首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant inbred (RI) lines of Arabidopsis thaliana (Arabidopsis) have been generated from a cross between the ecotypes Landsberg erecta and Columbia. Progeny of 300 individual F2 seedlings were taken by single seed descent to the F8 generation. Sixty-seven loci, scored using 64 RFLP probes and one phenotypic marker, chosen at approximately 20 cM intervals from the two previously published RFLP maps, were mapped using 100 of these RI lines. More than 500 other new loci are currently being mapped using these RI lines by several other groups. These 100 RI lines thus provide the material to map new probes or phenotypic traits polymorphic between Landsberg erecta and Columbia, relative to an increasing number of molecular markers. Higher resolution mapping of distinct chromosomal regions can be achieved by analysing the segregation of particular markers on the additional 200 RI lines.  相似文献   

2.
Map positions have been determined for 42 non-redundant Arabidopsis expressed sequence tags (ESTs) showing similarity to disease resistance genes (R-ESTs), and for three Pto-like sequences that were amplified with degenerate primers. Employing a PCR-based strategy, yeast artificial chromosome (YAC) clones containing the EST sequences were identified. Since many YACs have been mapped, the locations of the R-ESTs could be inferred from the map positions of the YACs. R-EST clones that exhibited ambiguous map positions were mapped as either cleavable amplifiable polymorphic sequence (CAPS) or restriction fragment length polymorphism (RFLP) markers using F8 (Ler x Col-0) recombinant inbred (RI) lines. In all cases but two, the R-ESTs and Pto-like sequences mapped to single, unique locations. One R-EST and one Pto-like sequence each mapped to two locations. Thus, a total of 47 loci were identified in this study. Several R-ESTs occur in clusters suggesting that they may have arisen via gene duplication events. Interestingly, several R-ESTs map to regions containing genetically defined disease resistance genes. Thus, this collection of mapped R-ESTs may expedite the isolation of disease resistance genes. As the cDNA sequencing projects have identified an estimated 63% of Arabidopsis genes, a very large number of R-ESTs (~95), and by inference disease resistance genes of the leucine-rich repeat-class probably occur in the Arabidopsis genome.  相似文献   

3.
DNA methylation and AFLP marker distribution in the soybean genome   总被引:12,自引:0,他引:12  
Amplified fragment length polymorphisms (AFLPs) have become important markers for genetic mapping because of their ability to reliably detect variation at a large number of loci. We report here the dissimilar distribution of two types of AFLP markers generated using restriction enzymes with varying sensitivities to cytosine methylation in the soybean genome. Initially, AFLP markers were placed on a scaffold map of 165 RFLP markers mapped in 42 recombinant inbred (F6:7) lines. These markers were selected from a map of over 500 RFLPs analyzed in 300 recombinant inbred (F6:7) lines generated by crossing BSR101×PI437.654. The randomness of AFLP marker map position was tested using a Poisson-model distribution. We found that AFLP markers generated using EcoRI/MseI deviated significantly from a random distribution, with 34% of the markers displaying dense clustering. In contrast to the EcoRI/MseI AFLP markers, PstI/MseI-generated AFLP markers did not cluster and were under represented in the EcoRI/MseI marker clusters. The restriction enzyme PstI is notably sensitive to cytosine methylation, and these results suggest that this sensitivity affected the distribution of the AFLP markers generated using this enzyme in the soybean genome. The common presence of one EcoRI/MseI AFLP cluster per linkage group and the infrequent presence of markers sensitive to methylation in these clusters are consistent with the low recombination frequency and the high level of cytosine methylation observed in the heterochromatic regions surrounding centromeres. Thus, the dense EcoRI/MseI AFLP marker clusters may be revealing structural features of the soybean genome, including the genetic locations of centromeres. Received: 5 November 1998 / Accepted: 20 February 1999  相似文献   

