首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Apoptosis has been described in placental (trophoblast) tissues during both normal and abnormal pregnancies. We have studied the effects of the cyclopentenone prostaglandins (PGs) on trophoblast cell death using JEG3 choriocarcinoma cells. PGJ(2), Delta(12)PGJ(2), and 15-deoxy-Delta(12,14)-PGJ(2) (15dPGJ(2)) (10 microM) significantly reduced mitochondrial activity (MTT assay) over 16 h by 17.4 +/- 4.7%, 28 +/- 9.3%, and 62.5 +/- 2.8%, respectively (mean +/- sem), while PGA(2) and PGD(2) had no effect. The synthetic PPAR-gamma ligand ciglitizone (12.5 microM) had a potency similar to 15dPGJ(2) (69 +/- 3% reduction). Morphological examination of cultures treated with PGJ(2) and its derivatives revealed the presence of numerous cells with dense, pyknotic nuclei, a hallmark of apoptosis. FACS analysis revealed an abundance (approximately 40%) of apoptotic cells after 16-h treatment with 15dPGJ(2) (10 microM). The caspase inhibitor ZVAD-fmk (5 microM) significantly diminished the apoptotic effects of Delta(12)PGJ(2) and 15dPGJ(2). JEG3 cells expressed PPAR-gamma mRNA by Northern analysis. These novel findings imply a role for PPAR-gamma ligands in various processes associated with pregnancy and parturition.  相似文献   

2.
The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE(2), PGA(2), PGD(2), PGJ(2) and 15dPGJ(2) each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD(2) and its metabolites PGJ(2) and 15dPGJ(2). Down-regulation was most rapid with the end-product 15dPGJ(2) and was accompanied by a marked reduction in CXCR4 mRNA. 15dPGJ(2) is known to be a ligand for the nuclear receptor PPARgamma. Down-regulation of CXCR4 was also observed with the PPARgamma agonist rosiglitazone, while 15dPGJ(2)-induced CXCR4 down-regulation was substantially diminished by the PPARgamma antagonists GW9662 and T0070907. These data support the involvement of PPARgamma. However, the 15dPGJ(2) analogue CAY10410, which can act on PPARgamma but which lacks the intrinsic cyclopentenone structure found in 15dPGJ(2), down-regulated CXCR4 substantially less potently than 15dPGJ(2). The cyclopentenone grouping is known to inhibit the activity of NFkappaB. Consistent with an additional role for NFkappaB, we found that the cyclopentenone prostaglandin PGA(2) and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NFkappaB p50 and that 15dPGJ(2) interfered with this p50 nuclear localization. These data suggest that 15dPGJ(2) can down-regulate CXCR4 on cancer cells through both PPARgamma and NFkappaB. 15dPGJ(2), present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.  相似文献   

3.
The presence of prostaglandins (PGs) has been demonstrated in the processes of carcinogenesis and inflammation. In the present study, we found that 12-o-tetradecanoylphorbol 13-acetate (TPA) induced cyclooxygenase 2 (COX-2), but not COX-1, protein expression in HL-60 cells, and the addition of arachidonic acid (AA) in the presence or absence of TPA significantly reduced the viability of HL-60 cells, an effect that was blocked by adding the COX inhibitors, NS398 and aspirin. The AA metabolites, PGD(2) and PGJ(2), but not PGE(2) or PGF(2alpha), reduced the viability of the human HL60 and Jurkat leukemia cells according to the MTT assay and LDH release assay. Apoptotic characteristics including DNA fragmentation, apoptotic bodies, and hypodiploid cells were observed in PGD(2)- and PGJ(2)-treated leukemia cells. A dose- and time-dependent induction of caspase 3 protein procession, and PARP and D4-GDI protein cleavage with activation of caspase 3, but not caspase 1, enzyme activity was detected in HL-60 cells treated with PGD(2) or PGJ(2). Additionally, DNA ladders induced by PGD(2) and PGJ(2) were significantly inhibited by the caspase 3 peptidyl inhibitor, Ac-DEVD-FMK, but not by the caspase 1 peptidyl inhibitor, Ac-YVAD-FMK, in accordance with the blocking of caspase 3, PARP, and D4-GDI protein procession. An increase in intracellular peroxide levels by PGD(2) and PGJ(2) was identified by the DCHF-DA assay, and anti-oxidant N-acetyl cysteine (NAC), mannitol (MAN), and tiron significantly inhibited cell death induced by PGD(2) and PGJ(2) by reducing reactive oxygen species (ROS) production. The PGJ(2) metabolites, 15-deoxy-Delta(12,14)-PGJ(2) and Delta(12)-PGJ(2), exhibited effective apoptosis-inducing activity in HL-60 cells through ROS production via activation of the caspase 3 cascade. The proliferator-activated receptor-gamma (PPAR-gamma) agonists, rosiglitazone (RO), troglitazone (TR), and ciglitazone (CI), induced apoptosis in cells which was blocked by the addition of the PPAR-gamma antagonists, GW9662 and BADGE, via blocking of caspase 3 and PARP cleavage. However, neither GW9662 nor BADGE showed any protective effect on PGD(2)- and PGJ(2)-induced apoptosis. A differential apoptotic effect of PGs through ROS production, followed by activation of the caspase 3 cascade, was demonstrated.  相似文献   

