首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10-minus 3 M Na2 MoO4 was active in the restoration assay. Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxE-14, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract. The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 mu g molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

2.
R J Downey  R J Gagliardi 《Microbios》1991,66(267):107-116
Two strains characterized as niaD structural gene mutants in Aspergillus nidulans produce a nitrate reductase which retains the ability to react with nitrate while lacking the ability to oxidize its naturally occurring substrate NADPH. Fifteen such nitrate reactive niaD strains exhibited strong interallelic complementation when tested against strains bearing point mutations in eleven other loci essential to induction and synthesis of nitrate reductase in Aspergillus. Fourteen representatives of this phenotype formed enzyme with a molecular weight equivalent to that of the wild type (200 kD) and also remained inducible by nitrate and repressible by ammonium. The mutation appears to alter the NADPH binding domain of the nitrate reductase since the affinity for the dinucleotide fold in Affigel blue and the dissociation constant (Ks) for enzyme isolated from the mutants on the basis of reduced methyl viologen-nitrate reductase activity is significantly less than that observed for the native enzyme from the wild type.  相似文献   

3.
4.
chlD gene function in molybdate activation of nitrate reductase.   总被引:24,自引:19,他引:5       下载免费PDF全文
chlD mutants of Escherichia coli lack active nitrate reductase but form normal levels of this enzyme when the medium is supplemented with 10-3 M molybdate. When chlD mutants were grown in unsupplemented medium and then incubated with molybdate in the presence of chloramphenicol, they formed about 5% the normal level of nitrate reductase. Some chlD mutants or the wild type grown in medium supplemented with tungstate accumulated an inactive protein which was electrophoretically identical to active nitrate reductase. Addition of molybdate to those cells in the presence of chloramphenicol resulted in the formation of fully induced levels of nitrate reductase. Two chlD mutants, including a deletion mutant, failed to accumulate the inactive protein and to form active enzyme under the same conditions. Insertion of 99-Mo into the enzyme protein paralleled activation; 185-W could not be demonstrated to be associated with the accumulated inactive protein. The rates of activation of nitrate reductase at varying molybdate concentrations indicated that the chlD gene product facilitates the activation of nitrate reductase at concentrations of molybdate found in normal growth media. At high concentrations, molybdate circumvented this function in chlD mutants and appeared to activate nitrate reductase by a mass action process. We conclude that the chlD gene plays two distinguishable roles in the formation of nitrate reductase in E. coli. It is involved in the accumulation of fully induced levels of the nitrate reductase protein in the cell membrane and it facilitates the insertion of molybdenum to form the active enzyme.  相似文献   

5.
Significant nitrate reductase activity was detected in mutants of Salmonella typhimurium which mapped at or near chlC and which were incapable of growth with nitrate as electron acceptor. The same mutants were sensitive to chlorate and performed sufficient nitrate reduction to permit anaerobic growth with nitrate as the sole nitrogen source in media containing glucose. The mutant nitrate-reducing protein did not migrate with the wild-type nitrate reductase in polyacrylamide electrophoretic gels. Studies of the electrophoretic mobility in gels of different polyacrylamide concentration revealed that the wild-type and mutant nitrate reductases differed significantly in both size and charge. The second enzyme also differed from the wild-type major enzyme in its response to repression by low pH and its lack of response to repression by glucose. The same mutants were found to be derepressed for nitrite reductase and for a cytochrome with a maximal reduced absorbance at 555 nm at 25°C. This cytochrome was not detected in preparations of the wild type grown under the same conditions. Extracts of these mutants contained normal amounts of the b-type cytochromes which, in the wild type, were associated with nitrate reductase and formate dehydrogenase, respectively, although they could not mediate the oxidation of these cytochromes with nitrate. They were capable of oxidizing the derepressed 555-nm peak cytochrome with nitrate. It is suggested that these mutants synthesize a nitrate-reducing enzyme which is distinct from the chlC gene product and which is repressed in the wild type during anaerobic growth with nitrate.  相似文献   

6.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10−3 M Na2MoO4 was active in the restoration assay.Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract.The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 μg molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