4.
Sequences annotated as aspartate aminotransferases (synonymous with glutamate oxaloacetate transaminases) in the SOL Genomics Network unigene database were used to design 10 pairs of PCR primers for genetic marker development. These primer pairs generated nine CAPS markers, two SCAR markers and one SSR marker, which were bin-mapped using a set of tomato introgression lines (IL) derived from Lycopersicon esculentum cv. M82 and Lycopersicon pennellii LA716. Based on their bin locations, these markers are largely dispersed throughout the tomato genome and appear to have tagged all four of the glutamate oxaloacetate transaminase (Got) isozyme marker genes placed on the classical genetic map of tomato. Orthologous relationships with Arabidopsis aspartate aminotransferase (Asp) genes suggest the existence of at least two additional functional Got genes in tomato that have also been tagged by these markers and likewise an additional functional Asp gene in Arabidopsis. The Got-2 isozyme marker has often been used for the marker-assisted breeding of the I-3 gene for Fusarium wilt resistance introgressed from L. pennellii LA716. The Got-2 CAPS marker that we have developed offers a facile PCR-based alternative to the isozyme marker for the marker-assisted breeding of I-3. However, all of the PCR-based markers we have developed have the potential to assist the breeding of linked traits introgressed from wild relatives of tomato.  相似文献   

5.
A new collection of 129 Arabidopsis thaliana RFLP markers has been established based upon DNA fragments cloned in the pUC119 plasmid vector and insert end sequences of P1 clones. Dominant/null alleles affecting low-copy number sequences account for nine of the mapped polymorphisms, suggesting that deletions are not rare in A. thaliana . Recombinant inbred (RI) lines were used for mapping these marker loci. RI line-based mapping allows integration of this set of markers with markers previously reported as well as with any markers mapped in the future using this replenishable mapping resource. These markers are useful for map-based gene isolation and genome physical mapping in A. thaliana as well as studies of chromosome colinearity (synteny) with related species.  相似文献   

6.
 A molecular map of rice consisting of 231 amplified fragment length polymorphisms (AFLPs), 212 restriction fragment length polymorphisms (RFLPs), 86 simple-sequence length polymorphisms (SSLPs), five isozyme loci, and two morphological mutant loci [phenol staining of grain (Ph), semi-dwarf habit (sd-1)] has been constructed using an F11 recombinant inbred (RI) population. The mapping population consisted of 164 RI lines and was developed via single-seed descent from an intercross between the genetically divergent parents Milyang 23 (M) (tongil type) and Gihobyeo (G) ( japonica type). A subset of previously mapped RFLP and SSLP markers were used to construct the map framework. The AFLP markers were derived from ten EcoRI(+2) and MseI(+3) primer combinations. All marker types were well distributed throughout the 12 chromosomes. The integrated map covered 1814 cM, with an average interval size of 3.4 cM. The MG map is a cornerstone of the Korean Rice Genome Research Program (KRGRP) and is being continuously refined through the addition of partially sequenced cDNA markers derived from an immature-seed cDNA library developed in Korea, and microsatellite markers developed at Cornell. The population is also being used for quantitative trait locus (QTL) analysis and as the basis for marker-assisted variety development. Received: 24 June 1997 / Accepted: 25 November 1997  相似文献   

7.
We present a linkage map of intracisternal A-particle (IAP) proviral loci. The IAP family consists of 2000 endogenous proviral elements that are widely dispersed in the mouse genome. The map was constructed by using an interspecific backcross and markers defined by oligonucleotide probes specific for subclasses of expressed IAP elements. In genomic DNA from C57BL/6J mouse, these probes each detected from 12 to 44 HindIII restriction fragments that represent junctions between proviral and 5-flanking DNA. The fragments have characteristic strain distribution patterns (SDPs) that are particularly polymorphic in the DNAs of C57BL/6J and Mus spretus mice used for the backcross. IAP loci were placed on the map by comparison of their distribution patterns with those of known genetic markers in the backcross. The map includes 51 IAP loci that have not been previously mapped and 23 IAP proviruses that had been previously mapped in recombinant inbred (RI) strains. Comparable map positions were obtained with the IAP markers in the interspecific backcross and the RI strains. The mapped IAP loci were widely dispersed on the X Chromosome (Chr) and all of the autosomes except Chrs 9 and 19, providing useful genetic markers for linkage studies.  相似文献   

