首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
癌基因ras对β-1,4-半乳糖基转移酶活性的调节   总被引:1,自引:0,他引:1  
 研究癌基因ras对细胞表面的 β 1,4 半乳糖基转移酶活性的调节 构建Ha ras表达载体并转染NIH 3T3细胞株 ,测定细胞表面和细胞内 β 1,4 半乳糖基转移酶活性和其mRNA的水平 结果发现ras使NIH 3T3细胞表面的 β 1,4 半乳糖基转移酶活性降低 ,而高尔基体内的活性不变 此外用Northern印迹检测后发现 ,ras不能改变细胞内 β 1,4 半乳糖基转移酶的mRNA水平 这说明癌基因ras能够调节细胞表面β 1,4 半乳糖基转移酶活性 ,但不能改变其转录水平  相似文献   

2.
ß1,4-Galactosyltransferase (GalTase) plays a centralrole in the biosynthesis of N-acetyllactosamine-containing oligo-saccharides.However, despite this seemingly important function, little isknown about how changes in the levels of GalTase affect oligosaccharidebiosynthesis. We have examined the effects of overexpressingGalTase on the glycosylation of endogenous glycoproteins inF9 mouse embryonal carcinoma cells. Cells transfected with eitherthe short form of the GalTase cDNA (encoding a protein of 386amino acids) or the long form of the GalTase cDNA (encodinga protein of 399 amino acids) had a 3-fold increase in totalGalTase activity, relative to control F9 cells. Analysis ofpronase-digested glycopeptides obtained from control and transfectedcells after metabolic labelling with [6-3H]galactose revealedno significant qualitative or quantitative differences, as assessedby Bio-Gel P-6 gel filtration chromatography and Tomato lectinaffinity chroma-tography. Furthermore, SDS-PAGE analysis ofimmuno-precipitated [3H]galactose-labelled lysosomal-associatedmembrane protein-1 (LAMP-1) glycoprotein showed no differencein amounts or mobility. Pronase digestion and subsequent analysisof the gel-fractionated LAMP-1 glycoproteins also indicatedno differences between the various cell lines. The inabilityof elevated GalTase activity to affect glycosylation was notdue to limiting levels of GalTase substrates, since an excessof substrates was detectable in lysed cells using either endogenousor exogenous GalTase and UDP-[3H]galactose. Finally, the subcellulardistribution of GalTase, as assessed by sucrose gradient fractionation,was similar between all cell types, thus suggesting that GalTasewas appropriately compartmentalized in the transfected cells.More importantly, GalTase specific activities in the Golgi membranesof the transfected cells were 3–4 times greater than incontrol cells. These results show that selectively increasingGalTase activity does not alter glycoprotein biosynthesis inF9 cells. F9 cells galactosyltransferase glycoprotein biosynthesis  相似文献   

3.
《The Journal of cell biology》1993,120(4):1045-1057
In addition to its traditional location within the Golgi complex, beta 1,4-galactosyltransferase (GalTase) is also present on the cell surface, where it is thought to function as a cell adhesion molecule by binding to extracellular oligosaccharide ligands. Recent studies suggest that cells contain two forms of GalTase with distinct cytoplasmic domains. The longer form of GalTase contains a 13-amino acid cytoplasmic extension and is preferentially targeted to the plasma membrane, relative to the shorter GalTase protein that is confined primarily to the Golgi compartment. In this study, we created a dominant negative mutation that interferes with the function of cell surface GalTase by transfecting into cells cDNAs encoding truncated versions of the long form of GalTase containing the complete cytoplasmic and transmembrane domains, but devoid of the catalytic domain. In both F9 embryonal carcinoma cells and Swiss 3T3 fibroblasts, overexpressing the truncated long GalTase (TLGT) protein displaced the endogenous cell surface GalTase from its association with the cytoskeleton, resulting in a loss of intercellular adhesion and cell spreading specifically on matrices that use GalTase as a cell surface receptor. In contrast, overexpressing the analogous truncated short GalTase (TSGT) protein did not affect cell morphology or GalTase activity. In control assays, inducing the TLGT protein had no effect on cell interactions with fibronectin (which is independent of GalTase), or on the cytoskeleton attachment of another matrix receptor (beta 1 integrin), or on overall glycoprotein synthesis, thus eliminating nonspecific effects of the TLGT protein on cellular adhesion and metabolism. These results represent the first molecular manipulation of cell surface GalTase expression and confirm its function as a cell adhesion molecule. These studies further suggest that the cytoskeleton contains a defined, saturable number of binding sites for GalTase, which enables it to function as an adhesion molecule.  相似文献   

