首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Successful production of recombinant proteins (r-proteins) by transient gene expression (TGE) depends on several parameters (including producer cells, culture conditions, transfection procedure, or expression vector) that should be optimized when producing any recombinant product. In this work, TGE-based production of human α-galactosidase A (GLA) is described. Producer cells, expression vectors, and parameters influencing cell metabolism after transfection have been tested. The enzyme is secreted, has the right molecular weight, and is enzymatically active. Productivities of up to 30-40 mg/L have been achieved, with a simple, fast procedure. A 6 × His tag allows enzyme purification in a single step, rendering a highly pure product. We propose a TGE-based protocol able to produce up to several milligrams per liter of highly pure, active GLA in a time as short as a few days. By this, enough amounts of engineered versions of the enzyme can be easily produced to be tested in vitro or in preclinical trials.  相似文献   

2.
Transient gene expression (TGE) provides a method for quickly delivering protein for research using mammalian cells. While high levels of recombinant proteins have been produced in TGE experiments in HEK 293 cells, TGE efforts in the commercially prominent CHO cell line still suffer from inadequate protein yields. Here, we describe a cell-engineering strategy to improve transient production of proteins using CHO cells. CHO-DG44 cells were engineered to overexpress the anti-apoptotic protein Bcl-x(L) and transiently transfected using polyethylenimine (PEI) in serum-free media. Pools and cell lines stably expressing Bcl-x(L) showed enhanced viable cell density and increased production of a glycosylated, therapeutic fusion protein in shake flask TGE studies. The improved cell lines showed fusion protein production levels ranging from 12.6 to 27.0 mg/L in the supernatant compared to the control cultures which produced 6.3-7.3 mg/L, representing a 70-270% increase in yield after 14 days of fed-batch culture. All Bcl-xL-expressing cell lines also exhibited an increase in specific productivity during the first 8 days of culture. In addition to increased production, Bcl-x(L) cell lines maintained viabilities above 90% and less apoptosis compared to the DG44 host which had viabilities below 60% after 14 days. Product quality was comparable between a Bcl-xL-engineered cell line and the CHO host. The work presented here provides the foundation for using anti-apoptosis engineered CHO cell lines for increased production of therapeutic proteins in TGE applications.  相似文献   

3.
Transient gene expression (TGE) is a methodology employed in bioprocessing for the fast provision of recombinant protein material. Mild hypothermia is often introduced to overcome the low yield typically achieved with TGE and improve specific protein productivity. It is therefore of interest to examine the impact of mild hypothermic temperatures on both the yield and quality of transiently expressed proteins and the relationship to changes in cellular processes and metabolism. In this study, we focus on the ability of a Chinese hamster ovary cell line to galactosylate a recombinant monoclonal antibody (mAb) product. Through experimentation and flux balance analysis, our results show that TGE in mild hypothermic conditions led to a 76% increase in qP compared to TGE at 36.5°C in our system. This increase is accompanied by increased consumption of nutrients and amino acids, together with increased production of intracellular nucleotide sugar species, and higher rates of mAb galactosylation, despite a reduced rate of cell growth. The reduction in biomass accumulation allowed cells to redistribute their energy and resources toward mAb synthesis and Fc‐glycosylation. Interestingly, the higher capacity of cells to galactosylate the recombinant product in TGE at 32°C appears not to have been assisted by the upregulation of galactosyltransferases (GalTs), but by the increased expression of N‐acetylglucosaminyltransferase II (GnTII) in this cell line, which facilitated the production of bi‐antennary glycan structures for further processing.  相似文献   

