首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate receptors and transporters, including T1R1 and T1R3 (taste receptor 1, subtypes 1 and 3), mGluRs (metabotropic glutamate receptors), EAAC-1 (excitatory amino acid carrier-1), GLAST-1 (glutamate-aspartate transporter-1), and GLT-1 (glutamate transporter-1), are expressed in the gastrointestinal tract. This study determined effects of oral administration of monosodium glutamate [MSG; 0, 0.06, 0.5, or 1 g/kg body weight (BW)/day] for 21 days on expression of glutamate receptors and transporters in the stomach and jejunum of sow-reared piglets. Both mRNA and protein levels for gastric T1R1, T1R3, mGluR1, mGluR4, EAAT1, EAAT2, EAAT3, and EAAT4 and mRNA levels for jejunal T1R1, T1R3, EAAT1, EAAT2, EAAT3 and EAAT4 were increased (P < 0.05) by MSG supplementation. Among all groups, mRNA levels for gastric EAAT1, EAAT2, EAAT3, and EAAT4 were highest (P < 0.05) in piglets receiving 1 g MSG/kg BW/day. EAAT1 and EAAT2 mRNA levels in the stomach and jejunum of piglets receiving 0.5 g MSG/kg BW/day, as well as jejunal EAAT3 and EAAT4 mRNA levels in piglets receiving 1 g MSG/kg BW/day, were higher (P < 0.05) than those in the control and in piglets receiving 0.06 g MSG/kg BW/day. Furthermore, protein levels for jejunal T1R1 and EAAT3 were higher (P < 0.05) in piglets receiving 1 g MSG/kg BW/day than those in the control and in piglets receiving 0.06 g MSG/kg BW/day. Collectively, these findings indicate that dietary MSG may beneficially stimulate glutamate signaling and sensing in the stomach and jejunum of young pigs, as well as their gastrointestinal function.  相似文献   

2.
This experiment was conducted to investigate the effects of oral administration of monosodium glutamate (MSG) on expression of genes for hepatic lipid and nitrogen metabolism in piglets. A total of 24 newborn pigs were assigned randomly into one of four treatments (n = 6/group). The doses of oral MSG administration, given at 8:00 and 18:00 to sow-reared piglets between 0 and 21 days of age, were 0 (control), 0.06 (low dose), 0.5 (intermediate dose), and 1 (high dose) g/kg body weight/day. At the end of the 3-week treatment, serum concentrations of total protein and high-density lipoprotein cholesterol in the intermediate dose group were elevated than those in the control group (P < 0.05). Hepatic mRNA levels for fatty acid synthase, acetyl-coA carboxylase, insulin-like growth factor-1, glutamate–oxaloacetate transaminase, and glutamate–pyruvate transaminase were higher in the middle-dose group (P < 0.05), compared with the control group. MSG administration did not affect hepatic mRNA levels for hormone-sensitive lipase or carnitine palmitoyl transferase-1. We conclude that oral MSG administration alters hepatic expression of certain genes for lipid and nitrogen metabolism in suckling piglets.  相似文献   

3.
This study determined effects of dietary supplementation with l-arginine (Arg) or N-carbamylglutamate (NCG) on intestinal health and growth in early-weaned pigs. Eighty-four Landrace × Yorkshire pigs (average body weight of 5.56 ± 0.07 kg; weaned at 21 days of age) were fed for 7 days one of the three isonitrogenous diets: (1) a corn- and soybean meal-based diet (CSM), (2) CSM + 0.08% NCG (0.08%), and (3) CSM + 0.6% Arg. There were four pens of pigs per diet (7 pigs/pen). At the end of a 7-day feeding period, six piglets were randomly selected from each treatment for tissue collections. Compared with the control group, Arg or NCG supplementation increased (P < 0.05): (1) Arg concentrations in plasma, (2) small-intestinal growth, (3) villus height in duodenum, jejunum and ileum, (4) crypt depth in jejunum and ileum, (5) goblet cell counts in intestinal mucosae, and (6) whole-body weight gain in pigs. Real-time polymerase chain reaction and western blotting analyses revealed that both mRNA and protein levels for heat shock protein-70 (HSP70) were higher (P < 0.05) in the intestinal mucosae of Arg- or NCG-supplemented pigs than in the control group. Furthermore, the incidence of diarrhea in the NCG group was 18% lower (P < 0.01) than that in the control group. Collectively, these results indicate that dietary supplementation with 0.6% Arg or 0.08% NCG enhances intestinal HSP70 gene expression, intestinal growth and integrity, and the availability of dietary nutrients for whole-body weight gain in postweaning pigs fed a CSM-based diet. Thus, Arg or NCG is a functional ingredient in the weaning diet to improve nutrition, health, and growth performance of these neonates.  相似文献   