4.
Fractionation of differentiating murine teratocarcinoma F9 cells and extraction of the nuclear/microsomal pellets with ethidium bromide led to the purification and microsequencing of the protein mCyP-S1, a novel cyclosporin A-sensitive peptidyl-prolyl cis-trans isomerase (PPIase). mCyP-S1 is a new member of the cyclophilin class of proteins. Cloning and sequencing of the mCyP-S1 cDNA revealed extended coding capacity for a putative N-terminal signal sequence, suggesting processing of mCyP-S1 during intracellular translocation across the membrane of the endoplasmic reticulum. mCyP-S1 is abundantly expressed in a variety of mouse organ tissues and its mRNA levels increase during F9 cell differentiation. Specific subcellular localization of PPIases is postulated to contribute to functional specificities of this class of enzymes.  相似文献   

5.
Proteins binding to the PEA3 enhancer motif (AGGAAG) activate the polyomavirus early promoter and help comprise the viral late mRNA initiator element (W. Yoo, M. E. Martin, and W. R. Folk, J. Virol. 65:5391-5400, 1991). Because many developmentally regulated cellular genes have PEA3 motifs near their promoter sequences, and because Ets family gene products activate the PEA3 motif, we have studied the expression of PEA3-binding proteins and Ets-related proteins during differentiation of F9 embryonal carcinoma cells. An approximately 91-kDa protein (PEA3-91) was identified in F9 cell nuclear extracts by UV cross-linking to a radiolabeled PEA3 oligonucleotide probe, and expression of PEA3-91 was down-regulated after differentiation of F9 cells to parietal endoderm. The c-ets-1 gene product binds to a sequence in the murine sarcoma virus long terminal repeat that is similar to the PEA3 motif (cGGAAG), but PEA3-91 was not cross-linked to this Ets-1-binding motif, nor did antiserum which recognizes murine c-ets-1 and c-ets-2 proteins have any effect on PEA3-binding activity in mobility shift assays. Furthermore, c-ets-1 mRNA was not detected in undifferentiated or differentiated F9 cells, and c-ets-2 mRNA levels remained high after differentiation. Antiserum against the Drosophila Ets-related E74A protein, however, recognized an approximately 92-kDa protein in F9 cells whose expression during differentiation varied in a manner identical to that of PEA3-91. These data suggest that PEA3-91 is not the product of the ets-1 or ets-2 genes but is likely to be the product of a murine homolog of the Drosophila E74 gene.  相似文献   

6.
7.
8.
The beta-1,4-galactosyltransferase (GT; EC 2.4.1.90) is localized in the trans-cisternae of the Golgi apparatus where it catalyzes the transfer of galactose from UDP-galactose to the N-acetylglucosamine residue of secretory and membrane-bound glycoproteins. Given the potential role of GT in cell-cell interaction and the fact that numerous cell surface events occur during cell growth we studied the possible relationship between GT expression and 3T3 cell growth. The level of GT mRNA increases 3--4-fold 2 h after serum-stimulation of quiescent 3T3 cells. Protein biosynthesis inhibitors like cycloheximide and anisomycin superinduce GT mRNA expression. Concomitant with this increase is an observed rise in the level of GT protein as well as an increase in overall GT enzymatic activity. Antibody-binding studies and direct enzyme assays of intact cells, along with subcellular fractionation experiments indicate that there is an increase in both Golgi and cell surface-associated GT pools upon serum-stimulation of resting cells. We conclude that GT is a member of the cell-cycle dependent genes whose expression is growth regulated.  相似文献   

9.
E M Bayna  J H Shaper  B D Shur 《Cell》1988,53(1):145-157
Cell surface beta-1,4 galactosyltransferase (GalTase) is shown to mediate intercellular adhesions between embryonal carcinoma (EC) cells and specifically during late morula compaction in the preimplantation mouse embryo. Monospecific anti-GalTase IgG raised against affinity-purified bovine beta-1,4 GalTase recognizes F9 EC cell GalTase as judged by immunoprecipitation and inhibition of GalTase activity, as well as by immunoprecipitation of a single 52 kd metabolically labeled membrane protein. Anti-GalTase IgG inhibits cell adhesions between EC cells, dissociates compacted mouse morulae, and inhibits blastocyst formation. Anti-GalTase IgG specifically inhibits cell adhesions during late morula compaction, coincident with a peak of surface GalTase activity as determined by direct enzyme assay. On EC cells, GalTase activity can be proteolytically released from intact cells, and is localized by indirect immunofluorescence to areas of intercellular contact, consistent with its proposed role in cell adhesion. Beta-1,4 GalTase is the first cell adhesion molecule identified that participates during late morula compaction, subsequent to uvomorulin function.  相似文献   