4.
Large-scale transient gene expression (TGE) in mammalian cells is an attractive method to rapidly produce recombinant proteins for pre-clinical studies, with some processes reported to reach 100 L. However, the yield remains low, hardly over 20 mg protein/L, mainly because the current TGEs have been performed at low cell density (approximately 5 x 10(5) cells/mL). In this study, the strategy to improve TGE focuses on facilitating transfection at high cell density. A high-density perfusion culture of 293 EBNA1 cells was established in 2-L bioreactor using Freestyle 293 expression medium (Invitrogen, Singapore) to grow the cells for transfection. Transfection was then carried out at 1 x 10(7) cells/mL using polyethylenimine (PEI) as DNA carrier, at the optimized conditions of 6 microg DNA/10(7) cells and 1:3 DNA to PEI mass ratio. During the post-transfection phase, 80.8 mg/L of the model protein, EPO was obtained at day 5.5 post-transfection (130 mg total EPO production) using a fed-batch culture mode. In comparison, perfusion cultures using an enriched SFM II medium resulted in a longer post-transfection production phase (8 days), and 227 mg of EPO was produced in 10.7 L medium, showing that high-density TGE enables the production of several hundreds of milligrams of protein in a 2 L bioreactor. In addition, a protocol for economical plasmid preparation based on anion exchange was also established to satisfy TGE's demand in terms of quality and quantity. To the best of our knowledge, this is the first report of transient transfections at a high cell density of up to 1 x 10(7) cells/mL.  相似文献   

5.
近年来越来越多的重组蛋白,尤其是单克隆抗体,作为生物药应用于医疗。临床及实验室研究中,经常要求在短时间内生产一定量的候选蛋白供应研究需求。经典的建立稳定细胞系生产重组蛋白过程复杂冗长,而作为替代方法,瞬时基因表达技术在数周内即可生产数十至数百毫克重组蛋白,得到广泛应用。本文将总结近年来工业及学术上,在哺乳动物细胞尤其是人胚胎肾细胞(HEK293)及中国仓鼠卵巢细胞(CHO)中瞬时表达重组蛋白的一系列研究,概述瞬时表达技术在宿主细胞改造、表达载体最优化设计、瞬时转染条件等方面的研究进展,并展望其未来发展方向。  相似文献   

6.
赵志文  张铮  吴颖 《生物磁学》2014,(3):593-596
近年来越来越多的重组蛋白,尤其是单克隆抗体,作为生物药应用于医疗。临床及实验室研究中,经常要求在短时间内生产一定量的候选蛋白供应研究需求。经典的建立稳定细胞系生产重组蛋白过程复杂冗长,而作为替代方法,瞬时基因表达技术在数周内即可生产数十至数百毫克重组蛋白,得到广泛应用。本文将总结近年来工业及学术上,在哺乳动物细胞尤其是人胚胎肾细胞(HEK293)TL中国仓鼠卵巢细胞(CHO)中瞬时表达重组蛋白的一系列研究,概述瞬时表达技术在宿主细胞改造、表达载体最优化设计、瞬时转染条件等方面的研究进展,并展望其未来发展方向。  相似文献   

7.
8.
Large-scale transient transfection of mammalian cells is a recent and powerful technology for the fast production of milligram amounts of recombinant proteins (r-proteins). As many r-proteins used for therapeutic and structural studies are naturally secreted or engineered to be secreted, a cost-effective serum-free culture medium that allows their efficient expression and purification is required. In an attempt to design such a serum-free medium, the effect of nine protein hydrolysates on cell proliferation, transfection efficiency, and volumetric productivity was evaluated using green fluorescent protein (GFP) and human placental secreted alkaline phosphate (SEAP) as reporter genes. The suspension growing, serum-free adapted HEK293SF-3F6 cell line was stably transfected with an EBNA1-expression vector to increase protein expression when using EBV oriP bearing plasmids. Compared to our standard serum-free medium, concomitant addition of the gelatin peptone N3 and removal of BSA slightly enhanced transfection efficiency and significantly increased volumetric productivity fourfold. Using the optimized medium formulation, transfection efficiencies between 40-60% were routinely obtained and SEAP production reached 18 mg/L(-1). To date, we have successfully produced and purified over fifteen r-proteins from 1-14-L bioreactors using this serum-free system. As examples, we describe the scale-up of two secreted his-tagged r-proteins Tie-2 and Neuropilin-1 extracellular domains (ED) in bioreactors. Each protein was successfully purified to >95% purity following a single immobilized metal affinity chromatography (IMAC) step. In contrast, purification of Tie-2 and Neuropilin-1 produced in serum-containing medium was much less efficient. Thus, the use of our new serum-free EBNA1 cell line with peptone-enriched serum-free medium significantly improves protein expression compared to peptone-less medium, and significantly increases their purification efficiency compared to serum-containing medium. This eliminates labor-intensive and expensive chromatographic steps, and allows for the simple, reliable, and extremely fast production of milligram amounts of r-proteins within 5 days posttransfection.  相似文献   