4.
Although A- and J-type prostaglandins (PG's) arrest the cell cycle at the G1 phase in vitro and suppress tumor growth in vivo, their effects on neuronal cells have not so far been clarified. Here, we found promotion of neurite outgrowth as a novel biological function of PGJ's. In PC12h cells, PGJ's (PGJ2, Delta12-PGJ2 and 15-deoxy-Delta12,14-PGJ2) promoted neurite outgrowth in the presence of nerve growth factor (NGF), whereas they themselves did not show such a promotion. The potency of promoting neurite outgrowth was PGJ2 < Delta12-PGJ2 < 15-deoxy-Delta12,14-PGJ2. However, troglitazone, an activator of peroxisome proliferator-activated receptorgamma (PPARgamma), and other PG's including PGA1, PGA2 and PGD2 did not promote neurite outgrowth. These results suggest that PGJ's promote neurite outgrowth independently of PPARgamma activation.  相似文献   

5.
6.
PGD(2), a major mast cell mediator, is a potent eosinophil chemoattractant and is thought to be involved in eosinophil recruitment to sites of allergic inflammation. In plasma, PGD(2) is rapidly transformed into its major metabolite delta(12)-PGJ(2), the effect of which on eosinophil migration has not yet been characterized. In this study we found that delta(12)-PGJ(2) was a highly effective chemoattractant and inducer of respiratory burst in human eosinophils, with the same efficacy as PGD(2), PGJ(2), or 15-deoxy-delta(12,14)-PGJ(2). Moreover, pretreatment of eosinophils with delta(12)-PGJ(2) markedly enhanced the chemotactic response to eotaxin, and in this respect delta(12)-PGJ(2) was more effective than PGD(2). delta(12)-PGJ(2)-induced facilitation of eosinophil migration toward eotaxin was not altered by specific inhibitors of intracellular signaling pathways relevant to the chemotactic response, phosphatidylinositol 3-kinase (LY-294002), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (U-0126), or p38 mitogen-activated protein kinase (SB-202190). Desensitization studies using calcium flux suggested that delta(12)-PGJ(2) signaled through the same receptor, CRTH2, as PGD(2). Finally, delta(12)-PGJ(2) was able to mobilize mature eosinophils from the bone marrow of the guinea pig isolated perfused hind limb. Given that delta(12)-PGJ(2) is present in the systemic circulation at relevant levels, a role for this PGD(2) metabolite in eosinophil release from the bone marrow and in driving eosinophil recruitment to sites of inflammation appears conceivable.  相似文献   

7.
Apoptosis at the site of rupture has been proposed to play a role in premature rupture of the fetal membranes, a condition associated with increased risk of neonatal sepsis and preterm birth. We investigated the ability of peroxisome proliferator-activated receptor (PPAR)-gamma ligands 15-deoxy-delta12,14PGJ2 (15d-PGJ2), delta12PGJ2, ciglitizone and rosiglitazone to induce apoptosis in the amnion-like WISH cell line. 15d-PGJ2 (10 microM) induced morphological characteristics of apoptosis within 2 h, with biochemical indices (caspase activation and substrate cleavage) following shortly after; maximum cell death (approximately 60%) was observed by 16 h, with an EC50) of approximately 7 microM 15d-PGJ2. Delta12-PGJ2 also induced apoptosis but was less potent and acted at a much slower rate. While ciglitizone also induced apoptosis, rosiglitazone had no effect on cell viability. The mechanism of induction of apoptosis by 15d-PGJ2 and delta12PGJ2, which may be independent of PPAR-gamma activation, requires further elucidation.  相似文献   