10.
F9 teratocarcinoma stem cells treated with retinoic acid (RA) and dibutyryl cAMP (but2 cAMP) differentiate into embryonic parietal endoderm. Using heparin-affinity chromatography, endothelial cell proliferation assays, immunoprecipitation, and Western analysis with antibodies specific for acidic and basic fibroblast growth factors (FGFs), we detected biologically active FGF in F9 cells only after differentiation. A bovine basic FGF cDNA probe hybridized to 2.2-kb mRNAs in both F9 stem and parietal endoderm cells and to a 3.8-kb mRNA in F9 stem cells. A genomic DNA probe for acidic FGF hybridized to a 5.8-6.0-kb mRNA in both F9 stem and parietal endoderm cells, and to a 6.0-6.3-kb mRNA only in parietal endoderm cells. Although these FGF mRNAs were present in the stem cells, we could find no evidence that F9 stem cells synthesized FGFs, whereas differentiated F9 cells synthesized both acidic and basic FGF-like proteins. We conclude that biologically active factors with properties characteristic of acidic and basic FGF are expressed by F9 parietal endoderm cells after differentiation. Differentiating embryonic parietal endoderm thus may serve as a source of FGF molecules in the developing blastocyst, where these factors appear to play a central role in subsequent embryogenesis.  相似文献   

11.
During differentiation of murine erythroleukemia cells, the levels of certain mRNA were observed to change. To characterize the various patterns of changes that occur during differentiation, cDNA libraries made from RNA isolated from uninduced and differentiating cells were screened with labeled cDNA or RNA labeled in vivo for different periods of time. cDNA clones that corresponded to individual mRNAs whose level remained constant, increased, or decreased during differentiation were identified. These clones were used to analyze Northern blots containing RNA from uninduced and differentiated cells. A number of characteristic changes in individual mRNAs in differentiating murine erythroleukemia cells could be identified, such as no change, increase in concentration, increase in concentration and slight change in size, decrease in concentration, decrease in concentration and change in size, appearance of new band(s) of entirely different size, and change in relative concentrations of two related mRNAs. Measurements of rates of mRNA synthesis and degradation suggest that both parameters change during differentiation and that these changes are instrumental in establishing cellular concentration of specific mRNAs. It seems that the changes in mRNA stability observed in differentiating murine erythroleukemia cells may be associated with changes in the primary structure of the transcribed portion of mRNA. The observation that specific mRNA synthesized before and after induction may have very different stabilities at the same point in differentiation supports this hypothesis.  相似文献   

12.
A Alonso  B Breuer  H Bouterfa    D Doenecke 《The EMBO journal》1988,7(10):3003-3008
We have isolated and characterized cDNA clones coding for the H1 histone subtype H1(0) in mouse teratocarcinoma cells. The mRNA is 2100 nt long and contains a coding sequence which is highly related to that of the human H1(0) gene. Using this cDNA as a probe, we have shown that, in comparison to undifferentiated F9 cells, differentiated F9 teratocarcinoma cells contain large amounts of H1(0) mRNA. This increase takes place very early during differentiation and does not correlate with changes in the rate of cell division. This indicates that the accumulation of H1(0) mRNA is not the result of reduced proliferation. Most likely on the contrary, the increase in the amount of H1(0) and the resulting effects on the formation of high order chromatin structures are parts of the differentiation program induced in F9 cells.  相似文献   

13.
The regulation of gelsolin levels during differentiation of the murine embryonal carcinoma cell line, PC-13, was investigated using nucleic acid and immunological probes. A cDNA clone, Mu-319, which contained the entire coding sequence for the cytoplasmic form of murine gelsolin was isolated using a polyclonal antibody. Gelsolin was detected in several cell lines but was not detectable in three undifferentiated embryonal carcinoma cell lines. Levels of gelsolin mRNA increased 10-fold during the differentiation of the murine embryonal carcinoma cell line, PC-13. Differentiation of PC-13 was accompanied by changes in cell shape, from small indistinct cells to large flat cells. The accumulation of gelsolin mRNA in PC-13 cells began 12-24 h after addition of the differentiation-inducing agents. In comparison, 2-5A-dependent RNase activity showed a 40-fold increase beginning after 24 to 36 h and c-fos mRNA were shown to increase about 9-fold beginning 36 to 60 h after induction of differentiation. The levels of gelsolin per se, as determined by immunoreactivity were also shown to increase with differentiation of PC-13 cells. These results suggest that gelsolin may play a role in the restructuring of actin filaments which accompanies the dramatic changes in cell shape during differentiation.  相似文献   

