首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have examined the role of Ras in integrin expression in ECV304 endothelial cells. Among the integrins examined in stable ECV304 transfectants expressing dominant active H-Ras (DAR-ECV), expression of alpha3beta1 integrin showed a prominent reduction in all the DAR-ECV clones when compared to the parental ECV304 cells. This implies that H-Ras negatively regulates the expression of alpha3beta1 integrin in ECV304 cells. When treated with inhibitors of the Ras downstream pathway (LY294002, PD98059, SB203580), the expression of alpha3beta1 integrin was up-regulated most significantly by LY294002, suggesting that among the downstream pathways of Ras, phosphatidylinositol 3-kinase is a major determinant. With the application of blocking antibody to alpha3beta1 integrin (2 - 2 x 10(4) nM), migration of ECV304 cells was enhanced to maximal (18%) at 20 nM. These results suggest that migration of endothelial cells could be modulated by H-Ras via alteration of the expression levels of alpha3beta1 integrin.  相似文献   

2.
It has been well established that hepatocyte growth factor (HGF) induces branching tubule formation of Madin-Darby canine kidney (MDCK) cells cultured in collagen gel. Tubulogenesis per se requires the involvement of cell proliferation, migration, focalization proteolysis, cell-cell interaction and differentiation. However, signaling pathways and proteins involved in HGF-induced tubulogenesis by MDCK cells have not been thoroughly studied. Because cell-matrix interactions play important roles in tubulogenesis, we analyzed whether HGF altered the expression of extracellular matrix receptor (alpha2, alpha3, beta1 and alphavbeta3 integrin). We found that among those proteins examined, alpha2beta1 integrin levels were enhanced by HGF. HGF-induced upregulation of alpha2beta1 integrin was mediated via upregulation of alpha2 integrin mRNA abundance. Cycloheximide blocked the HGF-induced increase in alpha2 integrin mRNA expression. To understand the signaling pathways leading to an HGF-induced increase in alpha2beta1 integrin levels, PD98059 (MEK1 inhibitor), LY294002 (PI3-kinase inhibitor), and GF109203X (PKC inhibitor) were used. We found that PD98059 blocked the HGF-induced increase in alpha2beta1 integrin expression. Furthermore, 5E8 (specific anti-alpha2beta1 integrin antibody) was employed to elucidate the potential role of HGF-induced upregulation of alpha2beta1 integrin in branching morphogenesis. 5E8 did not alter HGF-induced scattering effects but disrupted HGF-induced branching tubulogenesis in collagen gel via inhibition of cell-cell interactions and growth. Taken together, HGF upregulates alpha2beta1 integrin expression via an indirect pathway, the results of which contribute to the regulation of cell-cell interactions and cell growth during branching morphogenesis in collagen gel.  相似文献   

3.
Human ADAM15 is unique among the A disintegrin and metalloprotease domain (ADAM) family because of the integrin binding motif Arg-Gly-Asp (RGD) within its disintegrin domain. Integrin alpha5beta1 has been reported to bind to ADAM15 in an RGD-dependent manner, but the biological significance of the interaction between ADAM15 and alpha5beta1 is unknown. To characterize the effects of ADAM15 on alpha5beta1-mediated cell adhesion and migration and elucidate the potential mechanism, CHO cells which express endogenous integrin alpha5beta1 were transfected with human ADAM15 cDNA. ADAM15 overexpression led to enhanced cell adhesion and decreased migration on fibronectin, which were suppressed by down-regulation of integrin alpha5. Overexpression of ADAM15 not only increased the cell surface expression of integrin alpha5 but also resulted in a more clustered staining of alpha5 on cell surface, while the beta1 subunit remained unchanged. Unexpectedly, results from immunoprecipitation and immunofluorescence indicated that ADAM15 and alpha5beta1 integrin did not interact directly in CHO cells. We found that ADAM15 expression decreased the phosphorylation of Erk1/2. Consistently, down-regulation of Erk1/2 phosphorylation by MEK inhibitor PD98059 or siRNA against Erk1/2 enhanced the expression of alpha5 on cell surface. By using a B16F10 pulmonary metastasis model, we revealed that overexpression of ADAM15 significantly reduced the number of metastatic nodules on the lung. Taken together, this study reveals for the first time that ADAM15 could drive alpha5 integrin expression on cell surface via down-regulation of phosphorylated Erk1/2. This presents a novel mechanism by which ADAM15 regulates cell-matrix adhesion and migration.  相似文献   

