首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish‐water type of the P. pungitiusP. sinensis species complex. They utilize divergent habitats along coast–stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well‐established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage‐specific patterns of phenotypic diversification.  相似文献   

2.
Climate changes on various time scales often shape genetic novelty and adaptive variation in many biotas. We explored molecular signatures of directional selection in populations of the ice goby Leucopsarion petersii inhabiting a unique sea basin, the Sea of Japan, where a wide variety of environments existed in the Pleistocene in relation to shifts in sea level by repeated glaciations. This species consisted of two historically allopatric lineages, the Japan Sea (JS) and Pacific Ocean (PO) lineages, and these have lived under contrasting marine environments that are expected to have imposed different selection regimes caused by past climatic and current oceanographic factors. We applied a limited genome‐scan approach using seven candidate genes for phenotypic differences between two lineages in combination with 100 anonymous microsatellite loci. Neuropeptide Y (NPY) gene, which is an important regulator of food intake and potent orexigenic agent, and three anonymous microsatellites were identified as robust outliers, that is, candidate loci potentially under directional selection, by multiple divergence‐ and diversity‐based outlier tests in comparisons focused on multiple populations of the JS vs. PO lineages. For these outlier loci, populations of the JS lineage had putative signals of selective sweeps. Additionally, real‐time quantitative PCR analysis using fish reared in a common environment showed a higher expression level for NPY gene in the JS lineage. Thus, this study succeeded in identifying candidate genomic regions under selection across populations of the JS lineage and provided evidence for lineage‐specific adaptive evolution in this unique sea basin.  相似文献   

3.
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.  相似文献   

4.
Divergent selection pressures induced by different environmental conditions typically lead to variation in life history, behavior, and morphology. When populations are locally adapted to their current environment, selection may limit movement into novel sites, leading to neutral and adaptive genetic divergence in allopatric populations. Subsequently, divergence can be reinforced by development of pre‐ or postzygotic barriers to gene flow. The threespine stickleback, Gasterosteus aculeatus, is a primarily marine fish that has invaded freshwater repeatedly in postglacial times. After invasion, the established freshwater populations typically show rapid diversification of several traits as they become reproductively isolated from their ancestral marine population. In this study, we examine the genetic and morphometric differentiation between sticklebacks living in an open system comprising a brackish water lagoon, two freshwater lakes, and connecting rivers. By applying a set of microsatellite markers, we disentangled the genetic relationship of the individuals across the diverse environments and identified two genetic populations: one associated with brackish and the other with the freshwater environments. The “brackish” sticklebacks were larger and had a different body shape than those in freshwater. However, we found evidence for upstream migration from the brackish lagoon into the freshwater environments, as fish that were genetically and morphometrically similar to the lagoon fish were found in all freshwater sampling sites. Regardless, few F1‐hybrids were identified, and it therefore appears that some pre‐ and/or postzygotic barriers to gene flow rather than geographic distance are causing the divergence in this system.  相似文献   

5.
With only a few absolute geographic barriers in marine environments, the factors maintaining reproductive isolation among marine organisms remain elusive. However, spatial structuring in breeding habitat can contribute to reproductive isolation. This is particularly important for marine organisms that migrate to use fresh‐ or brackish water environments to breed. The Japanese Gasterosteus stickleback species, the Pacific Ocean three‐spined stickleback (G. aculeatus) and the Japan Sea stickleback (G. nipponicus) overwinter in the sea, but migrate to rivers for spawning. Although they co‐occur at several locations across the Japanese islands, they are reproductively isolated. Our previous studies in Bekanbeushi River showed that the Japan Sea stickleback spawns in the estuary, while the Pacific Ocean stickleback mainly spawns further upstream in freshwater. Overall genomic divergence was very high with many interspersed regions of introgression. Here, we investigated genomic divergence and introgression between the sympatric species in the much shorter Tokotan River, where they share spawning sites. The levels of genome‐wide divergence were reduced and introgression was increased, suggesting that habitat isolation substantially contributes to a reduction in gene flow. We also found that genomic regions of introgression were largely shared between the two systems. Furthermore, some regions of introgression were located near loci with a heterozygote advantage for juvenile survival. Taken together, introgression may be partially driven by adaptation in this system. Although, the two species remain clearly genetically differentiated. Regions with low recombination rates showed especially low introgression. Speciation reversal is therefore likely prevented by barriers other than habitat isolation.  相似文献   

