首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The retinoblastoma family of nuclear factors is composed of RB, the prototype of the tumour suppressor genes and of the strictly related genes p107 and Rb2/p130. The three genes code for proteins, namely pRb, p107 and pRb2/p130, that share similar structures and functions. These proteins are expressed, often simultaneously, in many cell types and are involved in the regulation of proliferation and differentiation. We determined the expression and the phosphorylation of the RB family gene products during the DMSO-induced differentiation of the N1E-115 murine neuroblastoma cells. In this system, pRb2/p130 was strongly up-regulated during mid-late differentiation stages, while, on the contrary, pRb and p107 resulted markedly decreased at late stages. Differentiating N1E-115 cells also showed a progressive decrease in B-myb levels, a proliferation-related protein whose constitutive expression inhibits neuronal differentiation. Transfection of each of the RB family genes in these cells was able, at different degrees, to induce neuronal differentiation, to inhibit [3H]thymidine incorporation and to down-regulate the activity of the B-myb promoter.  相似文献   

3.
4.
5.
Unregulated FGF signaling affects endochondral ossification and long bone growth, causing several genetic forms of human dwarfism. One major mechanism by which FGFs regulate endochondral bone growth is through their inhibitory effect on chondrocyte proliferation. Because mice with targeted mutations of the retinoblastoma (Rb)-related proteins p107 and p130 present severe endochondral bone defects with excessive chondrocyte proliferation, we have investigated the role of the Rb family of cell cycle regulators in the FGF response. Using a chondrocyte cell line, we found that FGF induced a rapid dephosphorylation of all three proteins of the Rb family (pRb, p107, and p130) and a blockade of the cells in the G1 phase of the cell cycle. This cell cycle block was reversed by inactivation of Rb proteins with viral oncoproteins such as polyoma large T (PyLT) antigen and Adenovirus E1A. Expression of a PyLT mutant that efficiently binds pRb, but not p107 and p130, allowed the cells to be growth inhibited by FGF, suggesting that pRb itself is not involved in the FGF response. To investigate more precisely the role of the individual Rb family proteins in FGF-mediated growth inhibition, we used chondrocyte micromass culture of limb bud cells isolated from mice lacking Rb proteins individually or in combination. Although wild-type as well as Rb-/- chondrocytes were similarly growth inhibited by FGF, chondrocytes null for p107 and p130 did not respond to FGF. Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107-/-;p130-/- embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth. Our findings indicate that p107 and p130, but not pRb, are critical effectors of FGF-mediated growth inhibition in chondrocytes.  相似文献   

6.
The retinoblastoma gene product, pRb, plays a crucial role in cell cycle regulation, differentiation and inhibition of oncogenic transformation. pRb and its closely related family members p107 and p130 perform exclusive and overlapping functions during mouse development. The embryonic lethality of Rb-null animals restricts the phenotypic analysis of these mice to mid-gestation embryogenesis. We employed the Cre/loxP system to study the function of Rb in adult mouse stratified epithelium. Rb(F19/F19);K14cre mice displayed hyperplasia and hyperkeratosis in the epidermis with increased proliferation and aberrant expression of differentiation markers. In vitro, pRb is essential for the maintainance of the postmitotic state of terminally differentiated keratinocytes, preventing cell cycle re-entry. However, p107 compensates for the effects of Rb loss as the phenotypic abnormalities of Rb(F19/F19);K14cre keratinocytes in vivo and in vitro become more severe with the concurrent loss of p107 alleles. p107 alone appears to be dispensable for all these phenotypic changes, as the presence of a single Rb allele in a p107-null background rescues all these alterations. Luciferase reporter experiments indicate that these phenotypic alterations might be mediated by increased E2F activity. Our findings support a model in which pRb in conjunction with p107 plays a central role in regulating epidermal homeostasis.  相似文献   

7.
The Rb2/p130 protein has been shown to have a high sequence homology with the retinoblastoma gene product (pRb), one of the most well-characterized tumor suppressor genes, and with pRb-related p107, especially in their conserved pocket domains, which display a primary role in the function of these proteins. In this study, we report on the biochemical and immunocytochemical characterization of the Rb2/p130 protein, using a polyclonal antibody developed against its “spacer” region included in the pocket domain of the whole protein. We show that pRb/p130 is a phosphoprotein located at the nuclear level and that its phosphorylation pathway can be dramatically reduced by phosphatase treatment. Moreover pRb/p130, with p107, with p107, is one of the major targets of the E1A viral oncoprotein-associated kinase activity, showing a phosphorylation pattern which is modulated during the cell cycle, reaching a peak of activation at the onset of S-phase. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The retinoblastoma protein (pRb) and the related proteins Rb2/p130 and 107 represent the “pocket protein” family of cell cycle regulators. A key function of these proteins is the cell cycle dependent modulation of E2F-regulated genes. The biological activity of these proteins is controlled by acetylation and phosphorylation in a cell cycle dependent manner. In this study we attempted to investigate the interdependence of acetylation and phosphorylation of Rb2/p130 in vitro. After having identified the acetyltransferase p300 among several acetyltransferases to be associated with Rb2/p130 during S-phase in NIH3T3 cells in vivo, we used this enzyme and the CDK4 protein kinase for in vitro modification of a variety of full length Rb2/p130 and truncated versions with mutations in the acetylatable lysine residues 1079, 128 and 130. Mutation of these residues results in the complete loss of Rb2/p130 acetylation. Replacement of lysines by arginines strongly inhibits phosphorylation of Rb2/p130 by CDK4; the inhibitory effect of replacement by glutamines is less pronounced. Preacetylation of Rb2/p130 strongly enhances CDK4-catalyzed phosphorylation, whereas deacetylation completely abolishes in vitro phosphorylation. In contrast, phosphorylation completely inhibits acetylation of Rb2/p130 by p300. These results suggest a mutual interdependence of modifications in a way that acetylation primes Rb2/p130 for phosphorylation and only dephosphorylated Rb2/p130 can be subject to acetylation. Human papillomavirus 16-E7 protein, which increases acetylation of Rb2/p130 by p300 strongly reduces phosphorylation of this protein by CDK4. This suggests that the balance between phosphorylation and acetylation of Rb2/p130 is essential for its biological function in cell cycle control.  相似文献   