7.
Tn5 was used to generate mutants that were deficient in the dissimilatory reduction of nitrite for Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. Three types of mutants were isolated. The first type showed a lack of growth on nitrate, nitrite, and nitrous oxide. The second type grew on nitrate and nitrous oxide but not on nitrite (Nir-). The two mutants of this type accumulated nitrite, showed no nitrite reductase activity, and had no detectable nitrite reductase protein bands in a Western blot (immunoblot). Tn5 insertions in these two mutants were clustered in the same region and were within the structural gene for nitrite reductase. The third type of mutant grew on nitrate but not on nitrite or nitrous oxide (N2O). The mutant of this type accumulated significant amounts of nitrite, NO, and N2O during anaerobic growth on nitrate and showed a slower growth rate than the wild type. Diethyldithiocarbamic acid, which inhibited nitrite reductase activity in the wild type, did not affect NO reductase activity, indicating that nitrite reductase did not participate in NO reduction. NO reductase activity in Nir- mutants was lower than that in the wild type when the strains were grown on nitrate but was the same as that in the wild type when the strains were grown on nitrous oxide. These results suggest that the reduction of NO and N2O was carried out by two distinct processes and that mutations affecting nitrite reduction resulted in reduced NO reductase activity following anaerobic growth with nitrate.  相似文献   

8.
Induction and Repression of Nitrate Reductase in Neurospora crassa   总被引:7,自引:4,他引:3       下载免费PDF全文
Synthesis of wild-type Neurospora crassa assimilatory nitrate reductase is induced in the presence of nitrate ions and repressed in the presence of ammonium ions. Effects of several Neurospora mutations on the regulation of this enzyme are shown: (i) the mutants, nit-1 and nit-3, involving separate lesions, lack reduced nicotinamide adenine dinucleotide (NADPH)-nitrate reductase activity and at least one of three other activities associated with the wild-type enzyme. The two mutants do not require the presence of nitrate for induction of their aberrant nitrate reductases and are constitutive for their component nitrate reductase activities in the absence of ammonium ions. (ii) An analog of the wild-type enzyme (similar to the nit-1 enzyme) is formed when wild type is grown in a medium in which molybdenum has been replaced by vanadium or tungsten; the resulting enzyme lacks NADPH-nitrate reductase activity. Unlike nit-1, wild type produced this analog only in the presence of nitrate. Contaminating nitrate does not appear to be responsible for the observed mutants' activities. Nitrate reductase is proposed to be autoregulated. (iii) Mutants (am) lacking NADPH-dependent glutamate dehydrogenase activity partially escape ammonium repression of nitrate reductase. The presence of nitrate is required for the enzyme's induction. (iv) A double mutant, nit-1 am-2, proved to be an ideal test system to study the repressive effects of nitrogen-containing metabolites on the induction of nitrate reductase activity. The double mutant does not require nitrate for induction of nitrate reductase, and synthesis of the enzyme is not repressed by the presence of high concentrations of ammonium ions. It is, however, repressed by the presence of any one of six amino acids. Nitrogen metabolites (other than ammonium) appear to be responsible for the mediation of "ammonium repression."  相似文献   

9.
Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.Scientific Paper No. 7617, College of Agriculture Research Center and Home Economics, Washington State University, Pullman, WA, USA. Project Nos. 0233 and 0745  相似文献   

10.
Nitrate reduction mutants of fusarium moniliforme (gibberella fujikuroi)   总被引:9,自引:1,他引:8  
Klittich C  Leslie JF 《Genetics》1988,118(3):417-423
Twelve strains of Fusarium moniliforme were examined for their ability to sector spontaneously on toxic chlorate medium. All strains sectored frequently; 91% of over 1200 colonies examined formed chlorate-resistant, mutant sectors. Most of these mutants had lesions in the nitrate reduction pathway and were unable to utilize nitrate (nit mutants). nit mutations occurred in seven loci: a structural gene for nitrate reductase (nit1), a regulatory gene specific for the nitrate reduction pathway (nit3), and five genes controlling the production of a molybdenum-containing cofactor that is necessary for nitrate reductase activity (nit2, nit4, nit5, nit6, nit7). No mutations affecting nitrite reductase or a major nitrogen regulatory locus were found among over 1000 nit mutants. Mutations of nit1 were recovered most frequently (39-66%, depending on the strain) followed by nit3 mutations (23-42%). The frequency of isolation of each mutant type could be altered, however, by changing the source of nitrogen in the chlorate medium. We concluded that genetic control of nitrate reduction in F. moniliforme is similar to that in Aspergillus and Neurospora, but that the overall regulation of nitrogen metabolism may be different.  相似文献   