4.
Abstract

As part of an interdisciplinary research project, we studied the performance response of sows and their litters to the probiotic strain Bacillus cereus var. toyoi as well as feces consistency of piglets. Gestating sows (n = 26) were randomly allotted into two groups. The probiotic B. cereus var. toyoi was administered by dietary supplementation to one group of sows and their respective litters (probiotic group) whereas the second group (control group) received no probiotic supplementation. The duration of the application was nearly 17 weeks for sows (day 90 ante partum until day 28 post partum) and six weeks for piglets (day 15–56). Piglets were weaned after 28 days. Body weight and feed consumption were recorded weekly and fecal consistency of weaned piglets was studied daily. B. cereus var. toyoi was recovered from feces of sows and piglets as well as from digesta of piglets in the probiotic group, while being absent from all samples of control animals. In addition, the probiotic was detected in piglet feces and digesta before pre-starter feed was offered, indicating a second route of uptake besides diet. Sows of the probiotic group nursed numerically more piglets and supported a higher sum of total nursing days of all piglets within each litter than control sows (p = 0.04). In turn, body weight (BW) up to day 35 was greater for control piglets (p < 0.01), while average daily gain and gain to feed ratio (G:F) in weeks six and eight postweaning was higher in the probiotic group (p < 0.05). The overall G:F of the total postweaning period was 680 g/kg and 628 g/kg in the probiotic group and control group, respectively (p = 0.009). During the trial a high prevalence of liquid feces with its maximum in the second week after weaning was observed. Probiotic supplementation led to a reduction in the incidence of liquid feces and postweaning diarrhea by 38% and 59%, respectively (p < 0.001).  相似文献   

5.
Today probiotics have been suggested as a treatment for the prevention of NAFLD. Omega-3 fatty acid supplementation may have beneficial effects in regulating hepatic lipid metabolism, adipose tissue function and inflammation. The present study was designed to determine whether probiotics plus omega-3 are superior to probiotics alone on the monosodium glutamate (MSG)-induced NAFLD model in rats. We included 60 rats divided into four groups, 15 animals in each. Rats of group I were intact. Newborn rats of groups II–IV were injected with MSG. The III (Symbiter) group received 2.5 ml/kg of multiprobiotic “Symbiter” containing concentrated biomass of 14 probiotic bacteria genera. The IV (Symbiter-Omega) groups received “Symbiter-Omega” combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1–5 %). In both interventional groups reduction in total NAS score was observed. Supplementation of alive probiotic mixture with omega-3 fatty acids lead to 20 % higher decrease in steatosis score (0.73 ± 0.11 vs 0.93 ± 0.22, p = 0.848) and reduction by 16.6 % of triglycerides content in liver as compared to probiotic alone. Our study demonstrated more pronounced reduction in hepatic steatosis and hepatic lipid accumulation after treatment with combination of alive probiotics and omega-3 as compared to probiotics alone.  相似文献   