6.
Adaptive radiation occurs when divergent natural selection in different environments leads to phenotypic differentiation. The pleiotropic effects of underlying genes can either promote or constrain this diversification. Identifying the pleiotropic effects of genes responsible for divergent traits, and testing how the environment influences these effects, can therefore help to provide an understanding of how ecology drives evolutionary change between populations. Positive selection on low-armor alleles at the Ectodysplasin ( Eda ) locus in threespine stickleback has led to the repeated evolution of reduced armor in populations following freshwater colonization by fully armored marine sticklebacks. Here, we demonstrate that Eda has environmentally determined pleiotropic effects on armor and growth. When raised in freshwater, reduced armor sticklebacks carrying "low" alleles at Eda had increased growth rate relative to fully armored sticklebacks carrying "complete" alleles. In saltwater treatments this growth advantage was present during juvenile growth but lost during adult growth, suggesting that in this environment stickleback are able to develop full armor plates without sacrificing overall growth rate. The environment specific pleiotropic effects of Eda demonstrate that ecological factors can mediate the influence of genetic architecture in driving phenotypic evolution. Furthermore, because size is important for mate choice in stickleback, the growth rate differences influenced by Eda may have effects on reproductive isolation between marine and freshwater populations.  相似文献   

7.
Phenotypic plasticity might influence evolutionary processes such as adaptive radiations. Plasticity in parental care might be especially effective in facilitating adaptive radiations if it allows populations to persist in novel environments. Here, we test the hypothesis that behavioral plasticity by parents in response to predation risk facilitated the adaptive radiation of three‐spine sticklebacks. We compared the behavior of fathers across multiple ancestral (marine) and derived (freshwater) stickleback populations that differ in time since establishment. We measured behavioral plasticity in fathers in response to a predator found only in freshwater environments, simulating conditions marine males experience when colonizing freshwater. The antipredator behavior of males from newly established freshwater populations was intermediate between marine populations and well‐established freshwater populations. In contrast to our predictions, on average, there was greater behavioral plasticity in derived freshwater populations than in ancestral marine populations. However, we found greater individual variation in behavioral reaction norms in marine populations compared to well‐established freshwater populations, with newly established freshwater populations intermediate. This suggests that standing variation in behavioral reaction norms within ancestral populations might provide different evolutionary trajectories, and illustrates how plasticity can contribute to adaptive radiations.  相似文献   

8.
Phylogeographical patterns of marine and diadromous organisms are often influenced by dynamic ocean histories. For example, the marine realm around the Japanese Archipelago is an interesting area for phylogeographical research because of the wide variation in the environments driven by repeated shifts in sea level in the Quaternary. We analysed mitochondrial cyt b gene and nuclear myh6 gene sequences for individuals collected from throughout the range of the anadromous fish Leucopsarion petersii to assess the lineage divergence, phylogeographical pattern and historical demography in relation to geological history and oceanographic features around the archipelago. Leucopsarion petersii has two major lineages (the Japan Sea and Pacific Ocean lineages), which diverged during the late-early to middle Pleistocene. Geographical distributions of the two lineages were closely related to the pathways of the two warm currents, the Tsushima Current and the Kuroshio Current, that flow past the archipelago. Evidence of introgressive hybridization between these lineages was found at two secondary contact zones. Demographic tests suggested that the Japan Sea and Pacific Ocean lineages carried the genetic signal of different historical demographic processes, and these signals are probably associated with differences in habitat stability during recent glacial periods. The Japan Sea lineage has a larger body-size and more vertebrae, probably in relation to severe habitat conditions through Pleistocene climatic oscillations. Thus, the two lineages have long independent evolutionary histories, and the phylogeographical structure and demography of this species have been influenced both by historical events and the present-day oceanography around the Japanese Archipelago.  相似文献   

9.
10.
We investigated the evolution of a large facial bone, the opercle (OP), in lake populations of the threespine stickleback that were founded by anadromous ancestors, in Cook Inlet, Alaska. Recent studies characterized OP variation among marine and lake populations and mapped a quantitative trait locus with a large influence on OP shape. Using populations from diverse environments and independent evolutionary histories, we examined divergence of OP shape from that of the anadromous ancestor. We report preliminary evidence for divergence between benthic and generalist lake ecotypes, necessitating further investigation. Furthermore, rapid divergence of OP shape has occurred in a lake population that was founded by anadromous stickleback in the 1980s, which is consistent with divergence of other phenotypic traits and with OP diversification in other lake populations. By contrast, there has been limited evolution of OP shape in a second lake population that may have experienced a genetic bottleneck early in its history and lacks genetic variation for OP divergence. Taken together, the results obtained from these two populations are consistent with studies of other stickleback phenotypic traits that implicate ancestral variation in postglacial adaptive radiation of threespine stickleback in fresh water.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 832–844.  相似文献   