4.
Human ECV304 cells respond reproducibly by tube formation to complex basement membrane matrices. Laminins are major glycoproteins of basement membranes. We therefore studied the ability of ECV304 cells to attach to defined laminin isoforms and to fibronectin, and identified the involved laminin receptors. The cells bound poorly to fibronectin, to some extent to laminin-1, whereas laminin-2/4 and -10/11 were strong adhesive substrates. Antibody perturbation assays showed that adhesion to laminin-1 was mediated by integrin alpha6beta1, and adhesion to laminin-2/4 by cooperative activity of integrins alpha3beta1 and alpha6beta1. Adhesion of ECV 304 cells to laminin-10/11 was mainly mediated by integrins alpha3beta1, with minor involvement of alpha6beta1/4 and alphavbeta3. Solid-phase binding assays confirmed that integrin alphavbeta3 binds human laminin-10/11 and -10, in an RGD-dependent fashion. Although integrin alphavbeta3 played a very minor role in cell adhesion to laminin-10/11, this interaction facilitated growth factor-induced proliferation of ECV304 cells. In response to FGF-2 or VEGF, the cells proliferated better when attached on laminin-10/11 than on laminin-1, -2/4, or gelatin. The proliferation induced by the joint application of laminin-10/11 and either one of the growth factors could be blocked by antibodies against integrin alphavbeta3. Fragments of several other basement membrane components are known to interact with alphavbeta3. The current data show that that integrin alphavbeta3 can bind intact alpha5-containing laminin trimers. Since the laminin alpha5 chain is broadly expressed in adult basement membranes, this interaction could be physiologically important. Our data suggest that this interaction is involved in the regulation of cellular responses to growth factors known to be involved in epithelial and endothelial development.  相似文献   

5.
Cxc chemokine receptor expression on human endothelial cells.   总被引:18,自引:0,他引:18  
C Murdoch  P N Monk  A Finn 《Cytokine》1999,11(9):704-712
CXC chemokines play a important role in the process of leukocyte recruitment and activation at sites of inflammation. However, recent evidence suggests that these molecules can also regulate endothelial cell functions such as migration, angiogenesis and proliferation. In this study we have investigated CXC chemokine receptor expression in both primary cultures of human umbilical vein endothelial cells (HUVEC) and the spontaneously transformed HUVEC cell line, ECV304. We found that both cell types express mRNA for chemokine receptors CXCR1, CXCR2 and CXCR4, but not CXCR3. Flow cytometric analysis revealed low levels of CXCR1 but higher levels of CXCR4 cell surface expression. HUVECs responded to SDF-1alpha with a rapid and robust calcium flux, however no calcium flux was seen with either IL-8 or Gro-alpha. HUVECs and ECV304 cells did not proliferate in response to CXC chemokines, although ECV304 cells did migrate towards SDF-1alpha and IL-8. These data demonstrate that HUVECs and the endothelial cell line, ECV304 express functional CXC chemokine receptors.  相似文献   

6.
Expression of alpha5beta1 integrin in the drug-resistant MCF-7/ADR breast carcinoma cells was inhibited by treatment of these cells with alpha5-specific siRNA. The decrease of alpha5beta1 expression resulted in a sharp decrease of expression of MMP-2 collagenase and inhibition of invasion activity of these cells in vitro. Similar decrease of invasion was also observed during inhibition of MMP-2 expression by treatment of these cells with MMP-2-specific siRNA. Inhibition of alpha5beta1 expression was also accompanied by significant decrease in cell content of active (phosphorylated) forms of signal protein kinases Akt and Erk1/2. Inhibition of activity of these kinases by treatment of cells with PI-3K/Akt-specific inhibitor LY294002 or Erk-specific inhibitor PD98059 resulted in inhibition of MMP-2 expression and the decrease of invasion in vitro. These data suggest that alpha5beta1 controls invasion ability of these cells by regulating expression of MMP-2, which involves PI-3K and Erk1/2 protein kinase signaling.  相似文献   