9.
10.
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.  相似文献   

11.
12.
Production of ribosomes is a fundamental process that occurs in all dividing cells. It is a complex process consisting of the coordinated synthesis and assembly of four ribosomal RNAs (rRNA) with about 80 ribosomal proteins (r-proteins) involving more than 150 nonribosomal proteins and other factors. Diamond Blackfan anemia (DBA) is an inherited red cell aplasia caused by mutations in one of several r-proteins. How defects in r-proteins, essential for proliferation in all cells, lead to a human disease with a specific defect in red cell development is unknown. Here, we investigated the role of r-proteins in ribosome biogenesis in order to find out whether those mutated in DBA have any similarities. We depleted HeLa cells using siRNA for several individual r-proteins of the small (RPS6, RPS7, RPS15, RPS16, RPS17, RPS19, RPS24, RPS25, RPS28) or large subunit (RPL5, RPL7, RPL11, RPL14, RPL26, RPL35a) and studied the effect on rRNA processing and ribosome production. Depleting r-proteins in one of the subunits caused, with a few exceptions, a decrease in all r-proteins of the same subunit and a decrease in the corresponding subunit, fully assembled ribosomes, and polysomes. R-protein depletion, with a few exceptions, led to the accumulation of specific rRNA precursors, highlighting their individual roles in rRNA processing. Depletion of r-proteins mutated in DBA always compromised ribosome biogenesis while affecting either subunit and disturbing rRNA processing at different levels, indicating that the rate of ribosome production rather than a specific step in ribosome biogenesis is critical in patients with DBA.  相似文献   

13.
Transient gene expression (TGE) using mammalian cells is an extensively used technology for the production of antibodies and recombinant proteins and has been widely adopted by both academic and industrial labs. Chinese Hamster Ovary (CHO) cells have become one of the major workhorses for TGE of recombinant antibodies due to their attractive features: post-translational modifications, adaptation to high cell densities, and use of serum-free media. In this study, we describe the optimization of parameters for TGE for antibodies from CHO cells. Through a matrix evaluation of multiple factors including inoculum, transfection conditions, amount and type of DNA used, and post-transfection culture conditions, we arrived at an uniquely optimized process with higher titer and reduced costs and time, thus increasing the overall efficiency of early antibody material supply. We further investigated the amount of coding DNA used in TGE and the influence of kinetics and size of the transfection complex on the in vitro efficiency of the transfection. We present here the first report of an optimized TGE platform using Filler DNA in an early drug discovery setting for the screening and production of therapeutic mAbs.  相似文献   

14.
The relative differential synthesis rates2 of individual ribosomal proteins (r-proteins) were determined for Escherichia coli B/r growing in succinate medium (growth rate, μ = 0.65 doublings per hour), glucose medium (μ = 1.36) and glucose-amino acids medium (μ = 1.90). These differential synthesis rates were found to increase co-ordinately with increasing bacterial growth rates; this implies that ribosomes from bacteria growing at different rates are homogeneous with respect to their protein composition (i.e. the stoichiometric amounts of the different r-proteins per ribosome are constant and independent of the bacterial growth rate). Following incorporation into ribosomes, the bulk of the r-proteins were found to be as stable as total protein. Only two r-proteins, S6 and S21, were less stable than total protein; their decay half-lives, measured in succinate and glucose-amino acids cultures, were estimated to be approximately 500 minutes. In addition, post-translational modification of proteins S18, L6 and L11 was observed and the possible relations between modification and in vivo ribosome assembly are discussed. Finally, evidence is presented suggesting that the coordinate production of r-proteins may result, in part, from a mechanism that degrades excess r-proteins that are not rapidly incorporated into ribosomal particles.  相似文献   