6.
This study was conducted to test the hypothesis that different dietary Met levels affect small-intestinal mucosal integrity in post-weaning piglets. Two groups of piglets (n = 6/group) were weaned at 28 days of age and randomly allotted to a basal diet (without extra Met supplementation) or a Met-supplemented diet (with 0.12 % l-Met) for 14 days. The standardized ileal digestible (SID) Met levels were 0.24 and 0.35 %, respectively. At days 7 and 14 of the trial, venous blood samples were obtained from piglets, followed by their euthanasia for tissue collection. Piglets fed the diet supplemented with l-Met had a higher average daily gain during days 7–14 and improved feed efficiency during the entire period. Concentrations of sulfur amino acids (SAA), glutamate acid (Glu), glutamine (Gln), and taurine in the plasma and tissues were higher for the piglets in the Met-supplemented group. Met supplementation increased cysteine (Cys) and glutathione (GSH) concentrations in the plasma and tissues, leading to reductions in plasma Cys/CySS redox potential and tissue GSH/GSSH redox potential. The small-intestinal mucosa of Met-supplemented piglets exhibited improved villus architecture, compared with control piglets. Met supplementation increased transepithelial electrical resistance of the jejunal mucosa. Transport of Met, Gln and Cys across the jejunal mucosa did not differ between control and Met-supplemented piglets. The abundance occludin was higher, whereas the abundance of active caspase-3 was lower, in the jejunum of the Met-supplemented piglets. Collectively, adequate dietary Met is required for optimal protein synthesis and mucosal integrity in the small intestine of post-weaning piglets.  相似文献   

7.
This experiment was conducted to evaluate the effects of chromium methionine with/without zinc sulfate or zinc amino acid complex on the growth performance, carcass traits, meat quality, serum parameters, endocrine parameters, and antioxidant status of growing-finishing pigs. A total of 180 (32.0 ± 1.7 kg body weight, BW) crossbred pigs (Duroc × Landrace × Yorkshire) were used in a completely randomized design with three dietary treatments and 10 replicates per treatment (five pens of barrows and five pens of gilts with six pigs per replicate). Three treatments were corn-soybean meal-based diets supplemented with 100 mg Zn/kg from zinc sulfate (ZnSO4), 100 mg Zn/kg from ZnSO4 + 0.2 mg Cr/kg from chromium methionine complex (CrMet), or 50 mg Zn/kg from ZnSO4 + 50 mg Zn/kg from zinc amino acid complex (ZnAA) + 0.2 mg Cr/kg from CrMet, respectively. The experiment lasted 105 days, of which was divided into three stages including phase 1 (30 to 50 kg BW), phase 2 (50 to 80 kg BW), and phase 3 (80 to 110 kg BW). Results showed that supplementation with CrMet and ZnAA improved (P < 0.05) the feed conversion of the pigs in phase 2, phase 3, and the overall experiment. Hot carcass weight, dressing percentage, and a longissimus dorsi muscle area were increased (P < 0.05) in pigs fed with diets supplemented with both CrMet and ZnAA compared with pigs fed with diets containing only ZnSO4 (P < 0.05). There was also an increase (P < 0.01) pH24 h in the longissimus dorsi muscle in pigs fed with diets supplemented with CrMet and ZnAA. The concentration of serum glucose in pigs fed with diets containing CrMet and ZnAA was decreased (P < 0.05) compared with that in pigs fed with the diet containing ZnSO4. Supplementation with CrMet and ZnAA increased (P < 0.05) the circulating levels of insulin and decreased (P < 0.05) cortisol. There was an increase (P < 0.05) in total serum antioxidant capacity and Cu/Zn superoxide dismutase activity as well as a decrease (P < 0.05) in serum malondialdehyde concentrations in pigs fed with diets supplemented with CrMet and ZnAA compared with pigs fed with the diet supplemented only with ZnSO4. In conclusion, supplementation of CrMet only or CrMet together with ZnAA improved feed conversion, carcass traits, and meat quality in the growing-finishing pigs.  相似文献   