14.
We report the molecular cloning of one novel cDNA isolated from the rat brain. We have named the putative protein CLRP, for complex leucine-repeat protein. The predicted CLRP amino acid sequence shares homology in the amino acid composition with the Galactose, N-Acetylglucosamine, and Sialic acid transporters, and shows 91% identity with the sequence of one human chromosome 5 BAC clone. Expression of the CLRP cDNA tagged with GFP in COS-7 cells was found in cell organelles that resemble the Golgi apparatus of the cytoplasm. In Northern blot, the CLRP probe labels a single band of 2.4 kb in the brain, kidney, lung, testis, and prostate. In the brain, CLRP mRNA is expressed by limited sets of neurons, such as the pyramidal cells of the cortex, the Purkinje cells of the cerebellum, and the motoneurons of the brainstem. In the brain, the CLRP mRNA is expressed at embryonic day 15; levels of expression are maintained until postnatal day 10 and decrease in adults. The results suggest that CLRP codes a novel member of the nucleotide-sugar family of proteins of the Golgi apparatus.  相似文献   

15.
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

16.
The subcellular localization of the post-translational processing steps which occur in the conversion of pro-adrenocorticotropic hormone (ACTH)/endorphin into beta-endorphin-sized molecules in rat intermediate pituitary has been studied. Primary cell cultures were incubated in radioactively labeled amino acids, and a subcellular fraction containing secretory granules was separated from a subcellular fraction containing rough endoplasmic reticulum and Golgi apparatus by centrifugation of homogenates on gradients on Percoll (Pharmacia Fine Chemicals). The radiolabeled beta-endorphin-related material in the granule and rough endoplasmic reticulum/Golgi apparatus fractions was quantitated by immunoprecipitation and sodium dodecyl sulfate polyacrylamide gel electrophoresis. A pulse-chase labeling experiment demonstrated that newly synthesized beta-endorphin-related material first appeared in the rough endoplasmic reticulum/Golgi apparatus fraction and after longer incubations (chase) appeared in the secretory granule fraction. After 2 h of chase incubation, about 85% of the beta-endorphin-related material synthesized during the 30-min pulse incubation had been transferred from the rough endoplasmic reticulum/Golgi apparatus to the secretory granule fraction. The conversion of most of the newly synthesized pro-ACTH/endorphin into beta-lipotropin occurred in the rough endoplasmic reticulum/Golgi apparatus fraction, whereas the conversion of most of the beta-lipotropin into beta-endorphin-sized molecules occurred in the secretory granule fraction.  相似文献   

17.
The subcellular location of the enzymes of eicosanoid biosynthesis is critical for their co-ordinate action in the generation of leukotrienes and prostaglandins. This activity is thought to occur predominantly at a perinuclear location. Whereas the subcellular locations of cytosolic phospholipase (PL) A(2) and each of the pathway enzymes of eicosanoid generation have been defined, the distribution of the low molecular weight species of PLA(2) has remained elusive because of the lack of antibodies that distinguish among homologous family members. We have prepared affinity-purified rabbit antipeptide IgG antibodies that distinguish mouse group IIA PLA(2) and group V PLA(2). Immunofluorescence staining and immunogold electron microscopy reveal different subcellular locations for the enzymes. Group IIA(2) PLA(2) is present in the secretory granules of mouse bone marrow-derived mast cells, consistent with its putative role in facilitating secretory granule exocytosis and its consequent extracellular action. In contrast, group V PLA(2) is associated with various membranous organelles including the Golgi apparatus, nuclear envelope, and plasma membrane. The perinuclear location of group V PLA(2) is consistent with a putative interaction with translocated cytosolic PLA(2) in supplying arachidonic acid for generation of eicosanoid products, while the location in Golgi cisternae may also reflect its action as a secreted enzyme. The spatial segregation of group IIA PLA(2) and group V PLA(2) implies that these enzymes are not functionally redundant.  相似文献   

18.
The present electron microscopic cytochemical investigation was undertaken to characterize the alterations in the golgi apparatus and GERL of rat parotid acinar cells during ethionine intoxication and recovery. Although the Golgi apparatus and GERL were reduced in size, and some broadening of the Golgi saccules occurred as the result of ethionine treatment, the relative localization of thiamine pyrophosphatase (TPPase) activity in the Golgi saccules, and acid phosphatase activity (AcPase) in GERL, remained unchanged. Shortly after ethionine treatment was stopped, a dramatic redistribution of enzyme activities was noted. Within the first 24 hours of recovery, the Golgi apparatus began to enlarge, and the content of secretory granules increased. By day 3 of recovery, cisternae morphologically identifiable as GERL and forming secretory granules possessed TPPase activity, while AcPase activity was virtually undetectable. After seven days of recovery, the Golgi apparatus and GERL appeared both morphologically and cytochemically normal. The enzyme modulation observed during recovery may be correlated with increased secretory granule production. Furthermore, the presence of TPPase activity in GERL and forming secretory granules lends support to the suggestion that GERL may be derived from the trans Golgi saccule.  相似文献   

19.
20.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号