11.
D. Zhang  P. A. Lefebvre 《Genetics》1997,146(1):121-133
In Chlamydomonas reinhardtii, the genes required for nitrate assimilation, including the gene encoding nitrate reductase (NIT1), are subject to repression by ammonia. To study the mechanism of ammonia repression, we employed two approaches to search for mutants with defective repression of NIT1 gene expression. (1) PF14, a gene required for flagellar function, was used as a reporter gene for expression from the NIT1 promoter. When introduced into a pf14 mutant host, the NIT1:PF14 chimeric construct produced a transformant (T10-10B) with a conditional swimming phenotype. Spontaneous mutants with defective ammonia repression of the NIT1 promoter were screened for by isolating cells that gained constitutive motility. (2) Insertional mutagenesis was performed, followed by screening for chlorate sensitivity in the presence of ammonia ion. One insertional mutant and six spontaneous mutants were allelic and defined a new gene, FAR1 (free from ammonia repression). FAR1 was mapped to Linkage Group I, 7.7 cM to the right of the centromere. The far1-1 mutant strain was used to clone DNA adjacent to the site of plasmid insertion, which was then used as a hybridization probe to clone the FAR1 gene from wild type.  相似文献   

12.
Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate.  相似文献   

13.
Chlorate-resistant mutants of Arabidopsis thaliana were isolated in order to find nitrate reductase-less mutants. It appeared that chlorate resistance in higher plants can arise by mutations concerning two different mechanisms: (1) a lower reduction rate of chlorate due to a lower level of nitrate reductase activity; (2) a lower increase in content of chlorate and/or chlorite and of chloride after chlorate treatment. One mutant of the first type and two mutants of the second type are described. The nitrate reductase-less mutant grows poorly on a medium with nitrate as the only nitrogen source but is not blocked in the uptake of nitrate. Both the other mutants exhibit a nitrate reductase activity equal to or higher than that of the wild type, but probably have a much lowered uptake of chlorate. The latter two mutants belong to the same complementation group, whereas the nitrate reductase-less mutant belongs to a different group.  相似文献   

14.
We have selected eight pyrimethamine resistant mutants of a cloned, drug sensitive, Plasmodium falciparum malaria parasite, strain FCR3. The mutants exhibited resistance to between 10 and 200 times higher concentrations of drug than the wild type parasite. The mutants were selected from cultured parasites that were either unmutagenized or N-methyl-N'-nitro-N-nitrosoguanidine mutagenized. One mutant was shown to contain a mutant dihydrofolate reductase enzyme in parasite extracts that exhibited (1) a five- to ninefold reduction in its binding of methotrexate, (2) an undetectable enzyme activity based on the spectrophotometric conversion of dihydrofolate to tetrahydrofolate, and (3) essentially normal amounts of the parasite's bifunctional thymidylate synthetase-dihydrofolate reductase enzyme. Other mutants exhibited both normal dihydrofolate reductase specific activity and normal enzyme sensitivity to the inhibitory activity of the drug.  相似文献   

15.
ChlD mutants of Escherichia coli are pleiotropic, lacking formate-nitrate reductase activity as well as formate-hydrogenlyase activity. Whole-chain formate-nitrate reductase activity, assayed with formate as the electron donor and measuring the amount of nitrite produced, was restored to wild-type levels in the mutants by addition of 10(-4)m molybdate to the growth medium. Under these conditions, the activity of each of the components of the membrane-bound nitrate reductase chain increased after molybdate supplementation. In the absence of nitrate, the activities of the formate-hydrogenlyase system were also restored by molybdate. Strains deleted for the chlD gene responded in a similar way to molybdate supplementation. The concentration of molybdenum in the chlD mutant cells did not differ significantly from that in the wild-type cells at either low or high concentrations of molybdate in the medium. However, the distribution of molybdenum between the soluble protein and membrane fractions differed significantly from wild type. We conclude that the chlD gene product cannot be a structural component of the formate-hydrogenlyase pathway or the formate-nitrate reductase pathway, but that it must have an indirect role in processing molybdate to a form necessary for both electron transport systems.  相似文献   

16.
Mutant strains in the tsaA gene encoding alkyl hydroperoxide reductase were more sensitive to O(2) and to oxidizing agents (paraquat, cumene hydroperoxide and t-butylhydroperoxide) than the wild type, but were markedly more resistant to hydrogen peroxide. The mutant strains resistance phenotype could be attributed to a 4-fold and 3-fold increase in the catalase protein amount and activity, respectively compared to the parent strain. The wild type did not show an increase in catalase expression in response to sequential increases in O(2) exposure or to oxidative stress reagents, so an adaptive compensatory mutation has probably occurred in the mutants. In support of this, chromosomal complementation of tsaA mutants restored alkyl hydroperoxide reductase, but catalase was still up-expressed in all complemented strains. The katA promoter sequence was the same in all mutant strains and the wild type. Like its Helicobacter pylori counterpart strain, a H. hepaticus tsaA mutant contained more lipid hydroperoxides than the wild type strain. Hepatic tissue from mice inoculated with a tsaA mutant had lesions similar to those inoculated with the wild type, and included coagulative necrosis of hepatocytes. The liver and cecum colonizing abilities of the wild type and tsaA mutant were comparable. Up-expression of catalase in the tsaA mutants likely permits the bacterium to compensate (in colonization and virulence attributes) for the loss of an otherwise important oxidative stress-combating enzyme, alkyl hydroperoxide reductase. The use of erythromycin resistance insertion as a facile way to screen for gene-targeted mutants, and the chromosomal complementation of those mutants are new genetic procedures for studying H. hepaticus.  相似文献   