8.
The purpose of this study was to evaluate the effect of supplemental chromium (Cr) in the form of chromium picolinate (CrPic) on swine growth performance, meat quality, and protein deposition in skeletal muscle. Forty-eight piglets were divided into three groups randomly, fed with three different dietary levels of Cr (common basal feedstuff supplemented with a dose of 1.61 μg/g or 3.22 μg/g CrPic, which corresponded to 0.2 and 0.4 μg/g Cr). Results indicated that during the growing period (1–35 days), pigs fed with the diet supplemented with CrPic showed no improvement in body mass, average daily gain (ADG), feed consumption, or feed conversion rate (FCR) (P?>?0.05). During the finishing period, a supplementary dose of 0.2 μg Cr/g improved daily weight gain significantly (P?<?0.05), while the situation had no significance with 0.4 μg Cr/g (P?>?0.05) supplemented. For the entire growing-finishing period, body mass increased by 3.86%, ADG rose by 6.08%, and the FCR decreased by 3.30%; levels of total muscular pigment and that in the ribeye areas significantly improved (P?<?0.05) when supplementation with 0.2 μg Cr/g (P?<?0.05) was employed. However, there were no significant changes when supplemented with 0.4 μg Cr/g. While there were no changes in yield of carcass, back fat, water holding capacity, or levels of muscular crude protein and fat (P?>?0.05) in treatment, the ratio of fat-lean and RNA/DNA increased significantly supplemented with 0.2 μg Cr/g (P?<?0.05), but there were no significance with 0.4 μg Cr/g supplementation. In addition, the muscular levels of cholesterol had slightly decreased and the content of DNA in skeletal muscle showed no marked changes with 0.2 or 0.4 μg/g Cr supplementation. In conclusion, the present results suggested that dietary Cr supplementation in the dose of 0.2 μg/g could promote the growth performance, carcass characteristics, and protein deposition.  相似文献   

9.
Monosodium glutamate-obese rats are glucose intolerant and insulin resistant. Their pancreatic islets secrete more insulin at increasing glucose concentrations, despite the possible imbalance in the autonomic nervous system of these rats. Here, we investigate the involvement of the cholinergic/protein kinase (PK)-C and PKA pathways in MSG β-cell function. Male newborn Wistar rats received a subcutaneous injection of MSG (4 g/kg body weight (BW)) or hyperosmotic saline solution during the first 5 days of life. At 90 days of life, plasma parameters, islet static insulin secretion and protein expression were analyzed. Monosodium glutamate rats presented lower body weight and decreased nasoanal length, but had higher body fat depots, glucose intolerance, hyperinsulinemia and hypertrigliceridemia. Their pancreatic islets secreted more insulin in the presence of increasing glucose concentrations with no modifications in the islet-protein content of the glucose-sensing proteins: the glucose transporter (GLUT)-2 and glycokinase. However, MSG islets presented a lower secretory capacity at 40 mM K+ (P < 0.05). The MSG group also released less insulin in response to 100 μM carbachol, 10 μM forskolin and 1 mM 3-isobutyl-1-methyl-xantine (P < 0.05, P < 0.0001 and P < 0.01). These effects may be associated with a the decrease of 46 % in the acetylcholine muscarinic type 3 (M3) receptor, and a reduction of 64 % in PKCα and 36 % in PKAα protein expressions in MSG islets. Our data suggest that MSG islets, whilst showing a compensatory increase in glucose-induced insulin release, demonstrate decreased islet M3/PKC and adenylate cyclase/PKA activation, possibly predisposing these prediabetic rodents to the early development of β-cell dysfunction.  相似文献   

