首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Genetically specific interactions between hosts and parasites can lead to coevolutionary fluctuations in their genotype frequencies over time. Such fluctuating selection dynamics are, however, expected to occur only under specific circumstances (e.g., high fitness costs of infection to the hosts). The outcomes of host–parasite interactions are typically affected by environmental/ecological factors, which could modify coevolutionary dynamics. For instance, individual hosts are often infected with more than one parasite species and interactions between them can alter host and parasite performance. We examined the potential effects of coinfections by genetically specific (i.e., coevolving) and nonspecific (i.e., generalist) parasite species on fluctuating selection dynamics using numerical simulations. We modeled coevolution (a) when hosts are exposed to a single parasite species that must genetically match the host to infect, (b) when hosts are also exposed to a generalist parasite that increases fitness costs to the hosts, and (c) when coinfecting parasites compete for the shared host resources. Our results show that coinfections can enhance fluctuating selection dynamics when they increase fitness costs to the hosts. Under resource competition, coinfections can either enhance or suppress fluctuating selection dynamics, depending on the characteristics (i.e., fecundity, fitness costs induced to the hosts) of the interacting parasites.  相似文献   

2.
Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus.  相似文献   

3.
Patch occupancy theory predicts that a trade-off between competition and dispersal should lead to regional coexistence of competing species. Empirical investigations, however, find local coexistence of superior and inferior competitors, an outcome that cannot be explained within the patch occupancy framework because of the decoupling of local and spatial dynamics. We develop two-patch metapopulation models that explicitly consider the interaction between competition and dispersal. We show that a dispersal-competition trade-off can lead to local coexistence provided the inferior competitor is superior at colonizing empty patches as well as immigrating among occupied patches. Immigration from patches that the superior competitor cannot colonize rescues the inferior competitor from extinction in patches that both species colonize. Too much immigration, however, can be detrimental to coexistence. When competitive asymmetry between species is high, local coexistence is possible only if the dispersal rate of the inferior competitor occurs below a critical threshold. If competing species have comparable colonization abilities and the environment is otherwise spatially homogeneous, a superior ability to immigrate among occupied patches cannot prevent exclusion of the inferior competitor. If, however, biotic or abiotic factors create spatial heterogeneity in competitive rankings across the landscape, local coexistence can occur even in the absence of a dispersal-competition trade-off. In fact, coexistence requires that the dispersal rate of the overall inferior competitor not exceed a critical threshold. Explicit consideration of how dispersal modifies local competitive interactions shifts the focus from the patch occupancy approach with its emphasis on extinction-colonization dynamics to the realm of source-sink dynamics. The key to coexistence in this framework is spatial variance in fitness. Unlike in the patch occupancy framework, high rates of dispersal can undermine coexistence, and hence diversity, by reducing spatial variance in fitness.  相似文献   

4.
Macroparasites of vertebrates usually occur in multi-species communities, producing infections whose outcome in individual hosts or host populations may depend on the dynamics of interactions amongst the different component species. Within a single co-infection, competition can occur between conspecific and heterospecific parasite individuals, either directly or via the host's physiological and immune responses. We studied a natural single-host, multi-parasite model infection system (polystomes in the anuran Xenopus laevis victorianus) in which the parasite species show total interspecific competitive exclusion as adults in host individuals. Multi-species infection experiments indicated that competitive outcomes were dependent on infection species composition and strongly influenced by the intraspecific genetic identity of the interacting organisms. Our results also demonstrate the special importance of temporal heterogeneity (the sequence of infection by different species) in competition and co-existence between parasite species and predict that developmental plasticity in inferior competitors, and the induction of species-specific host resistance, will partition the within-host-individual habitat over time. We emphasise that such local (within-host) context-dependent processes are likely to be a fundamental determinant of population dynamics in multi-species parasite assemblages.  相似文献   