8.
15-Deoxy-Delta12,14-prostaglandin J2 (15d-Delta12,14-PGJ2) is an endogenous ligand for a nuclear peroxysome proliferator activated receptor-gamma (PPAR). We found novel binding sites of 15d-Delta12,14-PGJ2 in the neuronal plasma membranes of the cerebral cortex. The binding sites of [3H]15d-Delta12,14-PGJ2 were displaced by 15d-Delta12,14-PGJ2 with a half-maximal concentration of 1.6 microM. PGD2 and its metabolites also inhibited the binding of [3H]15d-Delta12,14-PGJ2. Affinities for the novel binding sites were 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. Other eicosanoids and PPAR agonists did not alter the binding of [3H]15d-Delta12,14-PGJ2. In primary cultures of rat cortical neurons, we examined the pathophysiologic roles of the novel binding sites. 15d-Delta12,14-PGJ2 triggered neuronal cell death in a concentration-dependent manner, with a half-maximal concentration of 1.1 microM. The neurotoxic potency of PGD2 and its metabolites was also 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. The morphologic and ultrastructural characteristics of 15d-Delta12,14-PGJ2-induced neuronal cell death were apoptotic, as evidenced by condensed chromatin and fragmented DNA. On the other hand, we detected little neurotoxicity of other eicosanoids and PPAR agonists. In conclusion, we demonstrated that novel binding sites of 15d-Delta12,14-PGJ2 exist in the plasma membrane. The present study suggests that the novel binding sites might be involved in 15d-Delta12,14-PGJ2-induced neuronal apoptosis.  相似文献   

9.
10.
Recently, we reported the induction of a programmed cell death (PCD) in bloodstream forms of Trypanosoma brucei by prostaglandin D(2) (PGD(2)). As this prostanoid is readily metabolized in the presence of albumin, we were prompted to investigate if PGD(2) metabolites rather than PGD(2) itself are responsible for the observed PCD. In fact, J series metabolites, especially PGJ(2) and Delta(12)PGJ(2), were able to induce PCD more efficiently than PGD(2). However, the stable PGD(2) analog 17phenyl-trinor-PGD(2) led to the same phenotype as the natural PGD(2), indicating that the latter induces PCD as well. Interestingly, the intracellular reactive oxygen species (ROS) level increased significantly under J series metabolites treatment and, incubation with N-acetyl-L-cysteine or glutathione reduced ROS production and cell death significantly. We conclude that PGJ(2) and Delta(12)PGJ(2) formation within the serum represents a mechanism to amplify PGD(2)-induced PCD in trypanosomes via ROS production.  相似文献   

11.
Nerve growth factor (NGF) has recently been shown to be secreted from white adipocytes, its production being strongly stimulated by the proinflammatory cytokine tumor necrosis factor-alpha. In this study, we have examined whether a series of prostaglandins and other inflammation-related factors also stimulate NGF expression and secretion by adipocytes, using 3T3-L1 cells. Although interleukin (IL)-1beta, IL-10, and IL-18 each induced a small decrease in NGF mRNA level in 3T3-L1 adipocytes, there was no significant effect of these cytokines on NGF secretion. A small reduction in NGF expression and/or secretion was also observed with adiponectin and prostaglandins PGE(2), PGF(2alpha), and PGI(2). In marked contrast, prostaglandin PGD(2) induced a major, dose-dependent increase (up to 20- to 40-fold) in NGF expression and secretion. The PGD(2) metabolites, PGJ(2) and Delta(12)-PGJ(2), also induced major increases (up to 30-fold) in NGF production. A further metabolite of PGJ(2), 15-deoxy-Delta(12,14)-PGJ(2), a peroxisome proliferator-activated receptor-gamma agonist, led paradoxically to a small increase in NGF mRNA level but a fall in NGF secretion. Both PGD(2) and PGJ(2) induced significant increases in NGF gene expression by 4 h after their addition. It is concluded that PGD(2) and the J series prostaglandins, PGJ(2) and Delta(12)-PGJ(2), can play a significant role in the regulation of NGF production by white adipocytes. These results provide support for the view that NGF is an important inflammatory response protein, as well as a target-derived neurotrophin, in white adipose tissue.  相似文献   