10.
The consumption of monosodium glutamate (MSG) is advocated to elicit physiological and metabolic effects, yet these effects have been poorly investigated directly in humans and in particular in the postprandial phase. Thirteen healthy adults were supplemented for 6 days with a nutritional dose of MSG (2 g) or sodium chloride (NaCl) as control, following a crossover design. On the 7th day, they underwent a complete postprandial examination for the 6 h following the ingestion of the same liquid standard meal (700 kcal, 20% of energy as [(15)N]protein, 50% as carbohydrate, and 30% as fat) supplemented with MSG or NaCl. Real-ultrasound measures of antral area indicated a significant increased distension for the 2 h following the meal supplemented with MSG vs. NaCl. This early postprandial phase was also associated with significantly increased levels of circulating leucine, isoleucine, valine, lysine, cysteine, alanine, tyrosine, and tryptophan after MSG compared with NaCl. No changes to the postprandial glucose, insulin, glucagon-like peptide (GLP)-1, and ghrelin were noted between MSG- and NaCl-supplemented meals. Subjective assessments of hunger and fullness were neither affected by MSG supplementation. Finally, the postprandial fate of dietary N was identical between dietary conditions. Our findings indicate that nutritional dose of MSG promoted greater postprandial elevations of several indispensable amino acids in plasma and induced gastric distension. Further work to elucidate the possible sparing effect of MSG on indispensable amino acid first-pass uptake in humans is warranted. This trial was registered at clinicaltrials.gov as NCT00862017.  相似文献   

11.
Two experiments were conducted to evaluate effects of keratinase for growing and nursery pigs. In Exp. 1, six pigs (32.3 ± 2.8 kg body weight), fitted with a simple T-cannula at the distal ileum, were assigned to one of two 3 × 3 Latin squares involving three periods and three diets including a basal diet and the same diets supplemented with 0, 0.05 or 0.1% keratinase. Dietary keratinase supplementation increased the apparent ileal digestibility of crude protein (CP), arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, alanine, glutamic acid and proline (p < 0.05). Digestibility coefficients did not differ between pigs fed 0.05 and 0.1% keratinase. In Exp. 2, 24piglets weaned at 30 ± 2 d of age were used in a 2 × 2 factorial design experiment with two CP concentrations (19 vs. 22%) and two levels of keratinase supplementation (0 vs. 0.05%). Keratinase supplementation increased (p < 0.05) average daily gain, serum arginine concentration and loin muscle area but decreased (p < 0.05) serum interleukin-10 concentrations. The reduction in dietary CP level decreased (p < 0.05) serum urea nitrogen concentrations, isoleucine, serine and proline concentrations, but increased serum arginine concentrations. Few interactions between keratinase supplementation and dietary CP concentration were observed. This study indicated that dietary keratinase supplementation improved apparent ileal amino acid digestibility for growing pigs and had a positive effect on weight gain, immune response and loin muscle area for nursery pigs.  相似文献   

12.
The study was conducted to evaluate the effects of chromium-loaded chitosan nanoparticles (Cr-CNP) on glucose transporter 4 (GLUT4), relevant messenger RNA (mRNA), and proteins involved in phosphatidylinositol 3-kinase (PI3K), Akt2-kinase, and AMP-activated protein kinase (AMPK) of skeletal muscles in finishing pigs. A total of 120 crossbred barrows (BW 65.00 ± 1.26 kg) were randomly allotted to four dietary treatments, with three pens per treatment and 10 pigs per pen. Pigs were fed the basal diet supplemented with 0, 100, 200, or 400 μg/kg of Cr from Cr-CNP for 35 days. After the feeding trials, 24 pigs were slaughtered to collect longissimus muscle samples for analysis. Cr-CNP supplementation increased GLUT4 messenger RNA (mRNA) (quadratically, P < 0.01) and total and plasma membrane GLUT4 protein contents (linearly and quadratically, P < 0.001) in skeletal muscles. Glycogen synthase kinase 3β (GSK-3β) mRNA was decreased linearly (P < 0.001) and quadratically (P < 0.001). Supplemental Cr-CNP increased insulin receptor (InsR) mRNA quadratically (P < 0.01), Akt2 total protein level linearly (P < 0.01) and quadratically (P < 0.001), and PI3K total protein was increased significantly (P < 0.05) in 200 μg/kg treatment group. The mRNA of AMPK subunit gamma-3 (PRKAG3) and protein of AMPKα1 was significantly increased (P < 0.001) with the addition of Cr-CNP. The results indicate that dietary supplementation of Cr-CNP may promote glucose uptake by leading to recruitment of GLUT4 to the plasma membrane in skeletal muscles, and these actions may be associated with the insulin signal transduction and AMPK.  相似文献   

13.

