首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Leptospirosis is the most widespread zoonotic disease in the world. It is caused by pathogenic spirochetes of the genus Leptospira spp. and is maintained in nature through chronic renal infection of carrier animals. Rodents and other small mammals are the main reservoirs. Information on leptospirosis in marine mammals is scarce; however, cases of leptospirosis have been documented in pinniped populations from the Pacific coast of North America from southern California to British Columbia. We report the isolation of a Leptospira spp. strain, here named Manara, from a kidney sample obtained from a Southern Right Whale (Eubalaena australis) calf, which stranded dead in Playa Manara, Península Valdés, Argentina. This strain showed motility and morphology typical of the genus Leptospira spp. under dark-field microscopy; and grew in Ellinghausen-McCullough-Johnson-Harris (EMJH) medium and Fletcher medium after 90 days of incubation at 28°C. Considering the source of this bacterium, we tested its ability to grow in Fletcher medium diluted with seawater at different percentages (1%, 3%, 5%, 7% and 10% v/v). Bacterial growth was detected 48 h after inoculation of Fletcher medium supplemented with 5% sea water, demonstrating the halophilic nature of the strain Manara. Phylogenetic analysis of 16S rRNA gene sequences placed this novel strain within the radiation of the pathogenic species of the genus Leptospira spp., with sequence similarities within the range 97–100%, and closely related to L. interrogans. Two different PCR protocols targeting genus-specific pathogenic genes (G1-G2, B64I-B64II and LigB) gave positive results, which indicates that the strain Manara is likely pathogenic. Further studies are needed to confirm this possibility as well as determine its serogroup. These results could modify our understanding of the epidemiology of this zoonosis. Until now, the resistance and ability to grow in seawater for long periods of time had been proven for the strain Muggia of L. biflexa, a saprophytic species. To the best of our knowledge, this is the first isolation of a Leptospira sp. from cetaceans. Our phenotypic data indicate that strain Manara represents a novel species of the genus Leptospira, for which the name Leptospira brihuegai sp. nov. is proposed.  相似文献   

2.
Leptospirosis is caused by pathogenic species of the Leptospira genus. Animals can have two roles in the epidemiological cycle: they can be an accidental host and suffer of the disease or a reservoir host which does not express any clinical sign and shed bacteria in their urine. Some of the most known reservoirs for leptospirosis are certain rodent species, but the situation is less clear for aquatic rodents, especially for coypu (Myocastor coypus). It has been shown that this species can have kidney carriage for leptospirosis, but the relationship between carriage and individuals or population health has not been investigated yet. We trapped 133 coypus in two wetlands in the East of France during 3 years. For each animal, a complete necropsy, leptospirosis serology, and a specific real-time quantitative PCR (qPCR) for pathogenic leptospires were performed; in addition, for some animals, a specific kidney culture for leptospires and histology on kidney were performed. In spite of a high seroprevalence (respectively 76 % and 64 %) and of a significant prevalence of kidney carriage in both areas (respectively 12.1 % and 8.0 % of positive qPCR on kidney), the trapped animals seemed in good health, and the population did not seem to be affected by the circulation of the bacteria. These findings are concurring arguments to consider coypu as a real reservoir for leptospirosis.  相似文献   

3.

Background  

The usefulness of available vaccine and serological tests for leptospirosis is limited by the low cross-reactivity of antigens from numerous serovars of pathogenic Leptospira spp. Identification of genus-specific protein antigens (GP-Ag) of Leptospira would be important for development of universal vaccines and serodiagnostic methods. OmpL1, a transmembrane porin of pathogenic leptospires, was identified as a possible GP-Ag, but its sequence diversity and immune cross-reactivity among different serovars of pathogenic leptospires remains largely unknown.  相似文献   

4.
Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (Kd, 104±19 nM) and aortic elastin (Kd, 152±27 nM). It also binds fibrinogen (Kd, 244±15 nM), fibrinogen fragment D (Kd, 132±30 nM), plasma fibronectin (Kd, 359±68 nM), and murine laminin (Kd, 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.  相似文献   

5.