5.
We investigate whether asymmetric fast migration can modify the predictions of classical competition theory and, in particular revert species dominance. We consider a model of two species competing for an implicit resource on a habitat divided into two patches. Both patches are connected through constant migration rates and in each patch local dynamics are driven by a Lotka-Volterra competition system.Local competition is asymmetric with the same superior competitor in both patches. Migration is asymmetric, species dependent and fast in comparison to local competitive interactions. The species and patches are taken to be otherwise similar: in both patches we assume the same carrying capacities for both species, and the same growth rates and pair-wise competition coefficients for each species.We show that global dynamics can be described by a classical Lotka-Volterra competition model. We found that by modifying the ratio of intraspecific migration rates for both species all possible combinations of global species relative dominance can be achieved. We find specific conditions for which the local superior competitor is globally excluded. This is to our knowledge the first study showing that fast asymmetric migration can lead to inferior competitor dominance in a homogeneous environment. We conclude that disparity of temporal scales between migration and local dynamics may have important consequences for the maintenance of biodiversity in spatially structured populations.  相似文献   

6.
Multiple infections of a host by different strains of the same microparasite are common in nature. Although numerous models have been developed in an attempt to predict the evolutionary effects of intrahost competition, tests of the assumptions of these models are rare and the outcome is diverse. In the present study we examined the outcome of mixed-isolate infections in individual hosts, using a single clone of the waterflea Daphnia magna and three isolates of its semelparous endoparasite Pasteuria ramosa . We exposed individual Daphnia to single- and mixed-isolate infection treatments, both simultaneously and sequentially. Virulence was assessed by monitoring host mortality and fecundity, and parasite spore production was used as a measure of parasite fitness. Consistent with most assumptions, in multiply infected hosts we found that the virulence of mixed infections resembled that of the more virulent competitor, both in simultaneous multiple infections and in sequential multiple infections in which the virulent isolate was first to infect. The more virulent competitor also produced the vast majority of transmission stages. Only when the less virulent isolate was first to infect, the intrahost contest resembled scramble competition, whereby both isolates suffered by producing fewer transmission stages. Surprisingly, mixed-isolate infections resulted in lower fecundity-costs for the hosts, suggesting that parasite competition comes with an advantage for the host relative to single infections. Finally, spore production correlated positively with time-to-host-death. Thus, early-killing of more competitive isolates produces less transmission stages than less virulent, inferior isolates. Our results are consistent with the idea that less virulent parasite lines may be replaced by more virulent strains under conditions with high rates of multiple infections.  相似文献   

7.
Parasites exploit an inherently patchy resource, their hosts, which are discrete entities that may only be available for infection within a relatively short time window. However, there has been little consideration of how heterogeneities in host availability may affect the phenotypic or genotypic composition of parasite populations or how parasites may evolve to cope with them. Here we conduct a selection experiment involving an entomopathogenic nematode (Steinernema feltiae) and show for the first time that the infection rate of a parasite can evolve rapidly to maximize the chances of infecting within an environment characterized by the rate of host availability. Furthermore, we show that the parasite's infection rate trades off with other fitness traits, such as fecundity and survival. Crucially, the outcome of competition between strains with different infection strategies depends on the rate of host availability; frequently available hosts favor "fast" infecting nematodes, whereas infrequently available hosts favor "slow" infecting nematodes. A simple evolutionarily stable strategy (ESS) analysis based on classic epidemiological models fails to capture this behavior, predicting instead that the fastest infecting phenotype should always dominate. However, a novel model incorporating more realistic, discrete bouts of host availability shows that strain coexistence is highly likely. Our results demonstrate that heterogeneities in host availability play a key role in the evolution of parasite life-history traits and in the maintenance of phenotypic variability. Parasite life-history strategies are likely to evolve rapidly in response to changes in host availability induced by disease management programs or by natural dynamics in host abundance. Incorporating parasite evolution in response to host availability would therefore enhance the predictive ability of current epidemiological models of infectious disease.  相似文献   