Background

The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG) is widely used as a daily food additive in China. Little information is available on the effects of oral MSG and dietary fat supplementation on the amino acid balance in tissues. The present study aimed to determine the effects of both dietary fat and MSG on amino acid metabolism in growing pigs, and to assess any possible interactions between these two nutrients.

Methods and Results

Four iso-nitrogenous and iso-caloric diets (basal diet, high fat diet, basal diet with 3% MSG and high fat diet with 3% MSG) were provided to growing pigs. The dietary supplementation with fat and MSG used alone and in combination were found to modify circulating and tissue amino acid pools in growing pigs. Both dietary fat and MSG modified the expression of gene related to amino acid transport in jejunum.

Conclusions

Both dietary fat and MSG clearly influenced amino acid content in tissues but in different ways. Both dietary fat and MSG enhance the absorption of amino acids in jejunum. However, there was little interaction between the effects of dietary fat and MSG.  相似文献   

14.
In pigs, digestive disorders associated with weaning lead to antibiotic use to maintain intestinal health. Microalgae have been studied in humans and rodents for their beneficial effects on health. The nutritional value of microalgae in animal diets has been assessed, but results were not conclusive. Dietary supplementation with microalgae as an alternative to antibiotic use was studied in two trials (72 piglets with initial BW=9.1±1.1 kg in trial 1 and 24 piglets with initial BW=9.1±0.9 kg in trial 2). All piglets were weaned at 28 days of age and then housed in individual cages. Piglets were randomly allocated to one of the four diets during 2 weeks after weaning: a standard diet with no supplementation (NC) or the standard diet supplemented with 1% Spirulina (SP), with 1% Chlorella (CV), or with 0.2% of colistin as positive control (PC). Trial 1 was performed to determine the effect of microalgae supplementation from 28 to 42 days on performance and incidence of diarrhoea. Animals received then a standard diet from 42 to 56 days of age. Trial 2 was performed from 28 to 42 days of age to assess nutrient digestibility of the experimental diets and to determine inflammatory status and intestinal morphology at 42 days of age. In trial 1, 94% of the pigs had diarrhoea in the 1st week after weaning with no beneficial effect of colistin on diarrhoea incidence, average daily feed intake (ADFI), average daily gain (ADG), and gain : feed (G : F) ratio. This suggests that the diarrhoea was due to digestive disorders that did not result from enterotoxigenic Escherichia coli infection. Supplementation with either Spirulina or Chlorella did not affect ADFI, ADG and G : F in trials 1 and 2 (P>0.10). Diarrhoea incidence was reduced in CV pigs compared with NC, SP and PC pigs (P<0.05). Total tract digestibility in pig receiving microalgae was greater for gross energy (P<0.05), and tended to be greater for dry matter, organic matter and NDF (P<0.10) compared with NC and PC pigs. Villus height at the jejunum was greater in SP and CV pigs compared with NC and PC pigs (P<0.05). This study shows a potential effect of both Spirulina and Chlorella supplementation on intestinal development and a potential of Chlorella supplementation to manage mild digestive disorders. Further investigation is necessary to determine the mechanism action of Spirulina and Chlorella on gut health and physiology.  相似文献   