Background

Widespread but particularly incident in the tropics, leptospirosis is transmitted to humans directly or indirectly by virtually any Mammal species. However, rodents are recognized as the most important reservoir. In endemic regions, seasonal outbreaks are observed during hot rainy periods. In such regions, hot spots can be evidenced, where leptospirosis is “hyper-endemic”, its incidence reaching 500 annual cases per 100,000. A better knowledge of how rodent populations and their Leptospira prevalence respond to seasonal and meteorological fluctuations might help implement relevant control measures.

Methodology/Principal Findings

In two tribes in New Caledonia with hyper-endemic leptospirosis, rodent abundance and Leptospira prevalence was studied twice a year, in hot and cool seasons for two consecutive years. Highly contrasted meteorological situations, particularly rainfall intensities, were noted between the two hot seasons studied. Our results show that during a hot and rainy period, both the rodent populations and their Leptospira carriage were higher. This pattern was more salient in commensal rodents than in the sylvatic rats.

Conclusions/Significance

The dynamics of rodents and their Leptospira carriage changed during the survey, probably under the influence of meteorology. Rodents were both more numerous and more frequently carrying (therefore disseminating) leptospires during a hot rainy period, also corresponding to a flooding period with higher risks of human exposure to waters and watered soils. The outbreaks of leptospirosis in hyper-endemic areas could arise from meteorological conditions leading to both an increased risk of exposure of humans and an increased volume of the rodent reservoir. Rodent control measures would therefore be most effective during cool and dry seasons, when rodent populations and leptospirosis incidence are low.  相似文献   

6.
Leptospirosis is an important global public health problem. Favourable environmental factors are influencing the survival of leptospires in soil, which is an important link in the transmission cycle. The present study was designed to understand the correlation between various soil nutrients and presence of Leptospira in soil samples of different regions of Andaman and Nicobar Islands. The study revealed a significant positive relationship between presence of Leptospira and concentration of iron, manganese and copper in soil. Presence of iron, manganese and copper in the soil may influence the survival and transmission of leptospirosis.  相似文献   

7.
BackgroundLeptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease.ConclusionsThis study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.  相似文献   

8.
BackgroundLeptospirosis has been described as a biphasic disease consisting of hematogenous dissemination to major organs in the acute phase and asymptomatic renal colonization in the chronic phase. Several observational studies have suggested an association between leptospirosis and chronic kidney disease (CKD). We investigated the dynamics of leptospires and histopathological changes in the kidney to understand the relationship between them, and also investigated the extent of renal dysfunction in the acute and chronic phases of leptospirosis using a hamster model.FindingsHamsters (n = 68) were subcutaneously infected with 1 × 104 cells of the Leptospira interrogans serovar Manilae strain UP-MMC-SM. A total of 53 infected hamsters developed fatal acute leptospirosis, and the remaining 15 hamsters recovered from the acute phase, 13 of which showed Leptospira colonization in the kidneys in the chronic phase. Five asymptomatic hamsters also had renal colonization in the chronic phase. Immunofluorescence staining showed that leptospires were locally distributed in the renal interstitium in the early acute phase and then spread continuously into the surrounding interstitium. The kidneys of the surviving hamsters in the chronic phase showed patchy lesions of atrophic tubules, a finding of chronic tubulointerstitial nephritis, which were substantially consistent with the distribution of leptospires in the renal interstitium. The degree of atrophic tubules in kidney sections correlated statistically with the serum creatinine level in the chronic phase (rs = 0.78, p = 0.01).ConclusionSubcutaneous infection with pathogenic leptospires could cause acute death or chronic leptospirosis in hamsters after surviving the acute phase. We suggest that the renal distribution of leptospires during the acute phase probably affected the extent of tubular atrophy, leading to CKD.  相似文献   