11.
Chromosomal fusions are hypothesized to facilitate adaptation to divergent environments, both by bringing together previously unlinked adaptive alleles and by creating regions of low recombination that facilitate the linkage of adaptive alleles; but, there is little empirical evidence to support this hypothesis. Here, we address this knowledge gap by studying threespine stickleback (Gasterosteus aculeatus), in which ancestral marine fish have repeatedly adapted to freshwater across the northern hemisphere. By comparing the threespine and ninespine stickleback (Pungitius pungitius) genomes to a de novo assembly of the fourspine stickleback (Apeltes quadracus) and an outgroup species, we find two chromosomal fusion events involving the same chromosomes have occurred independently in the threespine and ninespine stickleback lineages. On the fused chromosomes in threespine stickleback, we find an enrichment of quantitative trait loci underlying traits that contribute to marine versus freshwater adaptation. By comparing whole-genome sequences of freshwater and marine threespine stickleback populations, we also find an enrichment of regions under divergent selection on these two fused chromosomes. There is elevated genetic diversity within regions under selection in the freshwater population, consistent with a simulation study showing that gene flow can increase diversity in genomic regions associated with local adaptation and our demographic models showing gene flow between the marine and freshwater populations. Integrating our results with previous studies, we propose that these fusions created regions of low recombination that enabled the formation of adaptative clusters, thereby facilitating freshwater adaptation in the face of recurrent gene flow between marine and freshwater threespine sticklebacks.  相似文献   

12.
We analysed 81 whole genome sequences of threespine sticklebacks from Pacific North America, Greenland and Northern Europe, representing 16 populations. Principal component analysis of nuclear SNPs grouped populations according to geographical location, with Pacific populations being more divergent from each other relative to European and Greenlandic populations. Analysis of mitogenome sequences showed Northern European populations to represent a single phylogeographical lineage, whereas Greenlandic and particularly Pacific populations showed admixture between lineages. We estimated demographic history using a genomewide coalescence with recombination approach. The Pacific populations showed gradual population expansion starting >100 Kya, possibly reflecting persistence in cryptic refuges near the present distributional range, although we do not rule out possible influence of ancient admixture. Sharp population declines ca. 14–15 Kya were suggested to reflect founding of freshwater populations by marine ancestors. In Greenland and Northern Europe, demographic expansion started ca. 20–25 Kya coinciding with the end of the Last Glacial Maximum. In both regions, marine and freshwater populations started to show different demographic trajectories ca. 8–9 Kya, suggesting that this was the time of recolonization. In Northern Europe, this estimate was surprisingly late, but found support in subfossil evidence for presence of several freshwater fish species but not sticklebacks 12 Kya. The results demonstrate distinctly different demographic histories across geographical regions with potential consequences for adaptive processes. They also provide empirical support for previous assumptions about freshwater populations being founded independently from large, coherent marine populations, a key element in the Transporter Hypothesis invoked to explain the widespread occurrence of parallel evolution across freshwater stickleback populations.  相似文献   

13.
Patterns of genetic variation and covariation can influence the rate and direction of phenotypic evolution. We explored the possibility that the parallel morphological evolution seen in threespine stickleback (Gasterosteus aculeatus) populations colonizing freshwater environments is facilitated by patterns of genetic variation and covariation in the ancestral (marine) population. We estimated the genetic (G) and phenotypic (P) covariance matrices and directions of maximum additive genetic (g(max) ) and phenotypic (p(max) ) covariances of body shape and armour traits. Our results suggest a role for the ancestral G in explaining parallel morphological evolution in freshwater populations. We also found evidence of genetic constraints owing to the lack of variance in the ancestral G. Furthermore, strong genetic covariances and correlations among traits revealed that selective factors responsible for threespine stickleback body shape and armour divergence may be difficult to disentangle. The directions of g(max) and p(max) were correlated, but the correlations were not high enough to imply that phenotypic patterns of trait variation and covariation within populations are very informative of underlying genetic patterns.  相似文献   