17.
Molybdenum is required for induction of nitrate reductase and of NAD-linked formate dehydrogenase activities in suspensions of wild type Paracoccus denitrificans; tungsten prevents the development of these enzyme activities. The wild type forms a membrane protein M r150,000 when incubated with tungsten and inducers of nitrate reductase and this is presumed to represent an inactive form of the enzyme. Suspensions of mutant M-1 did not develop nitrate reductase or formate dehydrogenase activities but the membrane protein M r150,000 was formed under all conditions tested, including without inducers and without molybdenum. Analysis of membranes, solubilized with deoxycholate, by polyacrylamide gel electrophoresis under nondenaturing conditions showed that the mutant protein had similar electrophoretic mobility to the active nitrate reductase formed by the wilde type. Autoradiography of preparations from cells incubated with 55Fe showed that the mutant and wild type proteins contained iron. However, in similar experiments with 99Mo, incorporation of molybdenum into the mutant protein was not detectable.We conclude that mutant M-1 is defective in one or more steps required to process molybdenum for incorporation into molybdoenzymes. This failure affects the normal regulation of nitrate reductase protein with respect to the role of inducers.Non-Standard Abbreviations DOC deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

18.
The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from nitrate is catalysed exclusively by periplasmic respiratory enzymes.  相似文献   

19.
Summary A biochemical analysis of mutants altered for nitrate assimilation in Neurospora crassa is described. Mutant alleles at each of the nine nit (nitrate-nonutilizing) loci were assayed for nitrate reductase activity, for three partial activities of nitrate reductase, and for nitrite reductase activity. In each case, the enzyme deficiency was consistent with data obtained from growth tests and complementation tests in previous studies. The mutant strains at these nit loci were also examined for altered regulation of enzyme synthesis. Such exeriments revealed that mutations which affect the structural integrity of the native nitrate reductase molecule can result in constitutive synthesis of this enzyme protein and of nitrite reductase. These results provide very strong evidence that, as in Aspergillus nidulans, nitrate reductase autogenously regulates the pathway of nitrate assimilation. However, only mutants at the nit-2 locus affect the regulation of this pathway by nitrogen metabolite repression.  相似文献   

20.
We describe the primary structure of eukaryotic molybdopterin synthase small and large subunits and compare the sequences of the lower eukaryote, Aspergillus nidulans, and a higher eukaryote, Homo sapiens. Mutants in the A. nidulans cnxG (encoding small subunit) and cnxH (large subunit) genes have been analyzed at the biochemical and molecular level. Chlorate-sensitive mutants, all the result of amino acid substitutions, were shown to produce low levels of molybdopterin, and growth tests suggest that they have low levels of molybdoenzymes. In contrast, chlorate-resistant cnx strains have undetectable levels of molybdopterin, lack the ability to utilize nitrate or hypoxanthine as sole nitrogen sources, and are probably null mutations. Thus on the basis of chlorate toxicity, it is possible to distinguish between amino acid substitutions that permit a low level of molybdopterin production and those mutations that completely abolish molybdopterin synthesis, most likely reflecting molybdopterin synthase activity per se. Residues have been identified that are essential for function including the C-terminal Gly of the small subunit (CnxG), which is thought to be crucial for the sulfur transfer process during the formation of molybdopterin. Two independent alterations at residue Gly-148 in the large subunit, CnxH, result in temperature sensitivity suggesting that this residue resides in a region important for correct folding of the fungal protein. Many years ago it was proposed, from data showing that temperature-sensitive cnxH mutants had thermolabile nitrate reductase, that CnxH is an integral part of the molybdoenzyme nitrate reductase (MacDonald, D. W., and Cove, D. J. (1974) Eur. J. Biochem. 47, 107-110). Studies of temperature-sensitive cnxH mutants isolated in the course of this study do not support this hypothesis. Homologues of both molybdopterin synthase subunits are evident in diverse eukaryotic sources such as worm, rat, mouse, rice, and fruit fly as well as humans as discussed in this article. In contrast, molybdopterin synthase homologues are absent in the yeast Saccharomyces cerevisiae. Precursor Z and molybdopterin are undetectable in this organism nor do there appear to be homologues of molybdoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号