8.
Strain distribution patterns (SDPs) of selected loci previously mapped to murine Chromosomes (Chrs) 10, 13, 17, and 18 are reported for the AXB, BXA recombinant inbred (RI) strain set derived from the progenitor strains A/J (A) and C57BL/6J (B). The loci included the simple sequence length polymorphisms (D10Nds1, D10Mit2, D10Mit10, D10Mit14, D13Mit3, D13Nds1, D13Mit10, D13Mit13, D13Mit7, D13Mit11, D17Mit18, D17Mit10, D17Mit20, D17Mit3, D17Mit2, D18Mit17, D18Mit9, and D18Mit4), the restriction fragment length polymorphisms Pdea and Csfmr, and the biochemical marker AS-1. These loci were chosen because they map to genomic regions that had few or no genetic markers in the AXB, BXA RI set. Several of these loci also were typed in backcross progeny of matings of the (AXB)F1 to strain A or B. The strain distribution patterns for chromosomes 10, 13, 17, and 18 are reported, and the gene order and map distances determined from the backcross data. The addition of these markers to the AXB, BXA RI strain set increases the genomic region over which linkage for new markers can be detected.  相似文献   

9.
Molecular linkage maps are an important tool for gene discovery and cloning, crop improvement, further genetic studies, studies on diversity and evolutionary history, and cross-species comparisons. Linkage maps differ in both the type of marker and type of population used. In this study, gene-based markers were used for mapping in a recombinant inbred (RI) population of Phaseolus vulgaris L. P. vulgaris, common dry bean, is an important food source, economic product, and model organism for the legumes. Gene-based markers were developed that corresponded to genes controlling mutant phenotypes in Arabidopsis thaliana, genes undergoing selection during domestication in maize, and genes that function in a biochemical pathway in A. thaliana. Sequence information, including introns and 3′ UTR, was generated for over 550 genes in the two genotypes of P. vulgaris. Over 1,800 single nucleotide polymorphisms and indels were found, 300 of which were screened in the RI population. The resulting LOD 2.0 map is 1,545 cM in length and consists of 275 gene-based and previously mapped core markers. An additional 153 markers that mapped at LOD <1.0 were placed in genetic bins. By screening the parents of other mapping populations, it was determined that the markers were useful for other common Mesoamerican × Andean mapping populations. The location of the mapped genes relative to their homologs in Arabidopsis thaliana (At), Medicago truncatula (Mt), and Lotus japonicus (Lj) were determine by using a tblastx analysis with the current pseduochromosome builds for each of the species. While only short blocks of synteny were observed with At, large-scale macrosyntenic blocks were observed with Mt and Lj. By using Mt and Lj as bridging species, the syntenic relationship between the common bean and peanut was inferred.  相似文献   

10.
DNA polymorphisms among Arabidopsis thaliana ecotypes are widely used as genetic markers in map-based cloning strategies. New PCR-based molecular markers do not only facilitate molecular mapping, but can also be used to obtain reliable sequence information for cladistic analyses. We have used CAPS (cleaved amplified polymorphic sequences) markers and a direct sequencing strategy to estimate genetic similarity among eighteen Arabidopsis ecotypes. Sequences at four loci, two from the nuclear and two from a non-nuclaar genome, were analysed. For each ecotype more than 1000pb of sequence information was obtained, and genetic similarity was calculated from a total of 35 polymorphic sites using a character-based approach. Divergence ranged from zero up to 50 discordant characters among the 72 characters defined by the polymorphisms. Separate calculations based on the nuclear and the non-nuclear sequences were performed and revealed a number of common features, including the existence of small clusters of very closely related ecotypes separated from each other by extensive sequence divergence. Our results provide information useful especially to investigators setting up crosses for chromosome landing strategies.  相似文献   