12.
13.
14.
The research described herein evaluates the expression and functional significance of peroxisome proliferator activator receptor-gamma (PPAR-gamma) on B-lineage cells. Normal mouse B cells and a variety of B lymphoma cells reflective of stages of B cell differentiation (e.g., 70Z/3, CH31, WEHI-231, CH12, and J558) express PPAR-gamma mRNA and, by Western blot analysis, the 67-kDa PPAR-gamma protein. 15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), a PPAR-gamma agonist, has a dose-dependent antiproliferative and cytotoxic effect on normal and malignant B cells as shown by [(3)H]thymidine and 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assays. Only PPAR-gamma agonists (thiazolidinediones), and not PPAR-alpha agonists, mimicked the effect of 15d-PGJ(2) on B-lineage cells, indicating that the mechanism by which 15d-PGJ(2) negatively affects B-lineage cells involves in part PPAR-gamma. The mechanism by which PPAR-gamma agonists induce cytotoxicity is via apoptosis, as shown by annexin V staining and as confirmed by DNA fragmentation detected using the TUNEL assay. Interestingly, addition of PGF(2alpha), which was not known to affect lymphocytes, dramatically attenuated the deleterious effects of PPAR-gamma agonists on B lymphomas. Surprisingly, 15d-PGJ(2) induced a massive increase in nuclear mitogen-activated protein kinase activation, and pretreatment with PGF(2alpha) blunted the mitogen-activated protein kinase activation. This is the first study evaluating PPAR-gamma expression and its significance on B lymphocytes. PPAR-gamma agonists may serve as a counterbalance to the stimulating effects of other PGs, namely PGE(2), which promotes B cell differentiation. Finally, the use of PGs, such as 15d-PGJ(2), and synthetic PPAR-gamma agonists to induce apoptosis in B-lineage cells may lead to the development of novel therapies for fatal B lymphomas.  相似文献   

15.
PGD2 undergoes extensive isomerization in vivo followed by metabolism by 11-ketoreductase to yield a family of biologically active isomeric PGF2 compounds, including 9, alpha 11 beta-PGF2. Because immunologically activated human mast cells produce substantial quantities of PGD2 and eosinophils accumulate around mast cells at sites of immediate hypersensitivity reactions, the ability of eosinophils to metabolize PGD2 was investigated. Purified human circulating eosinophils from four different donors transformed PGD2 to 9, alpha 11 beta-PGF2 and 12-epi-9 alpha, 11 beta-PGF2 in a time- and concentration-dependent manner. The formation of these compounds increased rapidly during the first 30 min of incubation of eosinophils with PGD2 and tended to plateau at approximately 2 h. Detection and quantification of the formation of 9 beta,11 beta-PGF2 and its 12-epi isomer was accomplished by a negative ion chemical ionization gas chromatography/mass spectrometry assay. On one occasion, eosinophils from one donor also transformed PGD2 to two additional isomeric PGF2 compounds, the stereochemical structures of which were not identified. The ability of eosinophils to produce PGD2 was then investigated. After stimulation with 2 microM A23187, the major cyclooxygenase product formed was thromboxane B2 (2247 pg/10(6) eosinophils) whereas only small quantities of PGD2 were produced (50 pg/10(6) eosinophils). Inasmuch as PGF2 compounds can exert biologic actions that differ from those of PGD2, this ability of eosinophils to transform PGD2 to PGF2 compounds could alter the local biologic effects of PGD2 released from adjacent mast cells and thus may represent a physiologically relevant mast cell-eosinophil interaction.  相似文献   

16.
The effects of L-796,449 (3-chloro-4-(3-(3-phenyl-7-propylbenzofuran-6-yloxy)propylthio)phenylacetic acid; referred to henceforth as compound G), a thiazolidinedione-unrelated peroxisome proliferator activated-receptor-gamma (PPAR-gamma) agonist, on early signaling in lipopolysaccharide-activated RAW 264.7 macrophages were analyzed and compared with those elicited by 15-deoxy-Delta(12,14)-prostaglandin J(2) and the thiazolidinedione rosiglitazone. Compound G inhibited the activation of nuclear factor kappa B through the impairment of the targeting and degradation of I kappa B proteins and promoted a redistribution of I kappa B alpha and I kappa B beta in the nucleus of activated cells. Compound G inhibited I kappa B kinase (IKK) activity both in vivo and in vitro, suggesting a direct mechanism of interaction between this molecule and the IKK complex. The effect of compound G on IKK activity was independent of PPAR-gamma engagement because RAW 264.7 cells expressed negligible levels of this nuclear receptor, and rosiglitazone failed to mimic these actions. Moreover, treatment of activated macrophages with compound G enhanced the synthesis of superoxide anion, which, in combination with the NO produced under activation conditions, triggered apoptosis through the intracellular synthesis of peroxynitrite. These results suggest that compound G might contribute to the resolution of inflammation by favoring the induction of apoptosis through mechanisms independent of PPAR-gamma engagement.  相似文献   