8.
Most studies of virulence of infection focus on pairwise host–parasite interactions. However, hosts are almost universally co-infected by several parasite strains and/or genotypes of the same or different species. While theory predicts that co-infection favours more virulent parasite genotypes through intensified competition for host resources, knowledge of the effects of genotype by genotype (G × G) interactions between unrelated parasite species on virulence of co-infection is limited. Here, we tested such a relationship by challenging rainbow trout with replicated bacterial strains and fluke genotypes both singly and in all possible pairwise combinations. We found that virulence (host mortality) was higher in co-infections compared with single infections. Importantly, we also found that the overall virulence was dependent on the genetic identity of the co-infecting partners so that the outcome of co-infection could not be predicted from the respective virulence of single infections. Our results imply that G × G interactions among co-infecting parasites may significantly affect host health, add to variance in parasite fitness and thus influence evolutionary dynamics and ecology of disease in unexpected ways.  相似文献   

9.
10.
Co-infecting parasite genotypes typically compete for host resources limiting their fitness. The intensity of such competition depends on whether parasites are reproducing in a host, or using it primarily as a transmission vehicle while not multiplying in host tissues (referred to as 'competition hypothesis'). Alternatively, simultaneous attack and co-infection by several parasite genotypes might facilitate parasite infection because such a diverse attack could present an additional challenge to host immune defence (referred to as 'facilitation hypothesis'). We tested the competition hypothesis by comparing the production of transmission stages (cercariae) from snails infected with one or two genotypes of the trematode Diplostomum pseudospathaceum. We found that cercarial production did not differ between the two groups of snails, suggesting lower per genotype production in double infections, and competition for host resources. Second, we tested the facilitation hypothesis by comparing parasite infection success on fishes (proportion of parasites establishing in the host) using cercariae originating from single-infected snails, double-infected snails and artificial mixtures of the single genotypes. In both cases, we found higher infection success when fishes were challenged with two parasite genotypes instead of one, supporting the facilitation hypothesis. Our results suggest that constraints defining the success of multiple genotype infections in parasites with multiple host life cycles include both between-genotype resource competition in the host and performance of host immune defences against a diverse parasite challenge.  相似文献   

11.
When faced with limited resources, organisms have to determine how to allocate their resources to maximize fitness. In the presence of parasites, hosts may be selected for their ability to balance between the two competing needs of reproduction and immunity. These decisions can have consequences not only for host fitness, but also for the ability of parasites to persist within the population, and for the competitive dynamics between different host species. We develop two mathematical models to investigate how resource allocation strategies evolve at both population and metapopulation levels. The evolutionarily stable strategy (ESS) at the population level is a balanced investment between reproduction and immunity that maintains parasites, even though the host has the capacity to eliminate parasites. The host exhibiting the ESS can always invade other host populations through parasite-mediated competition, effectively using the parasites as biological weapons. At the metapopulation level, the dominant strategy is sometimes different from the population-level ESS, and depends on the ratio of local extinction rate to host colonization rate. This study may help to explain why parasites are as common as they are, and can serve as a modeling framework for investigating parasite-mediated ecological invasions. Furthermore, this work highlights the possibility that the ‘introduction of enemies’ process may facilitate species invasion.  相似文献   

12.
13.
Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents.  相似文献   

14.
We examine the evolutionary dynamics of resistance to parasites through acquired immunity. Resistance can be achieved through the innate mechanisms of avoidance of infection and reduced pathogenicity once infected, through recovery from infection and through remaining immune to infection: acquired immunity. We assume that each of these mechanisms is costly to the host and find that the evolutionary dynamics of innate immunity in hosts that also have acquired immunity are quantitatively the same as in hosts that possess only innate immunity. However, compared with resistance through avoidance or recovery, there is less likely to be polymorphism in the length of acquired immunity within populations. Long-lived organisms that can recover at intermediate rates faced with fast-transmitting pathogens that cause intermediate pathogenicity (mortality of infected individuals) are most likely to evolve long-lived acquired immunity. Our work emphasizes that because whether or not acquired immunity is beneficial depends on the characteristics of the disease, organisms may be selected to only develop acquired immunity to some of the diseases that they encounter.  相似文献   