7.
CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects.  相似文献   

8.
Angiogenesis is the process by which new blood vessels are formed via proliferation of vascular endothelial cells. A variety of angiogenesis inhibitors that antagonize the effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) have recently been identified. However, the mechanism by which these diverse angiogenesis inhibitors exert their common effects remains largely unknown. Caveolin-1 and -2 are known to be highly expressed in vascular endothelial cells both in vitro and in vivo. Here, we examine the potential role of caveolins in the angiogenic response. For this purpose, we used the well established human umbilical vein endothelial cell line, ECV 304. Treatment of ECV 304 cells with known angiogenic growth factors (VEGF, bFGF, or hepatocyte growth factor/scatter factor), resulted in a dramatic reduction in the expression of caveolin-1. This down-regulation event was selective for caveolin-1, as caveolin-2 levels remained constant under these conditions of growth factor stimulation. VEGF-induced down-regulation of caveolin-1 expression also resulted in the morphological loss of cell surface caveolae organelles as seen by transmission electron microscopy. A variety of well characterized angiogenesis inhibitors (including angiostatin, fumagillin, 2-methoxy estradiol, transforming growth factor-beta, and thalidomide) effectively blocked VEGF-induced down-regulation of caveolin-1 as seen by immunoblotting and immunofluorescence microscopy. However, treatment with angiogenesis inhibitors alone did not significantly affect the expression of caveolin-1. PD98059, a specific inhibitor of mitogen-activated protein kinase and a known angiogenesis inhibitor, also blocked the observed VEGF-induced down-regulation of caveolin-1. Furthermore, we show that caveolin-1 can function as a negative regulator of VEGF-R (KDR) signal transduction in vivo. Thus, down-regulation of caveolin-1 may be an important step along the pathway toward endothelial cell proliferation.  相似文献   

9.
The aim of this study was to determine the antiproliferative mechanism of ferulic acid (FA) on serum induced ECV304 cell, a human umbilical vein endothelial line. The results suggest that FA significantly suppressed ECV304 cells proliferation and blocked the cell cycle in G0/G1 phase. Treatment of the cells with FA increased nitric oxide (NO) production and inactivated the extracellular signal-regulated kinase (EERK1/2), and the NO donor, sodium nitroprusside, inhibited both ECV304 cells proliferation and phosphorylation of ERK1/2. However, the NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester, caused ECV304 cells proliferation. PD 98059, the inhibitor of ERK1/2, had no effect on the NO production. These results indicate that NO suppressed ECV304 cells proliferation through down-regulating ERK1/2 pathway. Moreover, the inhibition of cell cycle progression was associated with the decrement of cyclin D1 expression and phosphorylation of retinoblastoma protein (pRb) by increment of p21 level. The findings not only present the first evidence that FA is a potent inhibitor on ECV304 cells proliferation, but also reveal the potential signaling molecules involved in its action.  相似文献   

10.
We have investigated EGF-driven signaling processes in rat intestinal epithelial cell lines that overexpress either the alpha5beta1 integrin or the alpha2beta1 integrin. Both cell types display efficient activation of Erk/MAP kinase, but only the alpha5beta1 expressing cells display a strong activation of Akt. A complex is formed between activated EGFR and alpha5beta1, but not with alpha2beta1; this complex also contains ErbB3 and p85. Thus alpha5beta1 can support efficient activation of both the Erk and the phosphatidylinositol-3-kinase/Akt branches of the EGFR signaling cascade, whereas alpha2beta1 can support only the Erk branch.  相似文献   