9.
10.
Leptospirosis is a bacterial zoonotic disease caused by spirochetes in the genus Leptospira. To date, factors determining the pathogenicity and virulence of leptospires remain unclear. We performed a gel‐based proteomic analysis to evaluate differential leptospiral proteomes in the pathogenic L. interrogans (serovars Australis, Bratislava, Autumnalis, and Icterohaemorrhagiae) and the non‐pathogenic L. biflexa (serovar Patoc). Quantitative proteome analysis and MS protein identification revealed 42 forms of 33 unique proteins whose levels were significantly greater in the pathogenic serovars compared with the non‐pathogenic serovar. Among the four pathogenic serovars, the more virulent serovar Icterohaemorrhagiae (which is most commonly associated with severe leptospirosis in patients) had significantly greater levels of 14 forms of 12 unique proteins, when compared with the other three pathogenic serovars. Some of these identified proteins may serve as the pathogenic and/or virulence factors of leptospirosis.  相似文献   

11.
Leptospirosis is a zoonotic infection that is caused by the pathogenic species of Leptospira. Rats are the most important reservoirs of these organisms. Our study aimed to characterize Leptospira isolates from humans and rats and elucidate the Leptospira-rat-human relationship in Luzon, Philippines. Forty strains were isolated from humans and rats. The isolates were confirmed to be Leptospira and pathogenic through rrl- and flaB-PCR, respectively. Around 73% of the isolates were found to be lethal to hamsters. Serotyping showed that there were mainly three predominant leptospiral serogroups in the study areas namely Pyrogenes, Bataviae, and Grippotyphosa. Gyrase B gene sequence analysis showed that all the isolates belonged to Leptospira interrogans. Most had 100% similarity with serovar Manilae (15/40), serovar Losbanos (8/40), and serogroup Grippotyphosa (8/40). Strains from each group had highly identical pulsed-field gel electrophoresis patterns and were further grouped as A (Pyrogenes, 14), B (Bataviae, 8), and C (Grippotyphosa, 10). Results further revealed that similar serotypes were isolated from both humans and rats in the same areas. It is suggested that these three predominant groups with highly similar intra-group PFGE patterns may have been primarily transmitted by rats and persistently caused leptospirosis in humans particularly in the Luzon islands.  相似文献   

12.
Leptospirosis is a worldwide zoonosis. The importance of urban leptospirosis is recognized in Japan: urban rats carry pathogenic leptospires and people acquire these pathogens through contact with surface water or soil contaminated by the urine of the infected animals. To determine the current Leptospira carriage rate in urban rats, 29 wild rats were trapped in the central area of Fukuoka and strains isolated from their kidneys and urine analyzed. When semi‐solid Korthof's medium containing 0.1% agar was used for isolation, 72.2% and 30.8% of the kidney and urine cultures, respectively, were found to be Leptospira‐positive. The isolates belonged to Leptospira interrogans, and were classified into two groups (serogroups Pomona and Icterohaemorrhagiae) based on the results of gyrB sequence analysis and microscopic agglutination testing (MAT). Strains belonging to serogroup Icterohemorrhagiae grew well in liquid medium. On the other hand, serogroup Pomona isolates multiplied very little in liquid medium, but did grow in a semi‐solid medium. Although strains belonging to serogroup Pomona have not been recognized as native to Japan, this strain may be widely distributed in urban rats. Representative strains from each group were found to be highly pathogenic to hamsters. Our findings should serve as a warning that it is still possible to become infected with leptospires from wild rats living in inner cities of Japan. Furthermore, the use of semi‐solid medium for culture will improve the isolation rate of leptospires from the kidneys of wild rats.  相似文献   