17.
Activation of the macrophage cell line RAW 264.7 with lipopolysaccharide (LPS) transiently activates protein kinase C zeta (PKC zeta) and Jun N-terminal kinase (JNK) through a phosphoinositide-3-kinase (PI3-kinase)-dependent pathway. Incubation of LPS-treated cells with the cyclopentenone 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)) promoted a sustained activation of PKC zeta and JNK and inhibited I kappa B kinase (IKK) and NF-kappa B activity. Accordingly, 15dPGJ(2) induced an imbalance between JNK and IKK activities by increasing the former signaling pathway and inhibiting the latter signaling pathway. Under these conditions, apoptosis was significantly enhanced; this response was very dependent on PKC zeta and JNK activation. The effect of 15dPGJ(2) on PKC zeta activity observed in LPS-activated macrophages was not dependent on a direct action of this prostaglandin on the enzyme but was due to the activation of a step upstream of PI3-kinase. Moreover, LPS promoted the redistribution of activated PKC zeta from the cytosol to the nucleus, a process that was enhanced by treatment of the cells with 15dPGJ(2) that favored a persistent and broader distribution of PKC zeta in the nucleus. These results indicate that 15dPGJ(2) and other cyclopentenone prostaglandins, through the sustained activation of PKC zeta, might contribute significantly to the process of resolution of inflammation by promoting apoptosis of activated macrophages.  相似文献   

18.
Divergent effect of mometasone on human eosinophil and neutrophil apoptosis   总被引:5,自引:0,他引:5  
Mometasone is a potent synthetic glucocorticoid, which is under development as an inhaled preparation for the treatment of asthma. Previous studies have suggested that glucocorticoids have direct effects on human eosinophil and neutrophil apoptosis. The present study was designed to characterize the effects of mometasone on constitutive apoptosis and cytokine-afforded survival in isolated human eosinophils and neutrophils. The isolated eosinophils or neutrophils were cultured in vitro, and apoptosis was assessed by flow cytometric analysis of relative DNA content, by annexin-V binding and morphological analysis. Mometasone enhanced constitutive human eosinophil apoptosis in a concentration-dependent manner. The maximal enhancement of eosinophil apoptosis was 2.1-fold with an EC(50) value of 5.63 +/- 2.33 nM. This enhancing effect was reversed by the glucocorticoid receptor antagonist, mifepristone. In the presence of added cytokines, mometasone reversed tumor necrosis factor -alpha-induced eosinophil survival but not that afforded by interleukin -5. In contrast, mometasone inhibited human neutrophil apoptosis in a concentration-dependent manner. The maximal inhibition of neutrophil apoptosis was 50% with an EC(50) value of 0.17 +/- 0.03 nM. The inhibitory effect was partly reversed by mifepristone. In the presence of added cytokines, mometasone further enhanced neutrophil survival induced by the granulocyte-macrophage colony-stimulating factor and leukotriene B(4). The present data suggests that mometasone has opposite effects on apoptosis of human eosinophils and neutrophils at clinically relevant drug concentrations via an effect on glucocorticoid receptor.  相似文献   

19.
20.
In addition to the well-recognized ability of prostaglandin D2 (PGD2) to regulate eosinophil trafficking, we asked whether PGD2 was also able to activate eosinophils and control their leukotriene C4 (LTC4)-synthesizing machinery. PGD2 administration to presensitized mice enhanced in vivo LTC4 production and formation of eosinophil lipid bodies-potential LTC4-synthesizing organelles. Immunolocalization of newly formed LTC4 demonstrated that eosinophil lipid bodies were the sites of LTC4 synthesis during PGD2-induced eosinophilic inflammation. Pretreatment with HQL-79, an inhibitor of PGD synthase, abolished LTC4 synthesis and eosinophil lipid body formation triggered by allergic challenge. Although PGD2 was able to directly activate eosinophils in vitro, in vivo PGD2-induced lipid body-driven LTC4 synthesis within eosinophils was dependent on the synergistic activity of endogenous eotaxin acting via CCR3. Our findings, that PGD2 activated eosinophils and enhanced LTC4 synthesis in vivo in addition to the established PGD2 roles in eosinophil recruitment, heighten the interest in PGD2 as a target for antiallergic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号