首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).  相似文献   

2.
The purpose of the present study was to determine whether hindlimb unloading of rats alters vasoconstrictor and myogenic responsiveness of skeletal muscle arterioles. After either 2 wk of hindlimb unloading (HU) or cage control (C), second-order arterioles were isolated from the white portion of gastrocnemius (WG; C: n = 9, HU: n = 10) or soleus (Sol; C: n = 9, HU: n = 10) muscles and cannulated with two micropipettes connected to reservoir systems for in vitro study. Intraluminal pressure was set at 60 cmH2O. The arterioles were exposed to step changes in intraluminal pressure ranging from 20 to 140 cmH2O to determine myogenic responsiveness and to KCl (10-100 mM) and norepinephrine (10(-9)-10(-4) M) to determine vasoconstrictor responsiveness. Although maximal diameter of WG arterioles was not different between C (185 +/- 12 microm) and HU (191 +/- 14 microm) rats, WG arterioles from HU rats developed less spontaneous tone (C: 33 +/- 5%, HU 20 +/-3%), were unable to maintain myogenic tone at pressures from 140 to 100 cmH2O, and were less sensitive to the vasoconstrictor effects of KCl and norepinephrine (as indicated by a higher agonist concentration that produced 50% of maximal vasoconstrictor response). In contrast, maximal diameter of Sol arterioles from HU rats (117 +/- 12 microm) was smaller than that in C rats (148 +/- 14 microm). However, the development of spontaneous tone (C: 30 +/- 4%, HU: 36 +/- 5%), myogenic activity, and the responsiveness to vasoconstrictor agonists were not different between Sol arterioles from C and HU rats. These results indicate that hindlimb unloading diminishes the myogenic autoregulatory and contractile responsiveness of arterioles from muscle composed of type IIB fibers and suggest that the compromised ability to elevate vascular resistance after exposure to microgravity may be related to these vascular alterations. In addition, hindlimb unloading appears to induce vascular remodeling of arterioles from muscle composed of type I fibers, as indicated by the decrease in maximal diameter of arterioles from Sol muscle.  相似文献   

3.
Previous work has shown that orthostatic hypotension associated with cardiovascular deconditioning results from inadequate peripheral vasoconstriction. We used the hindlimb-unloaded (HU) rat in this study as a model to induce cardiovascular deconditioning. The purpose of this study was to test the hypothesis that 14 days of HU diminishes vasoconstrictor responsiveness of mesenteric resistance arteries. Mesenteric resistance arteries from control (n = 43) and HU (n = 44) rats were isolated, cannulated, and pressurized to 108 cm H(2)O for in vitro experimentation. Myogenic (intralumenal pressure ranging from 30 to 180 cm H(2)O), KCl (2-100 mM), norepinephrine (NE, 10(-9)-10(-4) M) and caffeine (1-20 mM) induced vasoconstriction, as well as the temporal dynamics of vasoconstriction to NE, were determined. The active myogenic and passive pressure responses were unaltered by HU when pressures remained within physiological range. However, vasoconstrictor responses to KCl, NE, and caffeine were diminished by HU, as well as the rate of constriction to NE (C, 14.8 +/- 3.6 microm/s vs. HU 7.6 +/- 1.8 microm/s). Expression of sarcoplasmic reticulum Ca(2+)ATPase 2 and ryanodine 3 receptor mRNA was unaffected by HU, while ryanodine 2 receptor mRNA and protein expression were diminished in mesenteric arteries from HU rats. These data suggest that HU-induced and microgravity-associated orthostatic intolerance may be due, in part, to an attenuated vasoconstrictor responsiveness of mesenteric resistance arteries resulting from a diminished ryanodine 2 receptor Ca(2+) release mechanism.  相似文献   