15.
16.
Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI) as a transfection reagent has been considered as an attractive method to produce recombinant proteins rapidly for pre-clinical studies. A high level of transfection efficiency, which is required for high-level TGE in CHO cells, can be achieved by increasing the PEI concentration. However, PEI induces cytotoxicity in a dose-dependent manner. To overcome this problem, Bcl-2 protein, an anti-apoptotic protein, was overexpressed in CHO cells (DG44). At a ratio of PEI to DNA (an N/P ratio) of 10, there were no significant differences in transfection efficiency and cell viability between Bcl-2 overexpressing and non-overexpressing cells. The transfection efficiency and cell viability were 2–11% and 83–92%, respectively. However, there were significant differences (P < 0.05) in the transfection efficiency and cell viability between them at a higher N/P ratio. At an N/P ratio of 40, the transfection efficiency and cell viability of Bcl-2 non-overexpressing cells were 24–38% and 35–40%, respectively, while those of Bcl-2 overexpressing cells were 48–53% and 43–56%, respectively. Furthermore, compared with Bcl-2 non-overexpressing cells, more DNAs entered the Bcl-2 overexpressing cells, resulting in a higher rate of TGE per cell. PE-Annexin V apoptosis revealed that Bcl-2 overexpression suppressed PEI-induced apoptotic cell death at high N/P ratios. Taken together, Bcl-2 overexpression in CHO cells suppresses apoptotic cell death during PEI-mediated transient transfection, resulting in enhanced transfection efficiency and TGE.  相似文献   

17.
To assess the relative exposure of individual ribosomal proteins (r-proteins) in the large and small subunits of the bovine mitochondrial ribosome, we used a double label iodination technique. Regions of r-proteins exposed in purified ribosomal subunits were labeled with 131I using the lactoperoxidase-catalyzed iodination system, and additional reactive groups available upon denaturing the r-proteins in urea were labeled with 125I using the chloramine-T mediated reaction. The ratio of 131I to 125I incorporated into individual proteins under these conditions is representative of the degree of exposure for each of the proteins in the subunits. In this manner, the r-proteins have been grouped into 3 classes depending on their degree of exposure: high exposure, intermediate exposure, and essentially buried. While both subunits have a few proteins in the "highly exposed" group, and a large number of proteins in the "intermediate exposure" group, only the large ribosomal subunit has an appreciable number of proteins which appear essentially buried. The more buried proteins may serve mainly structural roles, perhaps acting as "assembly proteins," since many from this group bind to ribosomal RNA. The more superficially disposed proteins may comprise binding sites for macromolecules that interact with ribosomes during protein synthesis, as well as stabilizing the association of the large and small subribosomal particles.  相似文献   

18.
Despite the rising knowledge about ribosome function and structure and how ribosomal subunits assemble in vitro in bacteria, the in vivo role of many ribosomal proteins remains obscure both in pro- and eukaryotes. Our systematic analysis of yeast ribosomal proteins (r-proteins) of the small subunit revealed that most eukaryotic r-proteins fulfill different roles in ribosome biogenesis, making them indispensable for growth. Different r-proteins control distinct steps of nuclear and cytoplasmic pre-18S rRNA processing and, thus, ensure that only properly assembled ribosomes become engaged in translation. Comparative analysis of dynamic and steady-state maturation assays revealed that several r-proteins are required for efficient nuclear export of pre-18S rRNA, suggesting that they form an interaction platform with the export machinery. In contrast, the presence of other r-proteins is mainly required before nuclear export is initiated. Our studies draw a correlation between the in vitro assembly, structural localization, and in vivo function of r-proteins.  相似文献   

19.
Lithium chloride (LiCl), which induces cell cycle arrest at G2/M phase, is known as a specific production rate (q p)-enhancing additive in recombinant Chinese hamster ovary (CHO) cell culture. To determine the potential of LiCl as a chemical additive that enhances transient gene expression (TGE), LiCl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and q p enhancement during TGE (post-treatment) was examined. For the TGE of monoclonal antibody (mAb) in CHO-NK cells, pretreatment alone with 10 mM LiCl and post-treatment alone with 5 mM LiCl resulted in 1.2- and 3.4-fold increase of maximum mAb concentration (MMC), respectively, compared with the TGE without LiCl treatment. Furthermore, combinatorial treatment with LiCl (10 mM for pre-treatment and 5 mM for post-treatment) synergistically increased the TGE of mAb (5.3-fold increase in MMC). Likewise, combinatorial treatment with LiCl (10 mM for pre-treatment and 15 mM for post-treatment) in HEK293E cells synergistically increased the TGE of mAb (4.9-fold increase in MMC). Taken together, the data obtained here demonstrate that combinatorial treatment with LiCl is a useful means to improve TGE in CHO as well as HEK293 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号