首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Advances in Raman spectroscopy are enabling more comprehensive measurement of microbial cell chemical composition. Advantages include results returned in near real‐time and minimal sample preparation. In this research, Raman spectroscopy is used to analyze E. coli with engineered solvent tolerance, which is a multi‐genic trait associated with complex and uncharacterized phenotypes that are of value to industrial microbiology. To generate solvent tolerant phenotypes, E. coli transformed with DNA libraries are serially enriched in the presence of 0.9% (v/v) and 1.1% (v/v) 1‐butanol. DNA libraries are created using degenerate oligonucleotide primed PCR (DOP‐PCR) from the genomic DNA of E. coli, Clostridium acetobutylicum ATCC 824, and the metagenome of a stream bank soil sample, which contained DNA from 72 different phyla. DOP‐PCR enabled high efficiency library cloning (with no DNA shearing or end‐polishing) and the inclusion un‐culturable organisms. Nine strains with improved tolerance are analyzed by Raman spectroscopy and vastly different solvent‐tolerant phenotypes are characterized. Common among these are improved membrane rigidity from increasing the fraction of unsaturated fatty acids at the expense of cyclopropane fatty acids. Raman spectroscopy offers the ability to monitor cell phenotype changes in near real‐time and is adaptable to high‐throughput screening, making it relevant to metabolic engineering.  相似文献   

2.
Mesosomal vesicles and plasma membranes of Staphylococcus aureus ATCC 6538P have been prepared and examined for the presence of lipoteichoic acid. Lipids were first removed by treatment with pyridine-acetic acid-butanol (22:31:100, vol/vol/vol) and chloroform-methanol (2:1, vol/vol). Subsequently, lipoteichoic acid was removed with 40% phenol in water. The lipoteichoic acid from mesosomal vesicles was characterized by (i) equimolar glycerol and phosphate, (ii) alanine upon hydrolysis (2 N NH4OH, 18 h, 22 C), and (iii) fatty acids, diglycerol triphosphate, glycerol monophosphate, and glycerol diphosphate upon alkaline hydrolysis (1 N NaOH, 3h, 100 C). The plasma membranes contained no lipoteichoic acid. The presence in mesosomal vesicles of 18% of the dry weight as lipoteichoic acid and its absence from plasma membranes provide the first major chemical differences between these organelles. A study of the lipoteichoic acid content in various fractions of the cell showed that the mesosomal vesicles were the major and probably the sole site for the localization of the lipoteichoic acid in these organisms. A new method for the preparation of mesosomes in increased yields is reported. A theory for the control of cell division involving lipoteichoic acid and the mesosome is proposed.  相似文献   

3.
We estimated the heritabilities (h2) and genetic and phenotypic correlations among individual and groups of fatty acids, as well as their correlations with six important carcass and meat-quality traits in Korean Hanwoo cattle. Meat samples were collected from the longissimus dorsi muscles of 1000 Hanwoo steers that were 30-month-old (progeny of 85 proven Hanwoo bulls) to determine intramuscular fatty acid profiles. Phenotypic data on carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), marbling score (MS), Warner–Bratzler shear force (WBSF) and intramuscular fat content (IMF) were also investigated using this half-sib population. Variance and covari.ance components were estimated using restricted maximum likelihood procedures under univariate and pairwise bivariate animal models. Oleic acid (C18:1n-9) was the most abundant fatty acid, accounting for 50.69% of all investigated fatty acids, followed by palmitic (C16:0; 27.33%) and stearic acid (C18:0; 10.96%). The contents of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were 41.64%, 56.24% and 2.10%, respectively, and the MUFA/SFA ratio, PUFA/SFA ratio, desaturation index (DI) and elongation index (EI) were 1.36, 0.05, 0.59 and 0.66, respectively. The h2 estimates for individual fatty acids ranged from very low to high (0.03±0.14 to 0.63±0.14). The h2 estimates for SFAs, MUFAs, PUFAs, DI and EI were 0.53±0.14, 0.49±0.14, 0.23±0.10, 0.51±0.13 and 0.53±0.13, respectively. The genetic and phenotypic correlations among individual fatty acids and fatty acid classes varied widely (−0.99 to 0.99). Notably, C18:1n-9 had favourable (negative) genetic correlations with two detrimental fatty acids, C14:0 (−0.76) and C16:0 (−0.92). Genetic correlations of individual and group fatty acids with CWT, EMA, BFT, MS, WBSF and IMF ranged from low to moderate (both positive and negative) with the exception of low-concentration PUFAs. Low or near-zero phenotypic correlations reflected potential non-genetic contributions. This study provides insights on genetic variability and correlations among intramuscular fatty acids as well as correlations between fatty acids and carcass and meat-quality traits, which could be used in Hanwoo breeding programmes to improve fatty acid compositions in meat.  相似文献   