11.
Ko HM  Park YM  Jung B  Kim HA  Choi JH  Park SJ  Lee HK  Im SY 《FEBS letters》2005,579(11):2369-2375
Platelet-activating factor (PAF) augments angiogenesis by promoting the synthesis of various angiogenic factors, via the activation of NF-kappaB. In this study, we investigated the role of the matrix metalloproteinase (MMP)-9, in PAF-induced angiogenesis. PAF increased mRNA expression, protein synthesis, and MMP-9 activity in ECV304 cells, in a NF-kappaB-dependent manner. PAF increased MMP-9 promoter activity in ECV304, which was inhibited by WEB2107, and NF-kappaB inhibitors. Transfected NF-kappaB subunits, p65 or/and p50, increased luciferase activity in the reporter plasmid MMP-9, resulting in an increase not only of MMP-9 luciferase activity, but also of mRNA expression in MMP-9. MMP-9 or NF-kappaB inhibitors significantly inhibited PAF-induced angiogenesis, in a dose-dependent manner, in an in vivo mouse Matrigel implantation model. In a parallel to the Matrigel implantation study, MMP-9 or NF-kappaB inhibitors inhibited PAF-induced sprouting of porcine pulmonary arterial endothelial cells. These data indicate that NF-kappaB-dependent MMP-9 plays a key role in PAF-induced angiogenesis.  相似文献   

12.
Functional responses of the spontaneously transformed human endothelial cell line ECV304 were studied in order to asses its applicability as an endothelial cell model for studying angiogenesis and signal transduction. The dependence of proliferation activity of this line on the presence of growth factor was shown. The absent serum in culture medium resulted in blocking of cells in G1-phase of a cell cycle which is not typical for tumor cell lines. Low doses of beta particles emitted during [3H]thymidine decay resulted in blocking the proliferation of these cells in G2M-phase in a dose-dependent manner. Incubation of the cells with another source of beta particles, 3H2O, under condition of equal specific activities of tritium resulted in preferable accumulation of the cells in S-phase. The different efficiency of beta particles of tritium as a part of 3H2O molecule or thymidine demonstrates that various mechanisms are responsible for various check points. The check point of G1/S is absent and that complies with the presence of deletion of chromosome 9 in locus p21. The level of NO produced by constitutive form of NO-synthase in ECV304 cells was relatively low and not modified by inducible NO-synthase inhibitors. The data obtained suggest that ECV304 line cells retained the properties of the initial spontaneously transformed cell line obtained from human umbilical vein (HUVEC) as well as they can be used as a model system for further studies of the properties of vascular endothelial.  相似文献   

13.
In our present study we focused on soluble VCAM-1 (sVCAM-1)/alpha(4) integrin-induced angiogenesis and found that this type of angiogenesis was mediated through p38 mitogen-activated protein kinase and focal adhesion kinase (FAK). HUVEC expressed both alpha(4) and beta(1) integrins, and it was reported that expression of alpha(4) integrin and its counterreceptor, sVCAM-1/VCAM-1, was enhanced in response to an inflammatory cytokine, TNF-alpha. In endothelial cells phosphorylation of p38 and FAK, but not that of extracellular signal-regulated kinase 1/2 was induced by sVCAM-1. Migration of endothelial cells was stimulated in response to sVCAM-1 at similar levels as those induced by vascular endothelial growth factor, and sVCAM-1-induced migration was almost completely blocked by neutralizing Ab against alpha(4) integrin, by either an inhibitor of p38 (SB203580), or by adenovirus containing FAK-related nonkinase. sVCAM-1 also induced the formation of blood vessels in Matrigel plug assay in vivo, and this neovascularization was blocked by SB203580 or neutralizing Ab against alpha(4) integrin. Moreover, we also confirmed that both TNF-alpha and sVCAM-1 could synergistically induce angiogenesis in the corneas of mice when each factor at used dose could not induce. This angiogenesis by TNF-alpha and sVCAM-1 was almost completely blocked by coadministration of SB203580 and also by neutralizing Ab against alpha(4) integrin. These results suggest that sVCAM-1/alpha(4) integrin induces angiogenesis through p38 and FAK signaling pathways.  相似文献   