14.
When genetic constraints restrict phenotypic evolution, diversification can be predicted to evolve along so‐called lines of least resistance. To address the importance of such constraints and their resolution, studies of parallel phenotypic divergence that differ in their age are valuable. Here, we investigate the parapatric evolution of six lake and stream threespine stickleback systems from Iceland and Switzerland, ranging in age from a few decades to several millennia. Using phenotypic data, we test for parallelism in ecotypic divergence between parapatric lake and stream populations and compare the observed patterns to an ancestral‐like marine population. We find strong and consistent phenotypic divergence, both among lake and stream populations and between our freshwater populations and the marine population. Interestingly, ecotypic divergence in low‐dimensional phenotype space (i.e. single traits) is rapid and seems to be often completed within 100 years. Yet, the dimensionality of ecotypic divergence was highest in our oldest systems and only there parallel evolution of unrelated ecotypes was strong enough to overwrite phylogenetic contingency. Moreover, the dimensionality of divergence in different systems varies between trait complexes, suggesting different constraints and evolutionary pathways to their resolution among freshwater systems.  相似文献   

15.

Background

The threespine stickleback (Gasterosteus aculeatus) has become an important model species for studying both contemporary and parallel evolution. In particular, differential adaptation to freshwater and marine environments has led to high differentiation between freshwater and marine stickleback populations at the phenotypic trait of lateral plate morphology and the underlying candidate gene Ectodysplacin (EDA). Many studies have focused on this trait and candidate gene, although other genes involved in marine-freshwater adaptation may be equally important. In order to develop a resource for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background.

Results

RAD (Restriction site Associated DNA) sequencing of sixty individuals representing two freshwater and one marine population led to the identification of 33,993 SNP markers. Ninety-six of these were chosen for the low-density SNP array, among which 70 represented SNPs under putatively directional selection in freshwater vs. marine environments, whereas 26 SNPs were assumed to be neutral. Annotation of these regions revealed several genes that are candidates for affecting stickleback phenotypic variation, some of which have been observed in previous studies whereas others are new.

Conclusions

We have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene Ectodysplacin (EDA).

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-867) contains supplementary material, which is available to authorized users.  相似文献   

16.
An analysis of mitochondrial DNA sequence variation in 172 three-spined sticklebacks (Gasterosteus aculeatus) sampled across the European distribution range revealed three major evolutionary lineages occupying relatively large and separate geographic areas. The trans-Atlantic lineage comprised of populations spanning from the East Coast of USA to the continental Europe and was basal group to the other European lineages in the phylogeny. The European lineage included populations located in the Western and Eastern Europe, British Isles, Scandinavia as well as some parts of the Mediterranean region. The third lineage was specific to the Black Sea drainages. The within lineage structure was characterized by significant excess of low frequency haplotypes and star-like mtDNA genealogies, which suggest a recent population expansions to the formerly glaciated marine and freshwater environments. A coalescent-based method dated the splits between the major lineages to have occurred during the Saalian and Weichselian glaciations in the late Pleistocene, depending on the molecular clock calibration. The coalescent simulations further indicate high degree of genetic diversity within the lineages and a substantial increase in the genetic diversity in the European lineage relative to the ancestral level. In addition to the three major lineages, the freshwater populations in R. Neretva and L. Skadar in the Adriatic Sea coast region harboured unique and highly divergent haplotypes suggesting long independent histories of these populations. Evidence from mtDNA analyses suggests that these populations deserve a status of an evolutionary significant unit.  相似文献   

17.
Both anadromous and freshwater forms of threespine sticklebacks (Gasterosteus aculeatus) inhabit Lake Harutori on the pacific coast of eastern Hokkaido, Japan. Since the two groups of threespine sticklebacks, Pacific Ocean and Japan Sea groups, which showed high genetic differentiation between them, were sympatrically distributed on the Pacific Ocean coast of Hokkaido Island, the genetic structures of the two forms were examined in Lake Harutori. Allozyme analyses of the two forms showed that most specimens from Lake Harutori belonged to the Pacific Ocean group, with a few fish belonging to the Japan Sea group or representing hybrids between the two groups. Both anadromous and freshwater sticklebacks were detected in the Pacific Ocean group. There were no significant differences in allelic frequencies at 17 presumptive loci between the two forms. Analyses of genetic relationships among 5 populations showed that the freshwater population from Lake Harutori was genetically more closely related to the sympatric anadromous population than to the freshwater population from a neighboring river. These results suggested that anadromous and freshwater sticklebacks in Lake Harutori form a single breeding population, and that the two forms might represent a life-history polymorphism within a single population.  相似文献   