4.
In the rat, the spleen is a major site of fluid efflux out of the blood. By contrast, the mesenteric vasculature serves as a blood reservoir. We proposed that the compliance and myogenic responses of these vascular beds would reflect their different functional demands. Mesenteric and splenic arterioles ( approximately 150-200 microm) and venules (<250 microm) from rats anesthetized with pentobarbital sodium were mounted in a pressurized myograph. Mesenteric arterial diameter decreased from 146 +/- 6 to 133 +/- 6 microm on raising intraluminal pressures from 80 to 120 mmHg. This response was enhanced in the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME; 139 +/- 6 to 112 +/- 7 microm). There was no such myogenic response in the splenic arterioles, except in the presence of l-NAME (194 +/- 4 to 164 +/- 4.2 microm). We propose that, whereas mesenteric arterioles exhibit myogenic responses, this is normally masked by NO-mediated dilation in the splenic vessels. The mesenteric venules were highly distensible (active, 184 +/- 15 to 320 +/- 30.9 microm; passive in Ca(2+)-free media, 209 +/- 31 to 344 +/- 27 microm; 4-8 mmHg) compared with the splenic vessels (active, 169 +/- 11 to 184 +/- 16 microm; passive, 187 +/- 12 to 207 +/- 17 microm). We conclude that, in response to an increase in perfusion pressure, mesenteric arterial diameter would decrease to limit the changes in flow and microvascular pressure. In addition, mesenteric venous capacitance would increase. By contrast, splenic arterial diameter would increase, while there would be little change in venous diameter. This would enhance the increase in intrasplenic microvascular pressure and increase fluid extravasation.  相似文献   

5.
Vascular dysfunction characterized by a hyperreactivity to vasoconstrictors and/or impaired vascular relaxation contributes to increased incidence of cardiovascular disease in diabetes. Endothelin (ET)-1, a potent vasoconstrictor, is chronically elevated in diabetes. However, the role of ET-1 in resistance versus larger vessel function in mild diabetes remains unknown. Accordingly, this study investigated vascular function of third-order mesenteric arteries and basilar arteries in control Wistar and Goto-Kakizaki (GK) rats, a model of mild Type 2 diabetes. Six weeks after the onset of diabetes, contractile responses to 0.1-100 nM ET-1 and relaxation responses to 1 nM-10 microM acetylcholine (ACh) in vessels preconstricted (baseline + 60%) with serotonin (5-HT) were assessed by myograph studies in the presence or absence of a nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine (L-NNA). Maximum contractile response to ET-1 was augmented in mesenteric vessels (155 +/- 18% in GK vs. 81 +/- 6% in control; n = 5-7) but not in the basilar artery (134 +/- 29% in GK vs. 107 +/- 17% in control; n = 4 per group). However, vascular relaxation was impaired in the basilar arteries (22 +/- 4% in GK vs. 53 +/- 7% in control; n = 4 per group) but not in mesenteric arteries of GK rats. Inhibition of NOS decreased the relaxation response of basilar arteries to 15 +/- 8% and 42 +/- 5% in GK and control rats, respectively; whereas, in resistance vessels, corresponding values were 56 +/- 7% and 89 +/- 3% (vs. 109 +/- 2% and 112 +/- 3% without NOS blockade), indicating the involvement of different vasorelaxation-promoting pathways in these vascular beds. These findings provide evidence that the ET system is activated even under mild hyperglycemia and that it contributes to the hyperreactivity of resistance vessels, therefore, the ET system may play an important role in elevated blood pressure in Type 2 diabetes.  相似文献   

6.
The purpose of this study was to test the hypothesis that exposure to short-term microgravity or long-term hindlimb unloading induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: preflight (PF, n = 12); flight (Fl, n = 7); flight cage simulation (Sim, n = 6), and vivarium control (Viv, n = 7). Animals in the Fl group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the hindlimb-unloading study were subdivided into three groups: control (Con, n = 20), 7-day hindlimb-unloaded (7HU, n = 10), and 28-day hindlimb-unloaded (28HU, n = 19). Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- 0.03 g; Fl 1.32 +/- 0.02 g; Sim 1.28 +/- 0.04 g; Viv 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hindlimb unloading (Con 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on the peak rate of rise in left ventricular pressure, an estimate of myocardial contractility (Con 8,055 +/- 385 mmHg/s; 28HU 8,545 +/- 755 mmHg/s). These data suggest that cardiac atrophy does not occur after short-term exposure to microgravity and that neither short- nor long-term simulated microgravity alters cardiac mass or function.  相似文献   