14.
Angiogenesis is a complex process regulated by the interactions of endothelial cells with cytokines and the adhesive protein matrix. The cytokines basic fibroblast growth factor (bFGF) and tumor necrosis factor-alpha (TNF-alpha) are two of the modulators of angiogenesis. One mechanism by which these cytokines induce their effects may be through the regulation of integrin adhesion receptor activity, in particular, alpha(v)beta(3). In this study, we examined the ability of these angiogenic factors to modulate the adhesion of human umbilical vein endothelial cells (HUVECs) to immobilized disintegrins (i.e., rhodostomin and arietin), which are specific in antagonizing integrin alpha(v)beta(3) in cells. As these disintegrins were immobilized as substrates, they acted as agonists to induce HUVEC adhesion in a dose- and alpha(v)beta(3)-dependent manner. In addition, adhesion also triggered a sustained increase of intracellular free calcium. Furthermore, bFGF-primed HUVECs potentiated, but TNF-alpha primed cells attenuated, about 50% adhesion events and calcium signaling triggered by immobilized disintegrin compared to naive cells, respectively. The mechanisms of modulating alpha(v)beta(3)-dependent HUVEC adhesion by cytokines may be related to changes of integrin alpha(v)beta(3) conformation, as demonstrating the antagonistic effect of Mn(2+) on decreased adhesion by TNF-alpha pretreatment, and confirmed with flow cytometric analysis probed by anti-LIBS1 mAb. However, cytokine pretreatment did not alter the expression of this integrin on the cell surface, as determined by flow cytometry. Phosphoinositide-3 kinase may be one of the signaling molecules involved in the enhanced adhesion of bFGF-primed cells.  相似文献   

15.
Angiogenin activates Erk1/2 in human umbilical vein endothelial cells   总被引:4,自引:0,他引:4  
Angiogenin is a potent angiogenic factor that binds to endothelial cells and is endocytosed and rapidly translocated to the nucleus where it is concentrated in the nucleolus and binds to DNA. Angiogenin also activates cell-associated proteases, induces cell invasion and migration, stimulates cell proliferation, and organizes cultured cells to form tubular structures. The intracellular signaling pathways that mediate these various cellular responses are not well understood. Here we report that angiogenin induces transient phosphorylation of extracellular signal-related kinase1/2 (Erk1/2) in cultured human umbilical vein endothelial cells. Angiogenin does not affect the phosphorylation status of stress-associated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein (MAP) kinases. PD98059--a specific inhibitor of MAP or Erk kinase 1 (MEK 1), the upstream kinase that phosphorylates Erk1/2--abolishes angiogenin-induced Erk phosphorylation and cell proliferation without affecting nuclear translocation of angiogenin. In contrast, neomycin, a known inhibitor of nuclear translocation and cell proliferation, does not interfere with angiogenin-induced Erk1/2 phosphorylation. These data indicate that both intracellular signaling pathways and direct nuclear functions of angiogenin are required for angiogenin-induced cell proliferation and angiogenesis.  相似文献   

16.
Sphingosine 1-phosphate (SPP), a platelet-derived bioactive lysophospholipid, is a regulator of angiogenesis. However, molecular mechanisms involved in SPP-induced angiogenic responses are not fully defined. Here we report the molecular mechanisms involved in SPP-induced human umbilical vein endothelial cell (HUVEC) adhesion and migration. SPP-induced HUVEC migration is potently inhibited by antisense phosphothioate oligonucleotides against EDG-1 as well as EDG-3 receptors. In addition, C3 exotoxin blocked SPP-induced cell attachment, spreading and migration on fibronectin-, vitronectin- and Matrigel-coated surfaces, suggesting that endothelial differentiation gene receptor signaling via the Rho pathway is critical for SPP-induced cell migration. Indeed, SPP induced Rho activation in an adherence-independent manner, whereas Rac activation was dispensible for cell attachment and focal contact formation. Interestingly, both EDG-1 and -3 receptors were required for Rho activation. Since integrins are critical for cell adhesion, migration, and angiogenesis, we examined the effects of blocking antibodies against alpha(v)beta(3), beta(1), or beta(3) integrins. SPP induced Rho-dependent integrin clustering into focal contact sites, which was essential for cell adhesion, spreading and migration. Blockage of alpha(v)beta(3)- or beta(1)-containing integrins inhibited SPP-induced HUVEC migration. Together our results suggest that endothelial differentiation gene receptor-mediated Rho signaling is required for the activation of integrin alpha(v)beta(3) as well as beta(1)-containing integrins, leading to the formation of initial focal contacts and endothelial cell migration.  相似文献   