11.
A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 11 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.  相似文献   

12.
An amplified fragment polymorphism (AFLP) based linkage map has been generated for a new Landsberg erecta/Cape Verde Islands (Ler/Cvi) recombinant inbred line (RIL) population. A total of 321 molecular PCR based markers and the erecta mutation were mapped. AFLP markers were also analysed in the Landsberg erecta/Columbia (Ler/Col) RIL population ( Lister & Dean 1993) and 395 AFLP markers have been integrated into the previous Arabidopsis molecular map of 122 RFLPs, CAPSs and SSLPs. This enabled the evaluation of the efficiency and robustness of AFLP technology for linkage analyses in Arabidopsis. AFLP markers were found throughout the linkage map. The two RIL maps could be integrated through 49 common markers which all mapped at similar positions. Comparison of both maps led to the conclusion that segregating bands from a common parent can be compared between different populations, and that AFLP bands of similar molecular size, amplified with the same primer combination in two different ecotypes, are likely to correspond to the same locus. AFLPs were found clustering around the centromeric regions, and the authors have established the map position of the centromere of chromosome 3 by a quantitative analysis of AFLP bands using trisomic plants. AFLP markers were also used to estimate the polymorphism rate among the three ecotypes. The larger polymorphism rate found between Ler and Cvi compared to Ler and Col will mean that the new RIL population will provide a useful material to map DNA polymorphisms and quantitative trait loci.  相似文献   

13.
Summary Soybean RFLP markers have been primarily developed and genetically mapped using wide crosses between exotic and adapted genotypes. We have screened 38 soybean lines at 128 RFLP marker loci primarily to characterize germ plasm structure but also to evaluate the utility of RFLP markers identified in unadapted populations. Of these DNA probes 70% detected RFLPs in this set of soybean lines with an average polymorphism index of 0.30. This means that only 1 out of 5 marker loci was informative between any particular pair of adapted soybean lines. The variance associated with the estimation of RFLP genetic distance (GDR) was determined, and the value obtained suggested that the use of more than 65–90 marker loci for germ plasm surveys will add little precision. Cluster analysis and principal coordinate analysis of the GDR matrix revealed the relative lack of diversity in adapted germ plasm. Within the cultivated lines, several lines adapted to Southern US maturity zones also appeared as a separate group. GDR data was compared to the genetic distance estimates obtained from pedigree analysis (GDP). These two measures were correlated with r = 0.54 for all 38 lines, but the correlation increased to r = 0.73 when only adapted lines were analyzed.  相似文献   

14.
Mapping of newly identified Arabidopsis thaliana mutants is an important step towards their molecular characterization and the attempt to saturate the genome by known mutations. The classical genetic analysis using phenotypic tester lines is well-established, but laborious, time-consuming and potentially ambiguous. An alternative molecular strategy was developed that is based on RFLPs. Subcloned DNA markers that detect only segregating RFLP bands distinguishing A. thaliana ecotype Landsberg from Columbia or Enkheim after EcoRI restriction digestion compose an Arabidopsis RFLP mapping set (ARMS). Up to 13 markers uniformly cover the five A. thaliana chromosomes and can be scored in only two successive Southern experiments on a single blot without mutual interference of the signals. Thus, this system allows a simple, reliable, rapid and especially inexpensive mapping of any monogenic mutant locus to the A. thaliana chromosomes. Several loci can be analysed in one experiment if the respective blots are hybridized together. This paper demonstrates the mapping of two recessive mutants affecting the development of A. thaliana leaves which had been generated in the Columbia and Enkheim ecotype by analysing less than 20 F2 individuals. Further markers to refine or verify the result on the same blot can be chosen out of 14 additional probes detecting single segregating EcoRI polymorphic bands as well.  相似文献   