18.
Adaptive divergence may be facilitated if morphological and behavioural traits associated with local adaptation share the same genetic basis. It is therefore important to determine whether genes underlying adaptive morphological traits are associated with variation in behaviour in natural populations. Positive selection on low-armour alleles at the Ectodysplasin (Eda) locus in threespine stickleback has led to the repeated evolution of reduced armour, following freshwater colonization by fully armoured marine sticklebacks. This adaptive divergence in armour between marine and freshwater populations would be facilitated if the low allele conferred a behavioural preference for freshwater environments. We experimentally tested whether the low allele is associated with preference for freshwater by measuring the preference of each Eda genotype for freshwater versus saltwater after acclimation to either salinity. We found no association between the Eda low allele and preference for freshwater. Instead, the low allele was significantly associated with a reduced preference for the acclimation environment. This behaviour may facilitate the colonization of freshwater habitats from the sea, but could also hinder local adaptation by promoting migration of low alleles between marine and freshwater environments.  相似文献   

19.
By studying systems in their earliest stages of differentiation, we can learn about the evolutionary forces acting within and among populations and how those forces could contribute to reproductive isolation. Such an understanding would help us to better discern and predict how selection leads to the maintenance of multiple morphs within a species, rather than speciation. The postglacial adaptive radiation of the threespine stickleback (Gasterosteus aculeatus) is one of the best‐studied cases of evolutionary diversification and rapid, repeated speciation. Following deglaciation, marine stickleback have continually invaded freshwater habitats across the northern hemisphere and established resident populations that diverged innumerable times from their oceanic ancestors. Independent freshwater colonization events have yielded broadly parallel patterns of morphological differences in freshwater and marine stickleback. However, there is also much phenotypic diversity within and among freshwater populations. We studied a lesser‐known freshwater “species pair” found in southwest Washington, where male stickleback in numerous locations have lost the ancestral red sexual signal and instead develop black nuptial coloration. We measured phenotypic variation in a suite of traits across sites where red and black stickleback do not overlap in distribution and at one site where they historically co‐occurred. We found substantial phenotypic divergence between red and black morphs in noncolor traits including shape and lateral plating, and additionally find evidence that supports the hypothesis of sensory drive as the mechanism responsible for the evolutionary switch in color from red to black. A newly described third “mixed” morph in Connor Creek, Washington, differs in head shape and size from the red and black morphs, and we suggest that their characteristics are most consistent with hybridization between anadromous and freshwater stickleback. These results lay the foundation for future investigation of the underlying genetic basis of this phenotypic divergence as well as the evolutionary processes that may drive, maintain, or limit divergence among morphs.  相似文献   

20.
Adaptive radiations are a major source of evolutionary diversity in nature, and understanding how they originate and how organisms diversify during the early stages of adaptive radiation is a major problem in evolutionary biology. The relationship between habitat type and body shape variation was investigated in a postglacial radiation of threespine stickleback in the upper Fish Creek drainage of Cook Inlet, Alaska. Although small, the upper Fish Creek drainage includes ecologically diverse lakes and streams in close proximity to one another that harbour abundant stickleback. Specimens from ancestral anadromous and derived resident freshwater populations differed substantially and could be distinguished by body shape alone, suggesting that the initial stages of adaptation contribute disproportionately to evolutionary divergence. Body shape divergence among resident freshwater populations was also considerable, and phenotypic distances among samples from freshwater populations were associated with habitat type but not geographical distance. As expected, stream stickleback from slow-moving, structurally complex environments tended to have the deepest bodies, stickleback from lakes with a mostly benthic habitat were similar but less extreme, and stickleback from lakes with a mostly limnetic habitat were the most shallow-bodied, elongate fish. Beyond adapting rapidly to conditions in freshwater environments, stickleback can diversify rapidly over small geographical scales in freshwater systems despite opportunities for gene flow. This study highlights the importance of ecological heterogeneity over small geographical scales for evolutionary diversification during the early stages of adaptive radiation, and lays the foundation for future research on this ecologically diverse, postglacial system.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 139–151.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号