13.
The Complement System (CS) plays an important role in the immune response against leptospirosis and can be activated by the Alternative and Lectin Pathways (Innate Immunity) and by the Classical Pathway (Acquired Immunity). Here we analyzed a broad range of nonpathogenic and pathogenic Leptospira strains considering their interaction with each CS pathway. We determined bacterial survival rate and CS protein deposition in the presence of purified proteins, specific component depleted sera and NHS treated with the chelating agents EDTA (inhibits all three activation pathways) or EGTA (inhibits the Classical and Lectin Pathways). We suggest that the Lectin and the Alternative Pathways have an important role to eliminate saprophytic leptospires since i) approximately 50% survival of both saprophytic strains was observed in the presence of MBL-deficient serum; ii) approximately 50% survival of Leptospira biflexa Patoc I was observed in the presence of NHS – EGTA and iii) C1q-depleted serum caused significant bacterial lysis. In all serovars investigated the deposition of C5–C9 proteins on saprophytic Leptospira strains was more pronounced when compared to pathogenic species confirming previous studies in the literature. No difference on C3 deposition was observed between nonpathogenic and pathogenic strains. In conclusion, Leptospira strains interact to different degrees with CS proteins, especially those necessary to form MAC, indicating that some strains and specific ligands could favor the binding of certain CS proteins.  相似文献   

14.

Background  

Leptospirosis is a zoonosis of worldwide distribution caused by infection with pathogenic serovars of Leptospira spp. The most common species, L. interrogans, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. Transmission of pathogenic Leptospira to humans mostly occurs through abraded skin or mucosal surfaces after direct or indirect contact with infected animals or contaminated soil or water. The spirochete then spreads hematogenously, resulting in multi-organ failure and death in severe cases. Previous DNA microarray studies have identified differentially expressed genes required for adaptation to temperature and osmolarity conditions inside the host compared to those of the environment.  相似文献   

15.
Leptospirosis essentially affects human following contact with rodent urine-contaminated water. As such, it was mainly found associated with rice culture, recreational activities and flooding. This is also the reason why it has mainly been investigated in temperate as well as warm and humid regions, while arid zones have been only very occasionally monitored for this disease. In particular, data for West African countries are extremely scarce. Here, we took advantage of an extensive survey of urban rodents in Niamey, Niger, in order to look for rodent-borne pathogenic Leptospira species presence and distribution across the city. To do so, we used high throughput bacterial 16S-based metabarcoding, lipL32 gene-targeting RT-PCR, rrs gene sequencing and VNTR typing as well as GIS-based multivariate spatial analysis. Our results show that leptospires seem absent from the core city where usual Leptospira reservoir rodent species (namely R. rattus and M. natalensis) are yet abundant. On the contrary, L. kirschneri was detected in Arvicanthis niloticus and Cricetomys gambianus, two rodent species that are restricted to irrigated cultures within the city. Moreover, the VNTR profiles showed that rodent-borne leptospires in Niamey belong to previously undescribed serovars. Altogether, our study points towards the importance of market gardening in maintain and circulation of leptospirosis within Sahelian cities. In Africa, irrigated urban agriculture constitutes a pivotal source of food supply, especially in the context of the ongoing extensive urbanization of the continent. With this in mind, we speculate that leptospirosis may represent a zoonotic disease of concern also in arid regions that would deserve to be more rigorously surveyed, especially in urban agricultural settings.  相似文献   

16.
Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp.  相似文献   

17.
During 2019–2020, the Virgin Islands Department of Health investigated potential animal reservoirs of Leptospira spp., the bacteria that cause leptospirosis. In this cross-sectional study, we investigated Leptospira spp. exposure and carriage in the small Indian mongoose (Urva auropunctata, syn: Herpestes auropunctatus), an invasive animal species. This study was conducted across the three main islands of the U.S. Virgin Islands (USVI), which are St. Croix, St. Thomas, and St. John. We used the microscopic agglutination test (MAT), fluorescent antibody test (FAT), real-time polymerase chain reaction (lipl32 rt-PCR), and bacterial culture to evaluate serum and kidney specimens and compared the sensitivity, specificity, positive predictive value, and negative predictive value of these laboratory methods. Mongooses (n = 274) were live-trapped at 31 field sites in ten regions across USVI and humanely euthanized for Leptospira spp. testing. Bacterial isolates were sequenced and evaluated for species and phylogenetic analysis using the ppk gene. Anti-Leptospira spp. antibodies were detected in 34% (87/256) of mongooses. Reactions were observed with the following serogroups: Sejroe, Icterohaemorrhagiae, Pyrogenes, Mini, Cynopteri, Australis, Hebdomadis, Autumnalis, Mankarso, Pomona, and Ballum. Of the kidney specimens examined, 5.8% (16/270) were FAT-positive, 10% (27/274) were culture-positive, and 12.4% (34/274) were positive by rt-PCR. Of the Leptospira spp. isolated from mongooses, 25 were L. borgpetersenii, one was L. interrogans, and one was L. kirschneri. Positive predictive values of FAT and rt-PCR testing for predicting successful isolation of Leptospira by culture were 88% and 65%, respectively. The isolation and identification of Leptospira spp. in mongooses highlights the potential role of mongooses as a wildlife reservoir of leptospirosis; mongooses could be a source of Leptospira spp. infections for other wildlife, domestic animals, and humans.  相似文献   

