首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A developmental analysis of the Contrabithorax (Cbx) alleles offers the opportunity to examine the role of the Ultrabithorax (Ubx) gene in controlling haltere, as alternative to wing, morphogenesis in Drosophila. Several Cbx alleles are known with different spatial specificity in their wing toward haltere homeotic transformation. The molecular data on these mutations, however, does not readily explain differences among mutant phenotypes. In this work, we have analyzed the "apogenetic" mosaic spots of transformation in their adult phenotype, in mitotic recombination clones and in the spatial distribution of Ubx proteins in imaginal discs. The results suggest that the phenotypes emerge from early clonality in some Cbx alleles, and from cell-cell interactions leading to recruitment of cells to Ubx gene expression in others. We have found, in addition, mutual interactions between haltere and wing territories in pattern and dorsoventral symmetries, suggesting short distance influences, "accommodation," during cell proliferation of the anlage. These findings are considered in an attempt to explain allele specificity in molecular and developmental terms.  相似文献   

2.
The phenotypes of five different lethal mutants of Drosophila melanogaster that have small imaginal discs were analyzed in detail. From these results, we inferred whether or not the observed imaginal disc phenotype resulted exclusively from a primary imaginal disc defect in each mutant. To examine the validity of these inferences, we employed a multiple-allele method. Lethal alleles of the five third-chromosome mutations were identified by screening EMS-treated chromosomes for those which fail to complement with a chromosome containing all five reference mutations. Twenty-four mutants were isolated from 13,197 treated chromosomes. Each of the 24 was then tested for complementation with each of the five reference mutants. There was no significant difference in the mutation frequencies at these five loci. The stage of lethality and the imaginal disc morphology of each mutant allele were compared to those of its reference allele in order to examine the range of defects to be found among lethal alleles of each locus. In addition, hybrids of the alleles were examined for intracistronic complementation. For two of the five loci, we detected no significant phenotypic variation among lethal alleles. We infer that each of the mutant alleles at these two loci cause expression of the null activity phenotype. However, for the three other loci, we did detect significant phenotypic variation among lethal alleles. In fact, one of the mutant alleles at each of these three loci causes no detectable imaginal disc defect. This demonstrates that attempting to assess the developmental role of a gene by studying a single mutant allele may lead to erroneous conclusions. As a byproduct of the mutagenesis procedure, we have isolated two dominant, cold-sensitive mutants.  相似文献   

3.
4.
J. W. Little  C. A. Byrd    D. L. Brower 《Genetics》1990,124(4):899-908
We have examined the patterns of expression of the homeotic gene Ubx in imaginal discs of Drosophila larvae carrying mutations in the abx, bx and pbx regulatory domains. In haltere discs, all five bx insertion mutations examined led to a general reduction in Ubx expression in the anterior compartment; for a given allele, the strength of the adult cuticle phenotype correlated with the degree of Ubx reduction. Deletions mapping near or overlapping the sites of bx insertions, including three abx alleles and the bx34e-prv(bx-prv) allele, showed greatly reduced Ubx expression in parts of the anterior compartment of the haltere disc; however, anterior patches of strong Ubx expression often remained, in highly variable patterns. As expected, the pbx1 mutation led to reduced Ubx expression in the posterior compartment of the haltere disc; surprisingly, pbx1 also led to altered expression of the en protein near the compartment border in the central region of the disc. In the metathoracic leg, all the bx alleles caused extreme reduction in Ubx expression in the anterior regions, with no allele-specific differences. In contrast, abx and bx-prv alleles resulted in patchy anterior reductions in third leg discs. In the larval central nervous system, abx but not bx alleles affected Ubx expression; the bx-prv deletion gave a wild-type phenotype, but it could not fully complement abx mutations. In the posterior wing disc, the bx-prv allele, and to a much lesser extent the bx34e chromosome from which it arose, led to ectopic expression of Ubx. Unlike other grain-of-function mutations in the BX-C, this phenotype appeared to be partially recessive to wild type. Finally, we asked whether the ppx transformation, which results from early lack of Ubx+ function in the mesothorax and is seen in abx animals, is due to ectopic Scr expression. Some mesothoracic leg and wing discs from abx2 larvae displayed ectopic expression of Scr, which was variable in extent but always confined to the posterior compartment.  相似文献   