7.
Previous studies have shown that hindlimb unweighting of rats, a model of microgravity, reduces evoked contractile tension of peripheral conduit arteries. It has been hypothesized that this diminished contractile tension is the result of alterations in the mechanical properties of these arteries (e.g., active and passive mechanics). Therefore, the purpose of this study was to determine whether the reduced contractile force of the abdominal aorta from 2-wk hindlimb-unweighted (HU) rats results from a mechanical function deficit resulting from structural vascular alterations or material property changes. Aortas were isolated from control (C) and HU rats, and vasoconstrictor responses to norepinephrine (10(-9)-10(-4) M) and AVP (10(-9)-10(-5) M) were tested in vitro. In a second series of tests, the active and passive Cauchy stress-stretch relations were determined by incrementally increasing the uniaxial displacement of the aortic rings. Maximal Cauchy stress in response to norepinephrine and AVP were less in aortic rings from HU rats. The active Cauchy stress-stretch response indicated that, although maximum stress was lower in aortas from HU rats (C, 8.1 +/- 0.2 kPa; HU, 7.0 +/- 0.4 kPa), it was achieved at a similar hoop stretch. There were also no differences in the passive Cauchy stress-stretch response or the gross vascular morphology (e.g., medial cross-sectional area: C, 0.30 +/- 0.02 mm(2); HU, 0.32 +/- 0.01 mm(2)) between groups and no differences in resting or basal vascular tone at the displacement that elicits peak developed tension between groups (resting tension: C, 1.71 +/- 0.06 g; HU, 1.78 +/- 0.14 g). These results indicate that HU does not alter the functional mechanical properties of conduit arteries. However, the significantly lower active Cauchy stress of aortas from HU rats demonstrates a true contractile deficit in these arteries.  相似文献   

8.
To determine whether simulated microgravity in rats is associated with vascular dysfunction, we measured responses of isolated, pressurized mesenteric resistance artery segments (157- to 388-microm ID) to vasoconstrictors, pressure, and shear stress after 28-day hindlimb suspension (HS). Results indicated no differences between HS and control (C) groups in 1) sensitivity or maximal responses to vasoconstrictors (norepinephrine, phenylephrine, serotonin, KCl); 2) ID, external diameter, or ratio of wall thickness to ID; 3) distensibility; or 4) vasodilatory responses to shear stress. Myogenic tone was attenuated (P < 0.05) in HS arteries vs. C, as evidenced by 1) decreased magnitude of tone in larger vessels (second-order branch off superior mesenteric artery, 261- to 388-microm ID) at pressures >/=40 mmHg in the presence of phenylephrine (10(-7) M) and 2) decreased magnitude of tone in smaller vessels (third-order branch off superior mesenteric artery, 157- to 277-microm ID), which exhibited spontaneous tone, at pressures > or =70 mmHg. This attenuation of myogenic tone after HS could contribute to orthostatic intolerance because myogenic tone contributes to the overall tone of resistance arteries.  相似文献   