9.
Extracellular plasminogen activator inhibitor type-2 (PAI-2) is a potent inhibitor of urokinase-type plasminogen activator (u-PA) and also acts as a multifunctional protein. However, the biological activity of intracellular PAI-2, as well as its intracellular targets, until now remain an enigma. Here, we show that pRb2/p130 and Rb1/p105, but not p107, interact with PAI-2 in both the cytoplasm and nucleus of normal primary human corneal and conjunctival epithelial cells. We provided the first in vivo evidence that a specific fragment of the PAI-2 promoter is bound simultaneously by pRb2/ p130, PAI-2, E2F5, histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1), and histone methyltransferase (SUV39H1), in normal primary human corneal epithelial cells, and by pRb2/p130, PAI-2, E2F5, HDAC1, and DNMT1, in normal primary human conjunctiva epithelial cells. Our results strongly indicate a physiological interaction between pRb family members and PAI-2, suggesting the hypothesis that pRb2/p130 and PAI-2 may cooperate in modulating PAI-2 gene expression by chromatin remodeling, in normal corneal and conjunctival cells.  相似文献   

10.
It has been proposed that tumor suppressor genes may have a role in the mechanisms of proliferation and differentiation during human placental development. The Retinoblastoma gene family is a well known family of tumor suppressor genes. Many studies have pointed out a role of this family not only in cell cycle progression, but also during development and differentiation. On the light of these observations we have investigated the immunohistochemical expression pattern of the Retinoblastoma family members, p107 and Rb2/p130 in human placenta samples in first trimester and full-term placental sections. p107 and pRb2/p130 showed the most abundant expression levels during the first trimester of gestation and progressively declined to being barely detectable in the placenta by late gestation. These results indicate that the expression of the above genes is modulated during placental development and suggest a mechanism for controlling trophoblast proliferation.  相似文献   

11.
12.
13.
14.
15.
16.
Tumor suppressors of the retinoblastoma susceptibility gene family regulate cell growth and differentiation. Polyomavirus large T antigens (large T) bind Rb family members and block their function. Mutations of large T sequences conserved with the DnaJ family affect large T binding to a cellular DnaK, heat shock protein 70. The same mutations abolish large T activation of E2F-containing promoters and Rb binding-dependent large T activation of cell cycle progression. Cotransfection of a cellular DnaJ domain blocks wild-type large T action, showing that the connection between the chaperone system and tumor suppressors is direct. Although they are inactive in assays dependent on Rb family binding, mutants in the J region retain the ability to associate with pRb, p107, and p130. This suggests that binding of Rb family members by large T is not sufficient for their inactivation and that a functional J domain is required as well. This work connects the DnaJ and DnaK molecular chaperones to regulation of tumor suppressors by polyomavirus large T.  相似文献   

17.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

18.
19.
The function of retinoblastoma protein (pRb) in the regulation of small intestine epithelial cell homeostasis has been challenged by several groups using various promoter-based Cre transgenic mouse lines. Interestingly, different pRb deletion systems yield dramatically disparate small intestinal phenotypes. These findings confound the function of pRb in this dynamic tissue. In this study, Villin-Cre transgenic mice were crossed with Rb (flox/flox) mice to conditionally delete pRb protein in small intestine enterocytes. We discovered a novel hyperplasia phenotype as well as ectopic cell cycle reentry within villus enterocytes in the small intestine. This phenotype was not seen in other pRb family member (p107 or p130) null mice. Using a newly developed crypt/villus isolation method, we uncovered that expression of pRb was undetectable, whereas proliferating cell nuclear antigen, p107, cyclin E, cyclin D3, Cdk2, and Cdc2 were dramatically increased in pRb-deficient villus cells. Cyclin A, cyclin D1, cyclin D2, and Cdk4/6 expression was not affected by absent pRb expression. pRb-deficient villus cells appeared capable of progressing to mitosis but with higher rates of apoptosis. However, the cycling villus enterocytes were not completely differentiated as gauged by significant reduction of intestinal fatty acid-binding protein expression. In summary, pRb, but not p107 or p130, is required for maintaining the postmitotic villus cell in quiescence, governing the expression of cell cycle regulatory proteins, and completing of absorptive enterocyte differentiation in the small intestine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号