15.
Ecological theory suggests that co‐infecting parasite species can interact within hosts directly, via host immunity and/or via resource competition. In mice, competition for red blood cells (RBCs) between malaria and bloodsucking helminths can regulate malaria population dynamics, but the importance of RBC competition in human hosts was unknown. We analysed infection density (i.e. the concentration of parasites in infected hosts), from a 2‐year deworming study of over 4000 human subjects. After accounting for resource‐use differences among parasites, we find evidence of resource competition, priority effects and a competitive hierarchy within co‐infected individuals. For example reducing competition via deworming increased Plasmodium vivax densities 2.8‐fold, and this effect is limited to bloodsucking hookworms. Our ecological, resource‐based perspective sheds new light into decades of conflicting outcomes of malaria–helminth co‐infection studies with significant health and transmission consequences. Beyond blood, investigating within‐human resource competition may bring new insights for improving human health.  相似文献   

16.
Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.  相似文献   

17.
18.
In this paper we study the uniform persistence (UP) of an association of two competing host species sharing a directly transmitted macroparasite. Like predators, parasites can regulate UP while the hosts are either coexisting or in a dominance relationship without any infections, but cannot regulate UP in case the hosts are in bistability. The regulatory mechanism depends on the relationships between the parameters, such as host intrinsic growth rate, host carrying capacity, susceptibility, parasite pathogenicity and the magnitude of parasite aggregation. In the case of coexistence the parametric space for UP is more than that for global stability of the host-parasite equilibrium, but is less than that for UP in the case of dominance. In the case of dominance, the parasites can alter the competitive outcome locally or can enhance the local exclusion of the inferior competitor and thus, unlike the predation, parasitism has an beneficial effect over competition. We derive explicitly the range of the values of ratios of the rates of reproduction and survivorship of the hosts, and also of the values of the degree of aggregations, with which macroparasites are not effective in maintaining its beneficial effect over competition. Finally our results support the body-size hypothesis of Price et al. (1988), with possible explanations of certain exceptional examples of the hypothesis.  相似文献   

19.
Intrinsic competition in insect parasitoids occurs when supernumerary larvae develop in the same host as consequence of multiple ovipositions by females of the same species (intra-specific competition) or by females of different species (inter-specific competition). Studies on intrinsic competition have mainly focused on understanding the factors that play a role in the outcome of competition, while fitness-related effects for the parasitoid surviving the competition have been poorly investigated, especially in egg parasitoids. Interestingly, even the winning parasitoid can experience fitness costs due to larval development in a host in which multiple factors have been injected by the ovipositing females or released by their larvae. In this paper we studied fitness-related traits associated with intra- and inter-specific competition between Trissolcus basalis (Wollaston) and Ooencyrtus telenomicida (Vassiliev), the main egg parasitoids associated with the southern green stink bug Nezara viridula (L.) in Italy. We investigated the impact of intrinsic competition for the surviving parasitoid in terms of body size, developmental time, number and size of oocytes. Our results indicated that T. basalis adults did not experience fitness-related costs when surviving intra-specific competition; however, adults were smaller, took longer to develop and females produced fewer oocytes after surviving inter-specific competition. A different outcome was found for O. telenomicida where the emerging females were smaller, produced fewer and smaller oocytes when suffering intra-specific competition whereas no fitness costs were found when adults survived inter-specific competition. These results support the hypothesis that the impact of intrinsic competition in egg parasitoids depends on the severity of the competitive interaction, as fitness costs were more pronounced when the surviving parasitoid interacted with the most detrimental competitor.  相似文献   

20.
Host individuals are often infected with more than one parasite species (parasites defined broadly, to include viruses and bacteria). Yet, research in infection biology is dominated by studies on single-parasite infections. A focus on single-parasite infections is justified if the interactions among parasites are additive, however increasing evidence points to non-additive interactions being the norm. Here we review this evidence and theoretically explore the implications of non-additive interactions between co-infecting parasites. We use classic Lotka-Volterra two-species competition equations to investigate the within-host dynamical consequences of various mixes of competition and facilitation between a pair of co-infecting species. We then consider the implications of these dynamics for the virulence (damage to host) of co-infections and consequent evolution of parasite strategies of exploitation. We find that whereas one-way facilitation poses some increased virulence risk, reciprocal facilitation presents a qualitatively distinct destabilization of within-host dynamics and the greatest risk of severe disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号