15.
Recombinant inbred (RI) strains are a valuable tool in mouse genetics to rapidly map the location of a new locus. Because RI strains have been typed for hundreds of genetic markers, the genotypes of individual strains within an RI set can be examined to identify specific strain(s) containing the desired region(s) of interest (e.g., one or more quantitative trait loci, QTLs) for subsequent phenotype testing. Specific RI strains might also be identified for use as progenitors in the construction of consomic (chromosome substitution strains or CSSs) or congenic lines or for use in the RI strain test (RIST). To quickly identify the genetic contributions of the parental A/J (A) and C57BL/6J (B) strains, we have generated chromosome maps for each commercially available AXB and BXA RI strain, in which the genetic loci are colorcoded to signify the parent of origin. To further assist in strain selection for further breeding schemes, the percentages of A and B parental contributions were calculated, based on the total number of typed markers in the database for each strain. With these data, one can rapidly select the RI strain(s) carrying the desired donor and recipient strain region(s). Because points of recombination are known, starting with RI mice to generate CSSs or congenic lines immediately reduces genomewide screening to those donor-strain regions not already homozygous in the recipient strain. Two examples are presented to demonstrate potential uses of the generated chromosome maps: to select RI strains to construct congenic lines and to perform an RIST forAliq1, a QTL linked to ozone-induced acute lung injury survival.  相似文献   

16.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

17.
Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212–RM302–RM8085–RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.  相似文献   

18.
Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 1, and pvr1 2. These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.  相似文献   

19.
The identification of molecular markers linked to economically important traits for use in crop improvement is very important in long-lived perennial species. Three-hundred-and-sixty RAPD primers were used with bulked segregant analysis to identify markers linked to loci of specific interest in peach [(Prunus persica) L. Batch] and peach x almond [(Prunus dulcis) Batch] crosses. The traits analyzed included flesh color, adhesion, and texture; pollen fertility; plant stature; and three isozyme loci. The Mendelian behavior of the RAPD loci was established, and RAPD markers were mapped relative to the loci controlling flesh color, adhesion, and texture, and the isozyme loci Mdh-1, 6Pgd-2 and Aat-1, as well as the existing RFLP genetic linkage map constructed previously using a peach x almond F2 population. This technique has facilitated rapid identification of RAPD and RFLP markers that are linked to the traits under study. Loci controlling these traits mapped predominantly to linkage groups 2 and 3 of the peach genetic linkage map. Linkages to genes with both dominant and co-dominant alleles were identified, but linkages to dominant genes were more difficult to find. In several crosses, RAPD marker bands proved to be allelic. One co-dominant RAPD formed a heteroduplex band in heterozygous individuals and in mixtures of alternate homozygotes. The Mendelian behavior of the RAPD loci studied was established and the results suggest that RAPD markers will be useful for plant improvement in peach.  相似文献   

20.
Genetic analysis, particularly the development of genetic linkage maps in forage grass species, lags well behind other members of the Poaceae. Comparative mapping within this family has revealed extensive conservation in gene and marker synteny among chromosomes of diverse genera. Recently, the ability to transfer mapped STS markers between barley and wheat has been demonstrated. The transfer of mapped STS markers between cereals and forage grasses could provide PCR-based markers for comparative mapping in these species providing they amplify homologous sequences. In this study, primers derived from three barley genes of defined function and a gene from Phalaris coerulescens were used to amplify homologous fragments in Lolium perenne. Primers derived from two barley and two oat cDNA clones were also tested along with eight barley and two Triticum tauchii STS markers. Twenty one primer pairs derived from 18 loci were tested. Eleven primer pairs (52%) amplified homologous sequences in L. perenne from ten (55%) of the loci targetted. Thirteen new STS markers were generated in L. perenne, of which ten have been mapped in barley or rye and amplify homologous sequences in L. perenne. Received: 20 October 2000 / Accepted: 13 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号