9.
The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.  相似文献   

10.
It has been hypothesized that microgravity-induced orthostatic hypotension may result from an exaggerated vasodilatory responsiveness of arteries. The purpose of this study was to determine whether skeletal muscle arterioles exhibit enhanced vasodilation in rats after 2 wk of hindlimb unloading (HU). First-order arterioles isolated from soleus and white gastrocnemius muscles were tested in vitro for vasodilatory responses to isoproterenol (Iso), adenosine (Ado), and sodium nitroprusside (SNP). HU had no effect on responses induced by Iso but diminished maximal vasodilation to Ado and SNP in both muscles. In addition, vasodilatory responses in arterioles from control rats varied between muscle types. Maximal dilations induced by Iso (soleus: 42 +/- 6%; white gastrocnemius: 60 +/- 7%) and Ado (soleus: 51 +/- 8%; white gastrocnemius: 81 +/- 6%) were greater in arterioles from white gastrocnemius muscles. These data do not support the hypothesis that microgravity-induced orthostatic hypotension results from an enhanced vasodilatory responsiveness of skeletal muscle arterioles. Furthermore, the data support the concept that dilatory responsiveness of arterioles varies in muscle composed of different fiber types.  相似文献   

11.
The prevalence of ischemic heart disease is lower in premenopausal females than in males of corresponding age. This should be related to gender differences in coronary functions. We tested whether biomechanical differences exist between intramural coronary resistance arteries of male and female rats. Intramural branches of the left anterior descending coronary artery (uniformly approximately 200microm in diameter) were isolated, cannulated and studied by microarteriography. Intraluminal pressure was increased from 2 to 90mmHg in steps and steady-state diameters were measured. Measurements were repeated in the presence of vasoconstrictor U46619 (10(-6)M) and the endothelial coronary vasodilator bradykinin (BK) (10(-6)M). Finally, passive diameters were recorded in calcium-free saline. A similar inner radius and a higher wall thickness (41.5+/-2.9microm vs. 31.4+/-2.7microm at 50mmHg in the passive condition, p<0.05) resulted in lower tangential wall stresses in male rats (18.9+/-1.9kPa vs. 24.9+/-2.5kPa at 50mmHg, p<0.05). Isobaric elastic modulus of vessels from male animals was significantly smaller at higher pressures. Vasoconstrictor response was significantly stronger in male than in female animals. Endothelial relaxations induced by BK were not different. This is the first demonstration that biomechanical characteristics of intramural coronary resistance arteries of a mammalian species are different in the male and female sexes. Higher wall thickness and higher vascular contractility in males are associated with similar endothelial function and larger high-pressure elasticity compared to females. These gender differences in biomechanics of coronary resistance arteries of rats may contribute to our better understanding the characteristic physiological and pathological differences in humans.  相似文献   

12.
Simulated microgravity depresses the ability of arteries to constrict to norepinephrine (NE). In the present study the role of nitric oxide-dependent mechanisms on the vascular hyporesponsiveness to NE was investigated in peripheral arteries of the rat after 20 days of hindlimb unweighting (HU). Blood vessels from control rats and rats subjected to HU (HU rats) were cut into 3-mm rings and mounted in tissue baths for the measurement of isometric contraction. Mechanical removal of the endothelium from carotid artery rings, but not from aorta or femoral artery rings, of HU rats restored the contractile response to NE toward control. A 10-fold increase in sensitivity to ACh was observed in phenylephrine-precontracted carotid artery rings from HU rats. In the presence of the nitric oxide synthase (NOS) substrate L-arginine, the inducible NOS inhibitor aminoguanidine (AG) restored the contractile responses to NE to control levels in the femoral, but not carotid, artery rings from HU rats. In vivo blood pressure measurements revealed that the peak blood pressure increase to NE was significantly greater in the control than in the HU rats, but that to AG was less than one-half in control compared with HU rats. These results indicate that the endothelial vasodilator mechanisms may be upregulated in the carotid artery, whereas the inducible NOS expression/activity may be increased in the femoral artery from HU rats. These HU-mediated changes could produce a sustained elevation of vascular nitric oxide levels that, in turn, could contribute to the vascular hyporesponsiveness to NE.  相似文献   

13.
Functional unloading of m. soleus of male Wistar rats was found to cause a reduction in protein synthesis. The level of phosphorylation of the translation elongation factor 2 (eEF2) and the eEF2 kinase (eEF2k) activity in m. soleus after 14 days of unloading were assessed. Rats were divided into the control group (C) and the group with hindlimb unloading for 14 days (HU14). The level of eEF2 phosphorylation in group HU14 was 80%, whereas in the control is was 40%. The indices of eEF2k expression and protein content in group HU14 increased compared to group C.  相似文献   