15.
A 2 × 2 factorial experiment (n = 12 replicates per treatment, 4 pigs per replicate) was performed to investigate the effects of seaweed extracts, laminarin (derived ß-glucans) and fucoidan (sulphated polysaccharides), independently or in combination on post-weaning piglet performance and selected microbial populations. At weaning, the piglets (24 days of age, 6.4 kg live weight) were assigned to one of the four dietary treatments: (T1) basal diet, (T2) basal diet with 300 p.p.m. laminarin, (T3) basal diet with 240 p.p.m. fucoidan, (T4) basal diet with 300 p.p.m. laminarin and 240 p.p.m. fucoidan. Pigs offered diets supplemented with laminarin had an increased daily gain (P < 0.01), and gain-to-feed ratio (P < 0.05) compared to pigs offered diets without laminarin supplementation during the experimental period (days 0 to 21). Pigs offered laminarin-supplemented diets had an increased faecal dry matter and reduced diarrhoea (P < 0.05) during the critical 7 to 14 day period. Pigs offered diets containing laminarin had reduced faecal Escherichia coli populations. There was a significant interaction (P < 0.01) on faecal Lactobacilli populations between laminarin and fucoidan. Pigs offered the fucoidan diet had an increased Lactobacilli population compared to pigs offered the basal diet. However, there was no effect of fucoidan on faecal Lactobacilli populations when laminarin was added. Overall, the reduction in E. coli population and the increase in daily gain suggest that laminarin may provide a dietary means to improve gut health after weaning.  相似文献   

16.
Previous work has shown that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of disease-challenged normal birth weight (NBW) pigs. It is not known whether FAA supplementation attenuates the effects of a subsequent disease challenge or whether this response is similar in low birth weight (LBW) pigs. The objective was to determine the effects of birth weight and FAA supplementation during the postweaning period in Salmonella-challenged pigs. Thirty-two LBW (1.08 ± 0.11 kg) and NBW (1.58 ± 0.11 kg) pigs were assigned to a nursery feeding program at weaning (25 d) for 31 days in a 2 × 2 factorial arrangement. Factors were birth weight category (LBW vs. NBW) and basal (FAA–) or supplemented FAA profile (FAA+; Thr, Met, and Trp at 120% of requirements). At d 31, pigs were placed onto a common grower diet and, after a 7-d adaptation period, were inoculated with Salmonella Typhimurium (ST; 2.2 × 109 colony-forming units/mL) and monitored for 7-d postinoculation. Growth performance, rectal temperature, fecal score, indicators of gut health, ST shedding score in feces, intestinal ST colonization and translocation, and blood parameters of acute-phase response and antioxidant balance were measured pre- and postinoculation. Inoculation with ST increased temperature and fecal score, and the overall rectal temperature was higher in LBW compared to NBW pigs (P < 0.05). Postinoculation (d 7), reduced:oxidized glutathione was increased in NBW compared to LBW pigs (P < 0.05). Salmonella shedding and translocation to spleen were lower in NBW-FAA+ compared to NBW-FAA? pigs (P < 0.05). Postinoculation average daily gain was higher in NBW-FAA+ (P < 0.05) compared to the other groups. Postinoculation haptoglobin, superoxide dismutase, and colonic myeloperoxidase were increased in LBW-FAA? pigs (P < 0.05). Ileal alkaline phosphatase was decreased in LBW compared to NBW (P < 0.05). Overall, FAA supplementation represents a potential strategy to mitigate the effect of enteric disease challenge in NBW, but not LBW pigs.  相似文献   

17.
L-Glutamate is a major oxidative fuel for the small intestine. However, few studies have demonstrated the effect of L-glutamate on the intestinal architecture and signaling of amino acids in the small intestine. The aim of this study was to investigate the effects of dietary L-glutamate supplementation on the intestinal architecture and expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. A total of 120 weaning piglets aged 35±1 days with an average body weight at 8.91±0.45 kg were randomly allocated to two treatments with six replicates of ten piglets each, fed with diets containing 1.21% alanine, or 2% L-glutamate. L-Glutamate supplementation increased the activity of glutamate oxaloacetate transaminase (GOT) in the jejunal mucosa. Also, the mRNA expression level of jejunal mucosa glutamine synthetase (GS) was increased by L-glutamate supplementation. The height of villi in duodenal and jejunal segments, and the relative mRNA expression of occludin and zonula occludens protein-1 (ZO-1) in jejunal mucosa were increased by dietary L-glutamate supplementation. L-Glutamate supplementation increased plasma concentrations of glutamate, arginine, histidine, isoleucine, leucine, methionine, phenylalanine and threonine. L-Glutamate supplementation also increased the relative mRNA expression of the jejunal mucosa Ca2+-sensing receptor (CaR), metabotropic glutamate receptor 1 (mGluR1) and metabotropic glutamate receptor 4 (mGluR4), and neutral amino acid transporter B0-like (SLC1A5) in the jejunal mucosa. These findings suggest that dietary addition of 2% L-glutamate improves the intestinal integrity and influences the expression of amino acid receptors and transporters in the jejunum of weaning, which is beneficial for the improvement of jejunal nutrients for digestion and absorption.  相似文献   

