 amino acid protein that shares about 30% sequence identity with bacterial endonuclease V. This study reports biochemical properties of human endonuclease V with respect to repair of deaminated base lesions. Using soluble proteins fused to thioredoxin at the N-terminus, we determined repair activities of human endonuclease V on deoxyinosine (I)-, deoxyxanthosine (X)-, deoxyoxanosine (O)- and deoxyuridine (U)-containing DNA. Human endonuclease V is most active with deoxyinosine-containing DNA but with minor activity on deoxyxanthosine-containing DNA. Endonuclease activities on deoxyuridine and deoxyoxanosine were not detected. The endonuclease activity on deoxyinosine-containing DNA follows the order of single-stranded I>G/I>T/I>A/I>C/I. The preference of the catalytic activity correlates with the binding affinity of these deoxyinosine-containing DNAs. Mg(2+) and to a much less extent, Mn(2+), Ni(2+), Co(2+) can support the endonuclease activity. Introduction of human endonuclease V into Escherichia coli cells deficient in nfi, mug and ung genes caused three-fold reduction in mutation frequency. This is the first report of deaminated base repair activity for human endonuclease V. The relationship between the endonuclease activity and deaminated deoxyadenosine (deoxyinosine) repair is discussed.  相似文献   

14.
Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions.  相似文献   

15.
Endonuclease V, a pyrimidine dimer-specific DNA repair enzyme, was chemically modified by reductive methylation, a technique that specifically methylates primary amino groups. Upon reaction of endonuclease V with [14C]formaldehyde (14CH2O) in the presence of the reducing agent sodium cyanoborohydride (Na-CNBH3), it was discovered that 0.8 methylation/endonuclease V molecule was required to reduce both the glycosylase and the phosphodiester lyase activities by 70-80%. Pyrimidine dimer-specific binding was not eradicated at a level of methylation equivalent to 0.8 CH3/endonuclease V molecule but was eradicated at higher levels of methylation. Endonuclease V that had been modified with an average of 1.6 CH3/molecule was digested with Staphylococcus aureus strain V8 protease and the peptides subsequently separated by reverse-phase high performance liquid chromatography. Radiolabel was found exclusively on the peptide including the amino terminus, as determined by the percent amino acid composition. Neither intact CH3-endonuclease V nor radiolabeled peptides were able to be sequenced by Edman degradation indicating blockage of the amino terminus by methylation. This study shows strong evidence for the unusual involvement of the alpha NH2 moiety in the chemical mechanisms of endonuclease V. A reaction mechanism that incorporates these findings is presented.  相似文献   

16.
Antiserum specific for thymine-containing dimers was used to assay DNA isolated from ultraviolet-irradiated cells following different repair periods. A 50% loss in antibody-binding sites was evident 1 h post-irradiation, and within 4 h 80% of the sites were removed. This result contrasts with data obtained with dimer-specific T4 endonuclease V and does not appear to be due to masking of the dimers by repair enzymes. T4 endonuclease V treatment of ultraviolet-irradiated DNA at 0 degree C resulted in conversion of the thymine dimers to apyrimidinic sites. This did not result in loss of antigenicity in either PM2 or CHO cell DNA. Likewise, treatment of ultraviolet-irradiated CHO cell DNA with T4 endonuclease at 37 degrees C did not change its antigenicity. These results suggest that aglycosylation of the dimers is not responsible for their inability to bind dimer-specific antibody 2-4 h post-irradiation. The possibility that T4 endonuclease V and the antiserum have different specificities for different dimers is discussed.  相似文献   

17.
The interaction between endonuclease V, the cyclobutane pyrimidine dimer-specific N-glycosylase/abasic lyase from bacteriophage T4, and DNA was investigated by DNase I footprinting methods. The catalytically inactive mutant E23Q was found to interact with a smaller region of DNA at the abasic site analog, tetrahydrofuran, than at a thymine dimer site. Like the wild-type enzyme, the mutant contacted the DNA substrates primarily on the strand opposite the damage. The various complexes examined by footprinting techniques represent distinct points along the catalytic pathway of endonuclease V: before catalysis at a dimer, after N-glycosylase action but before abasic lyase action, and before catalysis at an abasic site. The differences between the footprints of the mutant and wild-type enzymes on both DNA substrates likely represent subtly different conformations within these complexes.  相似文献   

18.
C Nickell  M A Prince  R S Lloyd 《Biochemistry》1992,31(17):4189-4198
Facilitated one-dimensional diffusion is a general mechanism utilized by several DNA-interactive proteins as they search for their target sites within large domains of nontarget DNA. T4 endonuclease V is a protein which scans DNA in a nonspecifically bound state and processively incises DNA at ultraviolet (UV)-induced pyrimidine dimer sites. An electrostatic contribution to this mechanism of target location has been established. Previous studies indicate that a decrease in the affinity of endonuclease V for nontarget DNA results in a decreased ability to scan DNA and a concomitant decrease in the ability to enhance UV survival in repair-deficient Escherichia coli. This study was designed to question the contrasting effect of an increase in the affinity of endonuclease V for nontarget DNA. With this as a goal, a gradient of increasingly basic amino acid content was created along a proposed endonuclease V-nontarget DNA interface. This incremental increase in positive charge correlated with the stepwise enhancement of nontarget DNA binding, yet inversely correlated with enhanced UV survival in repair-deficient E. coli. Further analysis suggests that the observed reduction in UV survival is consistent with the hypothesis that enhanced nontarget DNA affinity results in reduced pyrimidine dimer-specific recognition and/or binding. The net effect is a reduction in the efficiency of pyrimidine dimer incision.  相似文献   

19.
About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.  相似文献   

20.
The gene which codes for endonuclease III of Escherichia coli has been sequenced. The nth gene was previously subcloned and defined as the gene which led to overproduction of endonuclease III when present on a multicopy plasmid and which created a deficiency in endonuclease III activity when mutated. The nth gene was sequenced and translated into a predicted polypeptide. The molecular weight (23,546), the amino-terminal amino acid sequence, and the amino acid composition of the polypeptide predicted from the nucleotide sequence are excellent agreement with those same properties determined for the purified protein. Thus, the nth gene is the structural gene for endonuclease III. Inspection of the nucleotide sequence reveals that there is an open reading frame immediately upstream of the nth gene, suggesting that it might be part of an operon. There is a region of dyad symmetry which could form a hairpin stem and loop structure if transcribed into RNA characteristic of a rho-dependent terminator downstream from the nth gene. The nth gene of Escherichia coli has been cloned onto a lambda PL expression vector which yields approximately 300-fold overproduction of endonuclease III. We have purified the enzyme to apparent homogeneity using two chromatographic steps. Our purification scheme allowed the preparation of 117 mg of protein from 190 g of E. coli with a 70% yield. The purified protein has both AP endonuclease activity and DNA N-glycosylase activity. The protein has a Stokes radius of 2.25 nm, a sedimentation coefficient of 2.65 S, a molecular weight of 26,300 in the native state and 27,300 in the denatured state, and a frictional ratio of 1.13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号