4.
The purpose of this research was to develop new strains of Escherichia coli with improved fatty acid biosynthesis. β-Ketoacyl acyl carrier protein synthase III (fabH) catalyzes the first step in the synthesis of fatty acids in parallel with acetyl-CoA carboxylase (accABC) and malonyl-CoA: acyl carrier protein transacylase (fabD) in Escherichia coli K-12 MG1655. The enzyme encoded by the fabH gene leads to an increase in the synthesis of short-chain-length fatty acids and a strong preference for acetyl-CoA, as it produces only straight chain fatty acids (SCFAs). It also seems to play a role in determining the type and composition of fatty acids produced. In this study, metabolically engineered strains of E. coli K-12 MG1655 containing fabH or accA::accBC::fabD or accA::accBC:: fabD::fabH gene-inserted expression vector (pTrc99A) were constructed. To observe the effects of overexpression, the production of malonic acid, a pathway intermediate, and fatty acids was analyzed. The resulting recombinant strains produced total lipids up to approximately 1.2 ~ 1.6 fold higher than that of wild-type E. coli. The production of hexadecanoic acid was especially enhanced up to approximately 4.8 fold in E. coli SGJS13 as compared to E. coli SGJS11.  相似文献   

5.
Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.  相似文献   

6.
Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5°C), and competing E. coli treatment of water had minimal effects (<1 log CFU/ml reduction) on killing E. coli O157:H7 in the presence of rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21°C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic acid plus 0.9% acidic calcium sulfate (pH 2.1) drank 18.6 liters/day. The amounts of water consumed for all water treatments were significantly different from that for the control, but there were no significant differences among the water treatments. Such treatments may best be applied periodically to drinking water troughs and then flushed, rather than being added continuously, to avoid reduced water consumption by cattle.  相似文献   

7.
Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98 g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29 mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products.  相似文献   

8.
Existing data on adenosine triphosphate (ATP) pools in microbes are deficient for two reasons: (i) incomplete extractions of ATP, and (ii) the failure to take into account that the adverse effects of extracting procedures on standard ATP exert analogous effects on the ATP released from bacterial cells. Methods for correcting observed yields and calculating ATP pools have been demonstrated. Three bacterial species were used in the studies on extraction of ATP: Escherichia coli, Mycobacterium phlei, and Mycobacterium lepraemurium. Perchloric acid and n-butanol were disqualified because of their failure to extract total bacterial ATP even from E. coli and because of inconvenient procedures. The new extraction procedure had minimal effects on standard ATP, liberated 100% of the ATP pools from the three representative species of microbes, and caused no ionic imbalance or quenching of bioluminescence. This method involves vortexing of cell suspensions for 10 s with 23% chloroform (vol/vol), heating at 98 C for the required time (E. coli, 3 min; M. phlei, 5 min; M. lepraemurium, 10 min) and then 1 min at 98 C with vacuum to dry the samples. Heat or chloroform alone may suffice for some microbes and release total ATP from plant and animal cells.  相似文献   