18.
In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD600 of 2–10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD600 of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al2O3 as catalyst in toluene with the yield of 96 %.  相似文献   

19.
This study tested the hypothesis that dietary l-arginine supplementation confers beneficial effects on growing pigs fed a mold-contaminated diet. The measured variables included: (1) the average daily weight gain and feed:gain ratio; (2) activities of total superoxide dismutase, glutathione peroxidase, diamine oxidase, as well as amino acid and d-lactate concentrations in serum; (3) intestinal morphology; (4) expression of the genes for SLC7A7 (amino acid transporter light chain, y+L system, family 7, member 7), SLC7A1 (cationic amino acid transporter, y+ system, family 7, member 1), SLC1A1 (neuronal/epithelial high affinity glutamate transporter, system XAG, member 1), SLC5A1 (sodium/glucose cotransporter, family 5, member 1) in the ileum and jejunum. Mycotoxins in feedstuffs resulted in an enlarged small intestine mass, oxidative injury in tissues, and reduced growth performance in pigs. Dietary arginine supplementation enhanced (P < 0.05) expression of jejunal SLC7A7 and ileal SLC7A1, in comparison with the control and mycotoxin groups. In addition, supplementing 1 % l-arginine to the mycotoxin-contaminated feed had the following beneficial effects (P < 0.05): (1) alleviating the imbalance of the antioxidant system in the body; (2) ameliorating intestinal abnormalities; and (3) attenuating whole-body growth depression, compared with the mycotoxin group without arginine treatment. Collectively, these results indicate that dietary supplementation with l-arginine exerts a protective role in pigs fed mold-contaminated foods. The findings may have important nutritional implications for humans and other mammals.  相似文献   

20.
The study was focused on assessment of the effect of an extract of long-chain inulin (LCI) and dried tubers of Jerusalem artichoke (JA) and a multispecies probiotic preparation as well as a combination thereof on growth performance and blood parameters of fattening pigs. In total, 144 pigs (initial body weight 30.0 ± 0.5 kg) were used in a 98-d experiment. The six dietary treatments consisted of the control diet (Con), diet Con supplemented with probiotics (ConP) and four diets supplemented with LCI or JA alone or with probiotics (diets LCIP and JAP). Throughout the fattening period, there was a beneficial effect of the probiotic supplementation to the inulin-containing diets and the average daily gain (ADG) was increased by supplementation of probiotics in combination with inulin sources (p < 0.05). At the end of the fattening period, ADG and feed conversion ratio (FCR) were higher after supplementation of LCI only (p < 0.05). Compared with group ConP, in groups LCI and JA, the ADG and FCR were improved (p < 0.05). Only in the first fattening stage, the addition of the prebiotics and/or probiotics had an impact on the level of white blood cells and some biochemical indices in pigs. In younger animals, probiotic or LCI supplementation increased the IgG level (p < 0.05). There was also an interaction between the probiotics and JA resulting in increased IgG and IgA concentrations (p < 0.05). In the finishing period, LCI addition increased the IgM level (p < 0.05), whereas JA addition increased IgG and IgM levels as well (p < 0.05). In conclusion, both dietary sources of inulin and probiotic supplementation can improve the fattening performance and health status of growing pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号