5.
Using monoclonal antibodies specific for their protein products, the expression of the Ubx, Antp, and Scr genes was examined in imaginal discs and central nervous systems of esc-Drosophila larvae. In esc-mutants, both the Ubx and Scr proteins are expressed at increased levels or in new locations in the leg discs. Ubx also is expressed in new locations in the posterior wing disc and in small groups of cells in the antenna disc. The Antp protein is expressed ectopically in the eye-antenna disc; however, obvious abnormal expression of Antp was not found in the thoracic imaginal discs. Particularly striking is the fact that a single disc, such as the mesothoracic leg, can show increased expression of both a more "anterior" homeotic gene (Scr) and a more "posterior" gene (Ubx). Ectopic expression of Ubx and Antp, but not of Scr, is seen in the central nervous system of mutant larvae. These results are discussed with respect to the adult esc-phenotype and the differential effects of esc mutations on early and late development.  相似文献   

6.
Using a monoclonal antibody and image-processing procedures, the patterns of expression of the Ultrabithorax (Ubx) gene product have been characterized in Drosophila larvae. As reported previously, the metathoracic imaginal discs stain most intensely with anti-Ubx, with some mesothoracic and no prothoracic expression detectable. In the metathoracic discs, the greatest modulation in anti-Ubx staining is along the proximodistal axis. Ubx is generally expressed at higher levels in the posterior regions of metathoracic discs, although relatively high anterior expression is found in some areas. Expression in the mature wing disc is confined to the squamous peripodial membrane cells; in younger wings, Ubx expression fills the posterior half of the peripodial side of the disc. The mesothoracic leg stains with a pattern that is qualitatively similar (but not identical) to that of the metathoracic leg; Ubx is expressed in some anterior regions of the mesothoracic leg, in parasegment 4. Double staining with anti-Ubx and anti-engrailed reveals that discontinuities in Ubx expression that have been suggested to correspond to compartment borders do not coincide with the compartment boundaries in some cases. In the larval ventral ganglion, Ubx expression is greatest in parasegments 5 and 6, as in the embryonic nervous system.  相似文献   

7.
V. Subramaniam  H. M. Bomze    A. J. Lopez 《Genetics》1994,136(3):979-991
The homeotic selector gene Ultrabithorax (Ubx) specifies regional identities in multiple tissues within the thorax and abdomen of Drosophila melanogaster. Ubx encodes a family of six developmentally specific homeodomain protein isoforms translated from alternatively spliced mRNAs. The mutant allele Ubx(195) contains a stop codon in exon mII, one of three differential elements, and consequently produces functional UBX protein only from mRNAs of type IVa and IVb, which are expressed mainly in the central nervous system. Although it retains activity for other processes, Ubx(195) behaves like a null allele with respect to development of the peripheral nervous system, indicating that UBX-IVa and IVb alone do not contribute detectable Ubx function for this tissue. The mutant allele Ubx(MX17) contains an inversion of exon mII. We find that this allele only produces mRNAs of type IVa, but the expression pattern of the resulting UBX-IVa protein is indistinguishable from that of total UBX protein expression in wild-type embryos. The phenotype of homozygous Ubx(MX17) embryos indicates that UBX-IVa cannot substitute functionally for other isoforms to promote normal development of the peripheral nervous system. This functional limitation is confirmed by a detailed analysis of the peripheral nervous system in embryos that express specific UBX isoforms ectopically under control of a heat shock promoter. Additional observations suggest that UBX isoforms also differ in their ability to function in other tissues.  相似文献   

8.
Holmes AM  Weedmark KA  Gloor GB 《Genetics》2006,172(4):2367-2377
We found that heterozygous mutant alleles of E(Pc) and esc increased homologous recombination from an allelic template in somatic cells in a P-element-induced double-strand break repair assay. Flies heterozygous for mutant alleles of these genes showed increased genome stability and decreased levels of apoptosis in imaginal discs and a concomitant increase in survival following ionizing radiation. We propose that this was caused by a genomewide increase in homologous recombination in somatic cells. A double mutant of E(Pc) and esc had no additive effect, showing that these genes act in the same pathway. Finally, we found that a heterozygous deficiency for the histone deacetylase, Rpd3, masked the radiation-resistant phenotype of both esc and E(Pc) mutants. These findings provide evidence for a gene dosage-dependent interaction between the esc/E(z) complex and the Tip60 histone acetyltransferase complex. We propose that esc and E(Pc) mutants enhance homologous recombination by modulating the histone acetylation status of histone H4 at the double-strand break.  相似文献   