9.
The formation of acetone and n-butanol by Clostridium acetobutylicum NCIB 8052 (ATCC 824) was monitored in batch culture at 35°C in a glucose (2% [wt/vol]) minimal medium maintained throughout at either pH 5.0 or 7.0. At pH 5, good solvent production was obtained in the unsupplemented medium, although addition of acetate plus butyrate (10 mM each) caused solvent production to be initiated at a lower biomass concentration. At pH 7, although a purely acidogenic fermentation was maintained in the unsupplemented medium, low concentrations of acetone and n-butanol were produced when the glucose content of the medium was increased (to 4% [wt/vol]). Substantial solvent concentrations were, however, obtained at pH 7 in the 2% glucose medium supplemented with high concentrations of acetate plus butyrate (100 mM each, supplied as their potassium salts). Thus, C. acetobutylicum NCIB 8052, like C. beijerinckii VPI 13436, is able to produce solvents at neutral pH, although good yields are obtained only when adequately high concentrations of acetate and butyrate are supplied. Supplementation of the glucose minimal medium with propionate (20 mM) at pH 5 led to the production of some n-propanol as well as acetone and n-butanol; the final culture medium was virtually acid free. At pH 7, supplementation with propionate (150 mM) again led to the formation of n-propanol but also provoked production of some acetone and n-butanol, although in considerably smaller amounts than were obtained when the same basal medium had been fortified with acetate and butyrate at pH 7.  相似文献   

10.
Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.  相似文献   

11.
Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we took advantage of the growth phenotype associated with 2-keto acid deficiency to construct a hyperproducer of 1-propanol and 1-butanol by evolving citramalate synthase (CimA) from Methanococcus jannaschii. This new pathway, which directly converts pyruvate to 2-ketobutyrate, bypasses threonine biosynthesis and represents the shortest keto acid-mediated pathway for producing 1-propanol and 1-butanol from glucose. Directed evolution of CimA enhanced the specific activity over a wide temperature range (30 to 70°C). The best CimA variant was found to be insensitive to feedback inhibition by isoleucine in addition to the improved activity. This CimA variant enabled 9- and 22-fold higher production levels of 1-propanol and 1-butanol, respectively, compared to the strain expressing the wild-type CimA. This work demonstrates (i) the first production of 1-propanol and 1-butanol using the citramalate pathway and (ii) the benefit of the 2-keto acid pathway that enables a growth-based evolutionary strategy to improve the production of non-growth-related products.  相似文献   

12.
Omega-3 fatty acids are essential fatty acids for human health. Therefore, increasing both percentage of omega-3 and a better fatty acid profile in fish fillets is one of the breeding goals in aquaculture. However, it is difficult to increase the omega-3 content in fish fillets, as the phenotypic selection of these traits is not easily feasible. To facilitate the genetic improvement of the Asian seabass for optimal fatty acid profiles, a genome-wide scan for quantitative trait loci (QTL) affecting fatty acid level in the flesh of the Asian seabass was performed on an F2 family containing 314 offspring. All family members were genotyped using 123 informative microsatellites and 22 SNPs. High percentages of n-3 polyunsaturated fatty acids (PUFA), especially C22:6 (DHA 16.48?±?3.09 %) and C20:5 (EPA 7.19?±?0.86 %) were detected in the flesh. One significant and 54 suggestive QTL for different fatty acids and a water content trait were detected on the whole genome. QTL for C18:0b was located on linkage groups (LG) 5. QTL for total n-3 PUFA content in flesh were mapped onto LG6 and LG23 with the phenotypic variance explained ranging from 3.8 to 6.3 %. Four QTL for C22:6 were detected on LG6, LG23, and LG24, explaining 3.9 to 4.9 % of the phenotypic variance, respectively. Mapping of QTL for contents of different fatty acids is the first step towards improving the omega-3 content in the fillets of fish by using marker-assisted selection and is important for understanding the biology of fatty acid deposition.  相似文献   