18.
19.
Rattus norvegicus (Norway rat) is the main reservoir host of pathogenic Leptospira, the causative agent of leptospirosis, in urban environments. Pathogenic Leptospira forms biofilms in the environment, possibly contributing for bacterial survival and maintenance. Nonetheless, biofilms have not yet been studied in natural animal reservoirs presenting leptospiral renal carriage. Here, we described biofilm formation by pathogenic Leptospira inside the renal tubules of R. norvegicus naturally infected and captured in an urban slum endemic for leptospirosis. From the 65 rats carrying Leptospira in their kidneys, 24 (37%) presented biofilms inside the renal tubules. The intensity of leptospiral colonization in the renal tubules (OR: 1.00; 95% CI 1.05–1.1) and the type of occlusion pattern of the colonized renal tubules (OR: 3.46; 95% CI 1.20–9.98) were independently associated with the presence of Leptospira biofilm. Our data showed that Leptospira interrogans produce biofilms during renal chronic colonization in rat reservoirs, suggesting a possible role for leptospiral biofilms in the pathogenesis of leptospirosis and bacterial carriage in host reservoirs.  相似文献   

20.
Leptospira interrogans is a pathogenic spirochete responsible for leptospirosis, a neglected, zoonotic reemerging disease. Humans are sensitive hosts and may develop severe disease. Some animal species, such as rats and mice can become asymptomatic renal carriers. More than 350 leptospiral serovars have been identified, classified on the basis of the antibody response directed against the lipopolysaccharide (LPS). Similarly to whole inactivated bacteria used as human vaccines, this response is believed to confer only short-term, serogroup-specific protection. The immune response of hosts against leptospires has not been thoroughly studied, which complicates the testing of vaccine candidates. In this work, we studied the immunoglobulin (Ig) profiles in mice infected with L. interrogans over time to determine whether this humoral response confers long-term protection after homologous challenge six months post-infection. Groups of mice were injected intraperitoneally with 2×107 leptospires of one of three pathogenic serovars (Manilae, Copenhageni or Icterohaemorrhagiae), attenuated mutants or heat-killed bacteria. Leptospira-specific immunoglobulin (IgA, IgM, IgG and 4 subclasses) produced in the first weeks up to 6 months post-infection were measured by ELISA. Strikingly, we found sustained high levels of IgM in mice infected with the pathogenic Manilae and Copenhageni strains, both colonizing the kidney. In contrast, the Icterohaemorrhagiae strain did not lead to kidney colonization, even at high dose, and triggered a classical IgM response that peaked at day 8 post-infection and disappeared. The virulent Manilae and Copenhageni serovars elicited high levels and similar profiles of IgG subclasses in contrast to Icterohaemorrhagiae strains that stimulated weaker antibody responses. Inactivated heat-killed Manilae strains elicited very low responses. However, all mice pre-injected with leptospires challenged with high doses of homologous bacteria did not develop acute leptospirosis, and all antibody responses were boosted after challenge. Furthermore, we showed that 2 months post-challenge, mice pre-infected with the attenuated M895 Manilae LPS mutant or heat-killed bacterin were completely protected against renal colonization. In conclusion, we observed a sustained IgM response potentially associated with chronic leptospiral renal infection. We also demonstrated in mice different profiles of protective and cross-reactive antibodies after L. interrogans infection, depending on the serovar and virulence of strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号