9.
The lethal(3)discs overgrown (dco) locus of Drosophila melanogaster, located on the third chromosome at cytogenetic position 100A5,6-100B1,2, is necessary for normal development and growth control in the imaginal discs of the larva. Three recessive lethal alleles (dco2, dco3, and dco18) in heteroallelic combinations and one allele (dco3) when homozygous cause the imaginal discs to continue to grow beyond the normal disc-intrinsic limit during an extended larval period. Some degeneration also occurs in the overgrowing discs. The discs overgrow even when transplanted early in their development into wild-type hosts, whereas normal discs stop growth at about the normal final size under such conditions, indicating that the overgrowth is a disc-autonomous effect of the mutations. During overgrowth the imaginal discs retain their single-layered epithelial structure except near regions of degeneration, and they differentiate into disc-appropriate but abnormal adult structures when transplanted into wild-type larval hosts. When the mutant larvae are reared under certain conditions a small percentage develop to the pharate adult stage, and these animals show a characteristic syndrome of abnormalities including swollen leg segments with many extra bristles, small or missing eyes, duplicated antennae and palpi, and separated vesicles of cuticle. A fourth recessive lethal allele (dcole88), when homozygous or in heteroallelic combination with the overgrowth alleles, causes the imaginal discs to degenerate, producing a "discless" phenotype. Gap junction-mediated communication was assayed by observing the intercellular transfer of injected fluorescein complexon (dye coupling). Dye coupling in the imaginal discs of the dco genotypes that cause overgrowth was dramatically reduced at 4 days after egg laying (AEL) compared with wild-type controls. Coupling was more normal although still significantly reduced at 7-8 and 12-14 days AEL. In c43hs1, another disc overgrowth mutant, the imaginal disc cells also showed very reduced dye coupling at 4 days and incomplete coupling at 9 days. In contrast, discs from wild-type larvae, two other imaginal disc overgrowth mutants, and a cell death mutant showed extensive dye coupling at all stages tested. Electron microscopic morphometry revealed a reduction in gap-junction length per unit lateral plasma membrane length in dco3/dco18 and c43hs1 wing discs, although not in dco2/dco3, compared with wild-type wing discs. The results suggest that gap-junctional cell communication may be involved in the cell interactions that limit cell proliferation in vivo.  相似文献   

10.
11.
Recessive mutations (dppdisk) in one region of the decapentaplegic (dpp) gene of Drosophila, which codes for a transforming growth factor-beta homolog, cause loss of distal parts from adult appendages. Different dppdisk alleles cause effects of different severity, the milder alleles removing distal parts and the more severe alleles removing progressively more proximal structures. In the wing disc derivatives, the most extreme dppdisk genotype removes the entire wing and leaves only a thorax fragment. We show that structures are lost in these mutants as a result of massive apoptotic cell death in the corresponding regions of the imaginal discs during the mid-third larval instar. The remaining disc fragments do not regenerate when cultured alone in the growth-permissive environment of the adult abdomen, but they can be made to regenerate by coculturing them with appropriate fragments of wild-type wing discs. This nonautonomous development is interpreted as showing that a product of dpp+, presumably the TGF-beta homolog, is secreted by the normal cells and can rescue the mutant cells in the mixed tissue.  相似文献   

12.
The protein content of various Drosophila imaginal discs was analysed by two-dimensional electrophoresis followed by silver-staining. Three proteins, identified as tropomyosins α and β and actin I, are more abundant in the metathoracic discs (haltere and third leg) than in the mesothoracic discs (wing and second leg). In the case of the wing disc, these proteins are probably contributed by the adepithelial (muscle precursor) cells, as indicated by their non-uniform localisation within the disc. Mutations in the bithorax complex have no effect on the difference between second and third leg discs. We conclude that there is a segmental difference in the protein content of homologous discs, that this difference is probably localized in the adepithelial cells, and that it is not under the direct control of known alleles of the bithorax complex.  相似文献   

13.
Drosophila limbs develop from imaginal discs that are subdivided into compartments. Dorsal-ventral subdivision of the wing imaginal disc depends on apterous activity in dorsal cells. Apterous protein is expressed in dorsal cells and is responsible for (1) induction of a signaling center along the dorsal-ventral compartment boundary (2) establishment of a lineage restriction boundary between compartments and (3) specification of dorsal cell fate. Here, we report that the homeobox gene msh (muscle segment homeobox) acts downstream of apterous to confer dorsal identity in wing development.  相似文献   

14.
Hierarchical recruitment of polycomb group silencing complexes   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
The decapentaplegic (dpp) gene of Drosophila melanogaster encodes a polypeptide of the transforming growth factor-beta family of secreted factors. It is required for the proper development of both embryonic and adult structures, and may act as a morphogen in the embryo. In wing imaginal discs, dpp is expressed and required in a stripe of cells near the anterior-posterior compartment boundary. Here we show that viable mutations in the segment polarity genes patched (ptc) and costal-2 (cos2) cause specific alterations in dpp expression within the anterior compartment of the wing imaginal disc. The interaction between ptc and dpp is particularly interesting; both genes are expressed with similar patterns at the anterior-posterior compartment boundary of the disc, and mis-expressed in a similar way in segment polarity mutant backgrounds like ptc and cos2. This mis-expression of dpp could be correlated with some of the features of the adult mutant phenotypes. We propose that ptc controls dpp expression in the imaginal discs, and that the restricted expression of dpp near the anterior-posterior compartment boundary is essential to maintain the wild-type morphology of the wing disc.  相似文献   