17.
Laminin-2 (LN-2, alpha2beta1gamma1) is a basement membrane-associated laminin isoform usually considered in the context of muscle and nerve tissues. To test the hypothesis that LN-2 can additionally modulate epithelial cell biology, an analysis of the role of LN-2 in cell adhesion, activation of signalling intermediates and proliferation was undertaken. A virally transformed human conjunctival epithelial cell line (HC0597) was utilized in this study. Adhesion assays using function-inhibiting antibodies demonstrated that alpha3beta1 integrin is essential for the rapid attachment of conjunctival epithelial cells to LN-2. Bromodeoxyuridine (BrdU) incorporation analyses revealed that, compared with LN-1 or LN-10, LN-2 significantly promotes epithelial proliferation. Phosphorylation of the signalling intermediates Erk1/2 and Akt-1 was observed within 15 min of cell adhesion to LN-2. Inhibiting alpha3beta1 integrin function decreased total cellular phosphotyrosine levels, specifically inhibited phosphorylation of Erk1/2 and Akt-1, and dampened the proliferation response of epithelial cells adherent to LN-2. Inhibition of Erk or Akt activation inhibited cell proliferation in a dose-dependent manner. However, the inhibition of Erk resulted in a stronger suppression of proliferation compared with Akt inhibition. From these results, it is concluded that human conjunctival epithelial cells adhere to immobilized LN-2 using alpha3beta1 integrin. alpha3beta1 integrin/LN-2 signalling, transduced primarily through an Erk pathway, enhances epithelial cell proliferation. These results demonstrate that LN-2 can impact on epithelial cell biology in addition to nerve and muscle, and provide information regarding the role of this isoform in ocular surface epithelial cells.  相似文献   

18.
The histone deacetylase (HDAC) inhibitor valproic acid (VPA) was recently shown to inhibit angiogenesis, but displays no toxicity in endothelial cells. Here, we demonstrate that VPA increases extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation in human umbilical vein endothelial cells (HUVEC). The investigation of structurally modified VPA derivatives revealed that the induction of ERK 1/2 phosphorylation is not correlated to HDAC inhibition. PD98059, a pharmacological inhibitor of the mitogen-activated protein kinase kinase 1/2, prevented the VPA-induced ERK 1/2 phosphorylation. In endothelial cells, ERK 1/2 phosphorylation is known to promote cell survival and angiogenesis. Our results showed that VPA-induced ERK 1/2 phosphorylation in turn causes phosphorylation of the antiapoptotic protein Bcl-2 and inhibits serum starvation-induced HUVEC apoptosis and cytochrome c release from the mitochondria. Moreover, the combination of VPA with PD98059 synergistically inhibited angiogenesis in vitro and in vivo.  相似文献   

19.
We have shown that the stimulation of beta-adrenergic receptors (beta-AR) increases apoptosis in adult rat ventricular myocytes (ARVMs). Integrins, a family of alphabeta-heterodimeric cell surface receptors, are postulated to play a role in ventricular remodeling. Here, we show that norepinephrine (NE) increases beta1 integrins expression in ARVMs via the stimulation of alpha1-AR, not beta-AR. Inhibition of ERK1/2 using PD 98059, an inhibitor of ERK1/2 pathway, inhibited alpha1-AR-stimulated increases in beta1 integrins expression. Activation of beta1 integrins signaling pathway using laminin (LN) inhibited beta-AR-stimulated apoptosis as measured by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-staining and flow cytometry. Likewise, ligation of beta1 integrins with anti-beta1 integrin antibodies prevented beta-AR-stimulated apoptosis. Treatment of cells using LN or anti-beta1 integrin antibodies activated ERK1/2 pathway. PD 98059 inhibited activation of ERK1/2 by LN, and prevented the anti-apoptotic effects of LN. Thus (1) stimulation of alpha1-AR regulates beta1 integrins expression via the activation of ERK1/2, (2) beta1 integrins signaling protects ARVMs from beta-AR-stimulated apoptosis, (3) activation of ERK1/2 plays a critical role in the anti-apoptotic effects of beta1-integrin signaling. These data suggest that beta1 integrin signaling protects ARVMs against beta-AR-stimulated apoptosis possibly via the involvement of ERK1/2.  相似文献   

20.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号