14.
We investigated the preventive effects of nucleoprotein on capillary regression and mitochondrial dysfunction induced by unloading in the soleus muscle of rats. Nucleoprotein is a supplement made from soft roe of salmon, and its major components are nucleotides and protamine. Adult male Sprague-Dawley rats were divided randomly into control, hindlimb unloading (HU), and hindlimb unloading plus nucleoprotein administration (HU+ NP) groups. Hindlimb unloading was carried out for 2 weeks in the rats belonging to the HU and the HU+ NP groups. The rats of the HU+ NP group were administered nucleoprotein (500 mg/kg) using a feeding needle twice a day for 2 weeks. Hindlimb unloading resulted in capillary regression, decreased succinate dehydrogenase activity of the muscle fiber, and decreased PGC-1α expression in the soleus muscle. These effects were prevented by administration of nucleoprotein. Nucleoprotein appears to prevent capillary regression and mitochondrial dysfunction caused by unloading of the skeletal muscle. Therefore, nucleoprotein supplementation may be an effective therapy for maintaining capillary network and mitochondrial metabolism of the muscle fiber during an unloading period.  相似文献   

15.
This study was designed to clarify whether simulated microgravity can induce differential changes in the current and protein expression of the L-type Ca(2+) channel (Ca(L)) in cerebral and mesenteric arteries and whether these changes can be prevented by daily short-duration -G(x) exposure. Tail suspension [hindlimb unloading (HU)] for 3 and 28 days was used to simulate short- and medium-term microgravity-induced deconditioning effects. Standing (STD) for 1 h/day was used to provide -G(x) as a countermeasure. Whole cell patch-clamp experiments revealed an increase in current density of Ca(L) of vascular smooth muscle cells (VSMCs) isolated from cerebral arteries of rats subjected to HU and a decrease in VSMCs from mesenteric arteries. Western blot analysis revealed a significant increase and decrease of Ca(L) channel protein expression in cerebral and small mesenteric arterial VSMCs, respectively, only after 28 days of HU. STD for 1 h/day did not prevent the increase of Ca(L) current density in cerebral arterial VSMCs, but it prevented completely (within 3 days) and partially (28 days) the decrease of Ca(L) current density in small mesenteric arterial VSMCs. Consistent with the changes in Ca(L) current, STD for 1 h/day did not prevent the increase of Ca(L) expression in cerebrovascular myocytes but did prevent the reduction of Ca(L) expression in mesenteric arterial VSMCs subjected to 28 days of HU. These data indicate that simulated microgravity up- and downregulates the current and expression of Ca(L) in cerebral and hindquarter VSMCs, respectively. STD for 1 h/day differentially counteracted the changes of Ca(L) function and expression in cerebral and hindquarter arterial VSMCs of HU rats, suggesting the complexity of the underlying mechanisms in the effectiveness of intermittent artificial gravity for prevention of postflight cardiovascular deconditioning, which needs further clarification.  相似文献   

16.
To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.  相似文献   

17.
Exposure to a period of microgravity or bed rest produces several physiological adaptations. These changes, which include an increased incidence of orthostatic intolerance, have an impact when people return to a 1G environment or resume an upright posture. Compared with males, females appear more susceptible to orthostatic intolerance after exposure to real or simulated microgravity. Decreased arterial baroreflex compensation may contribute to orthostatic intolerance. We hypothesized that female rats would exhibit a greater reduction in arterial baroreflex function after hindlimb unloading (HU) compared with male rats. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious animals after 13-15 days of HU. Baseline HR was elevated in female rats, and HU increased HR in both genders. Consistent with previous results in males, baroreflex-mediated activation of RSNA was blunted by HU in both genders. Maximum RSNA in response to decreases in MAP was reduced by HU (male control 513 +/- 42%, n = 11; male HU 346 +/- 38%, n = 13; female control 359 +/- 44%, n = 10; female HU 260 +/- 43%, n = 10). Maximum baroreflex increase in RSNA was lower in females compared with males in both control and HU rats. Both female gender and HU attenuated baroreflex-mediated increases in sympathetic activity. The combined effects of HU and gender resulted in reduced baroreflex sympathetic reserve in females compared with males and could contribute to the greater incidence of orthostatic intolerance in females after exposure to spaceflight or bed rest.  相似文献   