17.
Summary The regulative behavior of fragments of the imaginal discs of the wing and first leg was studied when these fragments were combined with fragments of other thoracic imaginal discs. A fragment of the wing disc which does not normally regenerate when cultured could be stimulated to regenerate by combination with certain fragments of the haltere disc. When combined with a haltere disc fragment thought to be homologous by the criteria of morphology and the pattern of homoeotic transformation, such stimulated intercalary regeneration was not observed. Combinations of first and second leg disc fragments showed that a lateral first leg fragment could be stimulated to regenerate medial structures when combined with a medial second leg disc fragment but not when combined with a lateral second leg disc fragment. Combinations of wing and second leg disc fragments showed that one fragment of the second leg disc is capable of stimulating regeneration from a wing disc fragment while another second leg disc fragment fails to stimulate such regeneration. It is suggested that absence of intercalary regeneration in combinations of fragments of different thoracic imaginal discs is a result of homology or identity of the positional information residing in the cells of the fragments. The pattern of correspondence of positional information revealed by this analysis is consistant with the pattern of homology determined by morphological observation and by analysis of the positional specificity of homoeotic transformation among serially homologous appendages. The implications of the existence of homologous positional information in wing and second leg discs which share a common cell lineage early in development are discussed.  相似文献   

18.
We have studied several cell behaviour parameters of mutant alleles of fat (ft) in Drosophila imaginal wing disc development. Mutant imaginal discs continue growing in larvae delayed in pupariation and can reach sizes of several times those of wild-type. Their growth is, however, basically allometric. Homozygous ft cells grow faster than their twin cells in clones and generate larger territories, albeit delimited by normal clonal restrictions. Moreover, ft cells in clones tend to grow towards wing proximal regions. These behaviours can be related with failures in cell adhesiveness and cell recognition. Double mutant combinations with alleles of other genes, e.g. of the Epidermal growth factor receptor (DER) pathway, modify ft clonal phenotypes, indicating that adhesiveness is modulated by intercellular signalling. Mutant ft cells show, in addition, smaller cell sizes during proliferation and abnormal cuticular differentiation, which reflect cell membrane and cytoskeleton anomalies, which are not modulated by the DER pathway.  相似文献   

19.
The Drosophila expanded (ex) gene encodes a protein thought to play a role in signaling at apical junctions of epithelial cells. Previous studies have characterized this gene as a tumor suppressor involved in regulating the growth of a subset of Drosophila imaginal discs (Boedigheimer, M., Laughon, A., 1993. expanded: a gene involved in the control of cell proliferation in imaginal discs, Development 118, 1291-1301); although ex negatively regulates cell proliferation in the developing wing, it appeared to have a conflicting role in the eye. In contrast, our analysis of the loss-of-function phenotype indicates that ex does, in fact, regulate growth in the eye. We also show that this gene plays a role in patterning of the eye, mainly at the level of planar polarity. Our studies further demonstrate that, contrary to what was expected based on loss-of-function data, the tissue reduction phenotypes resulting from Ex overexpression are attributable to the induction of apoptotic cell death. Taken together, our data suggest that Ex is a versatile molecule that plays a role in most of the processes that govern disc development.  相似文献   

20.
The heat-sensitive mutation of Drosophila melanogaster l(3)c4(3)hs1, causes mutant larvae raised at a restrictive temperature to have abnormally large wing discs. The large size of these discs is a disc-autonomous property and results from an increase in the number rather than the size of wing disc cells. We have used wing discs from this mutant to further investigate properties of transdetermination which had previously been investigated with nonmutant discs. Transdetermination can occur in nonmutant discs when the proliferative phase of imaginal disc development is extended by wounding discs and culturing them in vivo. The results indicate that additional proliferation in the absence of wounding does not lead to transdetermination. There is a correlation between the extent of growth of a cultured disc and the probability that it will undergo transdetermination. The results suggest that this correlation does not depend on a differential rate of cell division. Finally, the results indicate that the cells which give rise to transdetermination are at an equivalent developmental stage no later than that characteristic of eye-antenna disc cells before the third larval instar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号