13.
Fatty acyl–acyl carrier protein (ACP) thioesterase (acyl-ACP TE) from Streptococcus pyogenes (strain MGAS10270) was codon-optimized and expressed in Escherichia coli K-12 W3110 and Escherichia coli K-12 MG1655. By employing codon-optimized S. pyogenes acyl-ACP TE to improve the total free fatty acids (FFAs) and to tailor the composition of FFAs, high-specificity production of saturated fatty acids (C12, C14) and unsaturated fatty acids (C18:1 C18:2) was achieved in recombinants. E. coli SGJS41 and SGJS46 (codon-optimized acyl-ACP TE of S. pyogenes) demonstrated the highest intracellular total FFA content (339 mg/l vs 342 mg/l); in particular, the content of C12 and C14 FFAs was about 3–5 fold, and the content of C18:1 and C18:2 FFAs was about 8–42 fold higher than that in the control E. coli and E. coli JES1017 (original acyl-ACP TE of S. pyogenes).  相似文献   

14.
Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com-munity from both the public and private sectors world-wide.Both approaches promise to revolutionize the prediction of complex traits,including growth,yield and adaptation to stress.Whereas high-throughput phenotyping may help to improve understanding of crop physiology,most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and compa-rable to genomic selection.Despite the fact that the two method-ological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome),they both consider the targeted traits (e.g.grain yield,growth,phenology,plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e.physiological) putatively related to the target trait.Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology.This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.  相似文献   

15.
A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the percentage of transmembrane fatty acids (i.e., long-chain C30 fatty acids) in response to increasing levels of ethanol. The data support the hypothesis that primary alcohol dehydrogenase functions primarily in ethanol consumption, whereas secondary alcohol dehydrogenase functions in ethanol production. These results suggest that improved thermophilic ethanol fermentations at high alcohol levels can be developed by altering both cell membrane composition (e.g., increasing transmembrane fatty acids) and the metabolic machinery (e.g., altering primary alcohol dehydrogenase and lactate dehydrogenase activities).  相似文献   

16.
Increasing demands for petroleum have stimulated sustainable ways to produce chemicals and biofuels. Specifically, fatty acids of varying chain lengths (C6–C16) naturally synthesized in many organisms are promising starting points for the catalytic production of industrial chemicals and diesel-like biofuels. However, bio-production of fatty acids from plants and other microbial production hosts relies heavily on manipulating tightly regulated fatty acid biosynthetic pathways. In addition, precursors for fatty acids are used along other central metabolic pathways for the production of amino acids and biomass, which further complicates the engineering of microbial hosts for higher yields. Here, we demonstrate an iterative metabolic engineering effort that integrates computationally driven predictions and metabolic flux analysis techniques to meet this challenge. The OptForce procedure was used for suggesting and prioritizing genetic manipulations that overproduce fatty acids of different chain lengths from C6 to C16 starting with wild-type E. coli. We identified some common but mostly chain-specific genetic interventions alluding to the possibility of fine-tuning overproduction for specific fatty acid chain lengths. In accordance with the OptForce prioritization of interventions, fabZ and acyl-ACP thioesterase were upregulated and fadD was deleted to arrive at a strain that produces 1.70 g/L and 0.14 g fatty acid/g glucose (~39% maximum theoretical yield) of C14–16 fatty acids in minimal M9 medium. These results highlight the benefit of using computational strain design and flux analysis tools in the design of recombinant strains of E. coli to produce free fatty acids.  相似文献   