18.
After periods of microgravity or bed rest, individuals often exhibit reduced Vo(2 max), hypovolemia, cardiac and vascular effects, and autonomic dysfunction. Recently, alterations in expression of vascular and central nervous system NO synthase (NOS) have been observed in hindlimb-unloaded (HU) rats, a model used to simulate physiological effects of microgravity or bed rest. We examined the effects of 14 days of hindlimb unloading on hemodynamic responses to systemic NOS inhibition in conscious control and HU rats. Because differences in NO and autonomic regulation might occur after hindlimb unloading, we also evaluated potential differences in resting autonomic tone and effects of NOS inhibition after autonomic blockade. Administration of nitro-L-arginine methyl ester (L-NAME; 20 mg/kg iv) increased mean arterial pressure (MAP) to similar levels in control and HU rats. However, the change in MAP in response to L-NAME was less in HU rats, that had an elevated baseline MAP. In separate experiments, atropine (1 mg/kg iv) increased heart rate (HR) in control but not HU rats. Subsequent administration of the ganglionic blocker hexamethonium (30 mg/kg iv) decreased MAP and HR to a greater extent in HU rats. Administration of L-NAME after autonomic blockade increased MAP in both groups to a greater extent compared with intact conditions. However, the pressor response to L-NAME was still reduced in HU rats. These data suggest that hindlimb unloading in rats reduces peripheral NO as well as cardiac parasympathetic tone. Along with elevations in sympathetic tone, these effects likely contribute to alterations in vascular control and changes in autonomic reflex function following spaceflight or bed rest.  相似文献   

19.
20.
It is known that hindlimb unloading brings about the intracellular Ca2+ accumulation and MyHC slow-to-fast shift in m.soleus. SERCA (sarcoendoplasmatic reticulum Ca ATPase) function as a Ca pump to uptake to sarcoendoplasmatic reticulum after skeletal muscle contraction, and can modulate intracellular resting Ca level. The study was aimed at investigation of the role of intracellular Ca2+ level for MyHC and SERCA isoforms transformation in m.soleus under hindlimb unloading. To determine role of intracellular Ca we administrated nifedipin--specific blocker of L-type calcium channel in myofibers. We hypothesized that decrease of intracellular calcium level prevented-NFATc1 nuclear translocation and MyHC slow-to-fast transformation. 42 male Wistar rats (180-200 g) were divided in 3 groups: cage control (C, n = 14), 14 days HU (HU, n = 14), 14 days HU with 7 mg/kg/day of nifedipin administration with water (HUN, n = 14). The study has shown that increase of intracellular Ca2+ level under HU leads to MHC slow-to-fast shift via activation of calcineurin-NFATc1 signaling pathway. Percentage of muscle fibers with SERCA I increased under hindlimb unloading, being dependent of intracellular calcium level, percentage of muscle fibers with SERCA II decreased under hindlimb unloading but did not depend on calcium. We suppose that nifedipin administration decreases intracellular Ca level, prevents MHC slow-to-fast shift via prevention of NFATcl accumulation in nuclear extract of m.soleus, and prevent increase of SERCAI expression. The work was supported by grants RFBR N05-04-49255a, 04-04-49044, 05-04-08200-ofi-a, contract with Federal Agency for Science and Iinnovation N02.467.11.3005, and Presidium of RAS program "Basic sciences for medicine".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号