17.
Intramuscular fat (IMF) content and composition are relevant for the meat industry due to their effect on human health and meat organoleptic properties. A divergent selection experiment for IMF of Longissimus dorsi (LD) muscle was performed in rabbits during eight generations. The aim of this study is to estimate the correlated responses to selection for IMF on the fatty acid composition of LD. Response to selection for IMF was 0.34 g/100 g of LD, representing 2.4 phenotypic SD of the trait. High-IMF line showed 9.20% more monounsaturated fatty acids (MUFA) and 0.39%, 9.97% and 10.3% less n-3, n-6 and polyunsaturated fatty acids (PUFA), respectively, than low-IMF line. The main MUFA and PUFA individual fatty acids followed a similar pattern, except for C18:3n-3 that was greater in the high-IMF line. We did not observe differences between lines for the percentage of total saturated fatty acids, although high-IMF line showed greater C14:0 and C16:0 and lower C18:0 percentages than low-IMF line. Heritability estimates were generally high for all fatty acids percentages, ranging from 0.43 to 0.59 with a SD around 0.08, showing an important genetic component on these traits. Genetic correlations between IMF and LD fatty acid percentages were strong and positive for C14:0, C16:1, C18:1n-9, and MUFA, ranging from 0.88 to 0.97, and strong and negative for C18:0, C18:2n-6, C20:4n-6, n-6 and PUFA, ranging from −0.83 to −0.91. These correlations were accurately estimated, with SD ranging from 0.02 to 0.06. The genetic correlations between IMF and other fatty acids were estimated with lower accuracy. In general, phenotypic and genetic correlations were of the same order. Our experiment shows that selection for IMF strongly affects the fatty acid composition of meat, due the high heritabilities of fatty acids and their high genetic correlations with IMF.  相似文献   

18.
19.
Candida tropicalis (ATCC 20336) converts fatty acids to long-chain dicarboxylic acids via a pathway that includes among other reactions the oxidation of ω-hydroxy fatty acids to ω-aldehydes by a fatty alcohol oxidase (FAO). Three FAO genes (one gene designated FAO1 and two putative allelic genes designated FAO2a and FAO2b), have been cloned and sequenced from this strain. A comparison of the DNA sequence homology and derived amino acid sequence homology between these three genes and previously published Candida FAO genes indicates that FAO1 and FAO2 are distinct genes. Both genes were individually cloned and expressed in Escherichia coli. The substrate specificity and Km values for the recombinant FAO1 and FAO2 were significantly different. Particularly striking is the fact that FAO1 oxidizes ω-hydroxy fatty acids but not 2-alkanols, whereas FAO2 oxidizes 2-alkanols but not ω-hydroxy fatty acids. Analysis of extracts of strain H5343 during growth on fatty acids indicated that only FAO1 was highly induced under these conditions. FAO2 contains one CTG codon, which codes for serine (amino acid 177) in C. tropicalis but codes for leucine in E. coli. An FAO2a construct, with a TCG codon (codes for serine in E. coli) substituted for the CTG codon, was prepared and expressed in E. coli. Neither the substrate specificity nor the Km values for the FAO2a variant with a serine at position 177 were radically different from those of the variant with a leucine at that position.  相似文献   

20.

Key Message

Multi-trait genomic prediction models are useful to allocate available resources in breeding programs by targeted phenotyping of correlated traits when predicting expensive and labor-intensive quality parameters.

Abstract

Multi-trait genomic prediction models can be used to predict labor-intensive or expensive correlated traits where phenotyping depth of correlated traits could be larger than phenotyping depth of targeted traits, reducing resources and improving prediction accuracy. This is particularly important in the context of allocating phenotyping resource in plant breeding programs. The objective of this work was to evaluate multi-trait models predictive ability with different depth of phenotypic information from correlated traits. We evaluated 495 wheat advanced breeding lines for eight baking quality traits which were genotyped with genotyping-by-sequencing. Through different approaches for cross-validation, we evaluated the predictive ability of a single-trait model and a multi-trait model. Moreover, we evaluated different sizes of the training population (from 50 to 396 individuals) for the trait of interest, different depth of phenotypic information for correlated traits (50 and 100%) and the number of correlated traits to be used (one to three). There was no loss in the predictive ability by reducing the training population up to a 30% (149 individuals) when using correlated traits. A multi-trait model with one highly correlated trait phenotyped for both the training and testing sets was the best model considering phenotyping resources and the gain in predictive ability. The inclusion of correlated traits in the training and testing lines is a strategic approach to replace phenotyping of labor-intensive and high cost traits in a breeding program.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号